1
|
Holvec S, Barchet C, Lechner A, Fréchin L, De Silva SNT, Hazemann I, Wolff P, von Loeffelholz O, Klaholz BP. The structure of the human 80S ribosome at 1.9 Å resolution reveals the molecular role of chemical modifications and ions in RNA. Nat Struct Mol Biol 2024; 31:1251-1264. [PMID: 38844527 DOI: 10.1038/s41594-024-01274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 03/14/2024] [Indexed: 08/17/2024]
Abstract
The ribosomal RNA of the human protein synthesis machinery comprises numerous chemical modifications that are introduced during ribosome biogenesis. Here we present the 1.9 Å resolution cryo electron microscopy structure of the 80S human ribosome resolving numerous new ribosomal RNA modifications and functionally important ions such as Zn2+, K+ and Mg2+, including their associated individual water molecules. The 2'-O-methylation, pseudo-uridine and base modifications were confirmed by mass spectrometry, resulting in a complete investigation of the >230 sites, many of which could not be addressed previously. They choreograph key interactions within the RNA and at the interface with proteins, including at the ribosomal subunit interfaces of the fully assembled 80S ribosome. Uridine isomerization turns out to be a key mechanism for U-A base pair stabilization in RNA in general. The structural environment of chemical modifications and ions is primordial for the RNA architecture of the mature human ribosome, hence providing a structural framework to address their role in healthy states and in human diseases.
Collapse
Affiliation(s)
- Samuel Holvec
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Charles Barchet
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Antony Lechner
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Léo Fréchin
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - S Nimali T De Silva
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Isabelle Hazemann
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Philippe Wolff
- Architecture et Réactivité de l'ARN, CNRS UPR9002, Institute of Molecular and Cellular Biology, Université de Strasbourg, Strasbourg, France
| | - Ottilie von Loeffelholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France
- Centre National de la Recherche Scientifique UMR, Illkirch, France
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France
- Université de Strasbourg, Strasbourg, France
| | - Bruno P Klaholz
- Centre for Integrative Biology, Department of Integrated Structural Biology, Institute of Genetics and of Molecular and Cellular Biology, Illkirch, France.
- Centre National de la Recherche Scientifique UMR, Illkirch, France.
- Institut National de la Santé et de la Recherche Médicale, Illkirch, France.
- Université de Strasbourg, Strasbourg, France.
| |
Collapse
|
2
|
Baran A, Kwiatkowska A, Potocki L. Antibiotics and Bacterial Resistance-A Short Story of an Endless Arms Race. Int J Mol Sci 2023; 24:ijms24065777. [PMID: 36982857 PMCID: PMC10056106 DOI: 10.3390/ijms24065777] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/10/2023] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Despite the undisputed development of medicine, antibiotics still serve as first-choice drugs for patients with infectious disorders. The widespread use of antibiotics results from a wide spectrum of their actions encompassing mechanisms responsible for: the inhibition of bacterial cell wall biosynthesis, the disruption of cell membrane integrity, the suppression of nucleic acids and/or proteins synthesis, as well as disturbances of metabolic processes. However, the widespread availability of antibiotics, accompanied by their overprescription, acts as a double-edged sword, since the overuse and/or misuse of antibiotics leads to a growing number of multidrug-resistant microbes. This, in turn, has recently emerged as a global public health challenge facing both clinicians and their patients. In addition to intrinsic resistance, bacteria can acquire resistance to particular antimicrobial agents through the transfer of genetic material conferring resistance. Amongst the most common bacterial resistance strategies are: drug target site changes, increased cell wall permeability to antibiotics, antibiotic inactivation, and efflux pumps. A better understanding of the interplay between the mechanisms of antibiotic actions and bacterial defense strategies against particular antimicrobial agents is crucial for developing new drugs or drug combinations. Herein, we provide a brief overview of the current nanomedicine-based strategies that aim to improve the efficacy of antibiotics.
Collapse
Affiliation(s)
- Aleksandra Baran
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| | - Aleksandra Kwiatkowska
- Institute of Physical Culture Studies, College of Medical Sciences, University of Rzeszów, ul. Towarnickiego 3, 35-959 Rzeszów, Poland
| | - Leszek Potocki
- Department of Biotechnology, College of Natural Sciences, University of Rzeszów, Pigonia 1, 35-310 Rzeszow, Poland
| |
Collapse
|
3
|
Maliga P. Engineering the plastid and mitochondrial genomes of flowering plants. NATURE PLANTS 2022; 8:996-1006. [PMID: 36038655 DOI: 10.1038/s41477-022-01227-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023]
Abstract
Engineering the plastid genome based on homologous recombination is well developed in a few model species. Homologous recombination is also the rule in mitochondria, but transformation of the mitochondrial genome has not been realized in the absence of selective markers. The application of transcription activator-like (TAL) effector-based tools brought about a dramatic change because they can be deployed from nuclear genes and targeted to plastids or mitochondria by an N-terminal targeting sequence. Recognition of the target site in the organellar genomes is ensured by the modular assembly of TALE repeats. In this paper, I review the applications of TAL effector nucleases and TAL effector cytidine deaminases for gene deletion, base editing and mutagenesis in plastids and mitochondria. I also review emerging technologies such as post-transcriptional RNA modification to regulate gene expression, Agrobacterium- and nanoparticle-mediated organellar genome transformation, and self-replicating organellar vectors as production platforms.
Collapse
Affiliation(s)
- Pal Maliga
- Waksman Institute of Microbiology, Rutgers University, Piscataway, NJ, USA.
- Department of Plant Biology, Rutgers University, New Brunswick, NJ, USA.
| |
Collapse
|
4
|
Shi HQ, Ma Y, Wang YH, Fang F, Wu ZY. Current pulse signature of native kanamycin aptamer and its implication for molecular interactions on a single protein nanopore sensing interface. Biosens Bioelectron 2022; 201:113966. [PMID: 35016110 DOI: 10.1016/j.bios.2022.113966] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/30/2021] [Accepted: 01/03/2022] [Indexed: 11/02/2022]
Abstract
Due to the pore size limitation of single α-hemolysin (α-HL) nanopore sensing interface, ssDNA with secondary conformations can only pass through the nanopore after unzipping as linear ssDNA. For hairpin DNA, a tail with 15-50 bases was usually added to the stem terminal (5' or 3') to facilitate the capture rate and unzipping process, and the typical translocation signal behaves as a square wave with a short dip at the end of the pulse. In this work, the pulse signal of native kanamycin aptamer, a hairpin DNA without the added long tail, was investigated with the single nanopore sensing interface, and different current pulse pattern was observed. The pulse signal exhibited two precise current levels with significantly extended duration of the second, and both duration of the two levels correlate to the interaction of the aptamer to kanamycin. Moreover, the pulse signal not only reveals the selectivity of the aptamer to its target, but also sensitive to the loop sequence change of the aptamer. This work shows that a single nanopore sensing interface could be used as a unique alternative means for interaction investigation of hairpin DNA aptamer without labeling or adding the extra-long tail.
Collapse
Affiliation(s)
- Hui-Qing Shi
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yao Ma
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Yu-Hang Wang
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Fang Fang
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China
| | - Zhi-Yong Wu
- Research Center for Analytical Sciences, Chemistry Department, College of Sciences, Northeastern University, Shenyang, 110819, China.
| |
Collapse
|
5
|
Girmatsion M, Mahmud A, Abraha B, Xie Y, Cheng Y, Yu H, Yao W, Guo Y, Qian H. Rapid detection of antibiotic residues in animal products using surface-enhanced Raman Spectroscopy: A review. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108019] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
6
|
Aminomethyl spectinomycins: a novel antibacterial chemotype for biothreat pathogens. J Antibiot (Tokyo) 2019; 72:693-701. [PMID: 31164713 PMCID: PMC6684479 DOI: 10.1038/s41429-019-0194-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/06/2023]
Abstract
New antibiotics that are active against multi-drug-resistant strains and difficult-to-treat bacterial infections are needed. Synthetic modification of spectinomycin, a bacterial protein synthesis inhibitor, has been shown to increase antibacterial activity compared with spectinomycin. Aminomethyl spectinomycins are active against Gram-negative and Gram-positive bacterial pathogens. In this study, the ability of aminomethyl spectinomycins to treat biothreat pathogens is examined by MIC profiling, synergy testing, and in vivo efficacy experiments. Compound 1950 exhibited potent antibacterial activity against Gram-negative pathogens Brucella spp., Burkholderia mallei, and Francisella tularensis, but showed little to no growth inhibition against Burkholderia pseudomallei, Bacillus anthracis, and Yersinia pestis. Combination testing in checkerboard assays revealed that aminomethyl spectinomycin-antibiotic combinations had mainly an additive effect against the susceptible biodefense pathogens. The in vivo efficacy of compound 1950 was also demonstrated in mice infected with B. mallei (FMH) or F. tularensis (SchuS4). These results suggest that aminomethyl spectinomycins are promising new candidates for development of therapeutics against biodefense bacterial agents.
Collapse
|
7
|
Abstract
A robust, fluorescence-based analysis and discovery platform is described for bacterial A-site binders. The assay relies on an incorporated isomorphic fluorescent uridine analog, which substitutes the A-site's U1406 and serves as a FRET donor to an A-site bound coumarin-labeled aminoglycoside that serves as the FRET acceptor. Binding efficiency of unlabeled A-site ligands can be determined by competition experiments, where the acceptor-labeled aminoglycoside is displaced. The replacement efficiency is gauged by the concentration-dependent loss of the sensitized FRET acceptor's signal with concomitant restoration of the donor's emission. Plotting the relative emission intensity of both the donor and acceptor as a function of ligand concentration followed by fitting of the data points to a dose-response curve yields IC50 values, one possible measure of the antibiotic potency of new A-site binders.
Collapse
Affiliation(s)
- Renatus W Sinkeldam
- Office of Technology Management, Washington University in St. Louis, St. Louis, MO, USA
| | - Yitzhak Tor
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
8
|
Visualizing the Role of 2'-OH rRNA Methylations in the Human Ribosome Structure. Biomolecules 2018; 8:biom8040125. [PMID: 30366442 PMCID: PMC6316459 DOI: 10.3390/biom8040125] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/10/2018] [Accepted: 10/18/2018] [Indexed: 01/17/2023] Open
Abstract
Chemical modifications of RNA have recently gained new attention in biological sciences. They occur notably on messenger RNA (mRNA) and ribosomal RNA (rRNA) and are important for various cellular functions, but their molecular mechanism of action is yet to be understood in detail. Ribosomes are large ribonucleoprotein assemblies, which synthesize proteins in all organisms. Human ribosomes, for example, carry more than 200 modified nucleotides, which are introduced during biogenesis. Chemically modified nucleotides may appear to be only scarcely different from canonical nucleotides, but modifications such as methylations can in fact modulate their chemical and topological properties in the RNA and alter or modulate the overall translation efficiency of the ribosomes resulting in dysfunction of the translation machinery. Recent functional analysis and high-resolution ribosome structures have revealed a large repertoire of modification sites comprising different modification types. In this review, we focus on 2′-O-methylations (2′-O-Me) and discuss the structural insights gained through our recent cryo electron microscopy (cryo-EM) high-resolution structural analysis of the human ribosome, such as their locations and their influence on the secondary and tertiary structures of human rRNAs. The detailed analysis presented here reveals that ribose conformations of the rRNA backbone differ when the 2′-OH hydroxyl position is methylated, with 3′-endo conformations being the default and the 2′-endo conformations being characteristic in that the associated base is flipped-out. We compare currently known 2′-O-Me sites in human rRNAs evaluated using RiboMethSeq and cryo-EM structural analysis and discuss their involvement in several human diseases.
Collapse
|
9
|
Wang L, Li S, Zhao J, Liu Y, Chen X, Tang L, Mao Z. Efficiently activated ε-poly-L-lysine production by multiple antibiotic-resistance mutations and acidic pH shock optimization in Streptomyces albulus. Microbiologyopen 2018; 8:e00728. [PMID: 30298553 PMCID: PMC6528598 DOI: 10.1002/mbo3.728] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Revised: 08/09/2018] [Accepted: 08/09/2018] [Indexed: 11/17/2022] Open
Abstract
ε‐Poly‐L‐lysine (ε‐PL) is a food additive produced by Streptomyces and is widely used in many countries. Working with Streptomyces albulus FEEL‐1, we established a method to activate ε‐PL synthesis by successive introduction of multiple antibiotic‐resistance mutations. Sextuple mutant R6 was finally developed by screening for resistance to six antibiotics and produced 4.41 g/L of ε‐PL in a shake flask, which is 2.75‐fold higher than the level produced by the parent strain. In a previous study, we constructed a double‐resistance mutant, SG‐31, with high ε‐PL production of 3.83 g/L and 59.50 g/L in a shake flask and 5‐L bioreactor, respectively. However, we found that R6 did not show obvious advantages in fed‐batch fermentation when compared with SG‐31. For further activation of ε‐PL synthesis ability, we optimized the fermentation process by using an effective acidic pH shock strategy, by which R6 synthetized 70.3 g/L of ε‐PL, 2.79‐fold and 1.18‐fold greater than that synthetized by FEEL‐1 and SG‐31, respectively. To the best of our knowledge, this is the highest reported ε‐PL production to date. This ε‐PL overproduction may be due to the result of R99P and Q856H mutations in ribosomal protein S12 and RNA polymerase, respectively, which may be responsible for the increased transcription of the ε‐poly‐lysine synthetase gene (pls) and key enzyme activities in the Lys synthesis metabolic pathway. Consequently, ε‐PL synthetase activity, intracellular ATP, and Lys concentrations were improved and directly contributed to ε‐PL overproduction. This study combined ribosome engineering, high‐throughput screening, and targeted strategy optimization to accelerate ε‐PL production and probe the fermentation characteristics of hyperyield mutants. The information presented here may be useful for other natural products produced by Streptomyces.
Collapse
Affiliation(s)
- Liang Wang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Shu Li
- College of Marine Science, Shandong University (Weihai), Weihai, China
| | - Junjie Zhao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yongjuan Liu
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xusheng Chen
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lei Tang
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Zhonggui Mao
- The Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
10
|
Huang CC, Wu MF, Chen HC, Huang WC. In vitro activity of aminoglycosides, clofazimine, d-cycloserine and dapsone against 83 Mycobacterium avium complex clinical isolates. JOURNAL OF MICROBIOLOGY, IMMUNOLOGY, AND INFECTION = WEI MIAN YU GAN RAN ZA ZHI 2018; 51:636-643. [DOI: 10.1016/j.jmii.2017.05.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 04/04/2017] [Accepted: 05/15/2017] [Indexed: 01/15/2023]
|
11
|
Yao Y, Jiang C, Ping J. Flexible freestanding graphene paper-based potentiometric enzymatic aptasensor for ultrasensitive wireless detection of kanamycin. Biosens Bioelectron 2018; 123:178-184. [PMID: 30174273 DOI: 10.1016/j.bios.2018.08.048] [Citation(s) in RCA: 81] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/20/2018] [Accepted: 08/21/2018] [Indexed: 10/28/2022]
Abstract
Flexible sensing devices have drawn tremendous attention in the past decades due to their potential applications in future hand-held, potable consumer, and wearable electronics. Here, we firstly developed an ultrasensitive wireless potentiometric aptasensor based on flexible freestanding graphene paper for kanamycin detection. Flexible graphene paper made from a simple vacuum filtration method was used as a biocompatible platform for effective immobilization of aptamer. A nuclease-assisted amplification strategy was introduced into this potentiometric biosensing system in order to significantly improve the detection sensitivity through a classic catalytic recycling reaction of target induced by the nuclease (DNase I). As expected, an ultra-low detection limit of 30.0 fg/mL for kanamycin was achieved. Furthermore, the developed potentiometric enzymatic aptasensor exhibits high selectivity, favorable flexibility, excellent stability and reproducibility, which holds great promising for its routine sensing application.
Collapse
Affiliation(s)
- Yao Yao
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Chengmei Jiang
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China
| | - Jianfeng Ping
- School of Biosystems Engineering and Food Science, Zhejiang University, 866 Yuhangtang Road, Hangzhou 310058, PR China.
| |
Collapse
|
12
|
Parulekar RS, Sonawane KD. Insights into the antibiotic resistance and inhibition mechanism of aminoglycoside phosphotransferase from
Bacillus cereus
: In silico and in vitro perspective. J Cell Biochem 2018; 119:9444-9461. [DOI: 10.1002/jcb.27261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Accepted: 06/22/2018] [Indexed: 01/13/2023]
Affiliation(s)
| | - Kailas Dashrath Sonawane
- Department of Microbiology Shivaji University Kolhapur Maharashtra India
- Structural Bioinformatics Unit, Department of Biochemistry Shivaji University Kolhapur Maharashtra India
| |
Collapse
|
13
|
Visualization of chemical modifications in the human 80S ribosome structure. Nature 2017; 551:472-477. [PMID: 29143818 DOI: 10.1038/nature24482] [Citation(s) in RCA: 247] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Accepted: 10/03/2017] [Indexed: 12/18/2022]
Abstract
Chemical modifications of human ribosomal RNA (rRNA) are introduced during biogenesis and have been implicated in the dysregulation of protein synthesis, as is found in cancer and other diseases. However, their role in this phenomenon is unknown. Here we visualize more than 130 individual rRNA modifications in the three-dimensional structure of the human ribosome, explaining their structural and functional roles. In addition to a small number of universally conserved sites, we identify many eukaryote- or human-specific modifications and unique sites that form an extended shell in comparison to bacterial ribosomes, and which stabilize the RNA. Several of the modifications are associated with the binding sites of three ribosome-targeting antibiotics, or are associated with degenerate states in cancer, such as keto alkylations on nucleotide bases reminiscent of specialized ribosomes. This high-resolution structure of the human 80S ribosome paves the way towards understanding the role of epigenetic rRNA modifications in human diseases and suggests new possibilities for designing selective inhibitors and therapeutic drugs.
Collapse
|
14
|
Bölter B, Soll J. Ycf1/Tic214 Is Not Essential for the Accumulation of Plastid Proteins. MOLECULAR PLANT 2017; 10:219-221. [PMID: 27780781 DOI: 10.1016/j.molp.2016.10.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 10/14/2016] [Accepted: 10/19/2016] [Indexed: 05/08/2023]
Affiliation(s)
- Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany.
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-Universität, Großhadernerstraße 2-4, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
15
|
Sjuts I, Soll J, Bölter B. Import of Soluble Proteins into Chloroplasts and Potential Regulatory Mechanisms. FRONTIERS IN PLANT SCIENCE 2017; 8:168. [PMID: 28228773 PMCID: PMC5296341 DOI: 10.3389/fpls.2017.00168] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2016] [Accepted: 01/26/2017] [Indexed: 05/20/2023]
Abstract
Chloroplasts originated from an endosymbiotic event in which a free-living cyanobacterium was engulfed by an ancestral eukaryotic host. During evolution the majority of the chloroplast genetic information was transferred to the host cell nucleus. As a consequence, proteins formerly encoded by the chloroplast genome are now translated in the cytosol and must be subsequently imported into the chloroplast. This process involves three steps: (i) cytosolic sorting procedures, (ii) binding to the designated receptor-equipped target organelle and (iii) the consecutive translocation process. During import, proteins have to overcome the two barriers of the chloroplast envelope, namely the outer envelope membrane (OEM) and the inner envelope membrane (IEM). In the majority of cases, this is facilitated by two distinct multiprotein complexes, located in the OEM and IEM, respectively, designated TOC and TIC. Plants are constantly exposed to fluctuating environmental conditions such as temperature and light and must therefore regulate protein composition within the chloroplast to ensure optimal functioning of elementary processes such as photosynthesis. In this review we will discuss the recent models of each individual import stage with regard to short-term strategies that plants might use to potentially acclimate to changes in their environmental conditions and preserve the chloroplast protein homeostasis.
Collapse
Affiliation(s)
- Inga Sjuts
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
| | - Jürgen Soll
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
| | - Bettina Bölter
- Department Biologie I-Botanik, Ludwig-Maximilians-UniversitätPlanegg-Martinsried, Germany
- Munich Center for Integrated Protein Science CiPSM, Ludwig-Maximilians-UniversitätMunich, Germany
- *Correspondence: Bettina Bölter,
| |
Collapse
|
16
|
Approaches for the Discovery of Small Molecule Ligands Targeting microRNAs. TOPICS IN MEDICINAL CHEMISTRY 2017. [DOI: 10.1007/7355_2017_3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
17
|
Zhang X, Lai M, Chang W, Yu I, Ding K, Mrazek J, Ng HL, Yang OO, Maslov DA, Zhou ZH. Structures and stabilization of kinetoplastid-specific split rRNAs revealed by comparing leishmanial and human ribosomes. Nat Commun 2016; 7:13223. [PMID: 27752045 PMCID: PMC5071889 DOI: 10.1038/ncomms13223] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 09/13/2016] [Indexed: 11/17/2022] Open
Abstract
The recent success in ribosome structure determination by cryoEM has opened the door to defining structural differences between ribosomes of pathogenic organisms and humans and to understand ribosome-targeting antibiotics. Here, by direct electron-counting cryoEM, we have determined the structures of the Leishmania donovani and human ribosomes at 2.9 Å and 3.6 Å, respectively. Our structure of the leishmanial ribosome elucidates the organization of the six fragments of its large subunit rRNA (as opposed to a single 28S rRNA in most eukaryotes, including humans) and reveals atomic details of a unique 20 amino acid extension of the uL13 protein that pins down the ends of three of the rRNA fragments. The structure also fashions many large rRNA expansion segments. Direct comparison of our human and leishmanial ribosome structures at the decoding A-site sheds light on how the bacterial ribosome-targeting drug paromomycin selectively inhibits the eukaryotic L. donovani, but not human, ribosome.
Collapse
Affiliation(s)
- Xing Zhang
- Center of Cryo Electron Microscopy, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
| | - Mason Lai
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Winston Chang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Iris Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Ke Ding
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| | - Jan Mrazek
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Hwee L. Ng
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Otto O. Yang
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
- Division of Infectious Diseases, Department of Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California 90095, USA
| | - Dmitri A. Maslov
- Department of Biology, University of California, Riverside, California 91521, USA
| | - Z. Hong Zhou
- California NanoSystems Institute, University of California, Los Angeles, California 90095, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California 90095, USA
| |
Collapse
|
18
|
Bruhn DF, Waidyarachchi SL, Madhura DB, Shcherbakov D, Zheng Z, Liu J, Abdelrahman YM, Singh AP, Duscha S, Rathi C, Lee RB, Belland RJ, Meibohm B, Rosch JW, Böttger EC, Lee RE. Aminomethyl spectinomycins as therapeutics for drug-resistant respiratory tract and sexually transmitted bacterial infections. Sci Transl Med 2016; 7:288ra75. [PMID: 25995221 DOI: 10.1126/scitranslmed.3010572] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The antibiotic spectinomycin is a potent inhibitor of bacterial protein synthesis with a unique mechanism of action and an excellent safety index, but it lacks antibacterial activity against most clinically important pathogens. A series of N-benzyl-substituted 3'-(R)-3'-aminomethyl-3'-hydroxy spectinomycins was developed on the basis of a computational analysis of the aminomethyl spectinomycin binding site and structure-guided synthesis. These compounds had ribosomal inhibition values comparable to spectinomycin but showed increased potency against the common respiratory tract pathogens Streptococcus pneumoniae, Haemophilus influenzae, Legionella pneumophila, and Moraxella catarrhalis, as well as the sexually transmitted bacteria Neisseria gonorrhoeae and Chlamydia trachomatis. Non-ribosome-binding 3'-(S) isomers of the lead compounds demonstrated weak inhibitory activity in in vitro protein translation assays and poor antibacterial activity, indicating that the antibacterial activity of the series remains on target against the ribosome. Compounds also demonstrated no mammalian cytotoxicity, improved microsomal stability, and favorable pharmacokinetic properties in rats. The lead compound from the series exhibited excellent chemical stability superior to spectinomycin; no interaction with a panel of human receptors and drug metabolism enzymes, suggesting low potential for adverse reactions or drug-drug interactions in vivo; activity in vitro against a panel of penicillin-, macrolide-, and cephalosporin-resistant S. pneumoniae clinical isolates; and the ability to cure mice of fatal pneumococcal pneumonia and sepsis at a dose of 5 mg/kg. Together, these studies indicate that N-benzyl aminomethyl spectinomycins are suitable for further development to treat drug-resistant respiratory tract and sexually transmitted bacterial infections.
Collapse
Affiliation(s)
- David F Bruhn
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Samanthi L Waidyarachchi
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Dora B Madhura
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Dimitri Shcherbakov
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Zhong Zheng
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Jiuyu Liu
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Yasser M Abdelrahman
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Aman P Singh
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA.,Biomedical Sciences Graduate Program, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Stefan Duscha
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Chetan Rathi
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Robin B Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Robert J Belland
- Department of Microbiology, Immunology, and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Bernd Meibohm
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jason W Rosch
- Infectious Diseases Department, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Erik C Böttger
- Institut für Medizinische Mikrobiologie, Universität Zürich, Zürich, Switzerland
| | - Richard E Lee
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, TN, USA
| |
Collapse
|
19
|
Signaling-Probe Displacement Electrochemical Aptamer-based Sensor (SD-EAB) for Detection of Nanomolar Kanamycin A. Electrochim Acta 2015. [DOI: 10.1016/j.electacta.2015.09.140] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
20
|
Xin Y, Li Z, Zhang Z. Photoelectrochemical aptasensor for the sensitive and selective detection of kanamycin based on Au nanoparticle functionalized self-doped TiO2 nanotube arrays. Chem Commun (Camb) 2015; 51:15498-501. [PMID: 26382019 DOI: 10.1039/c5cc05855d] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, a new photoelectrochemical aptasensor with Au nanoparticle functionalized self-doped TiO2 nanotube arrays (Au/SD-TiO2 NTs) as the core sensing unit and aptamers as the recognition unit was set up to accomplish the sensitive and selective detection of kanamycin with the lowest detection limit of 0.1 nM.
Collapse
Affiliation(s)
- Yanmei Xin
- School of Chemistry and Molecular Engineering, East China Normal University, 500 Dongchuan Road, Shanghai 200241, China.
| | | | | |
Collapse
|
21
|
Drug-induced acid-base disorders. Pediatr Nephrol 2015; 30:1407-23. [PMID: 25370778 DOI: 10.1007/s00467-014-2958-5] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2014] [Revised: 08/28/2014] [Accepted: 09/03/2014] [Indexed: 10/24/2022]
Abstract
The incidence of acid-base disorders (ABDs) is high, especially in hospitalized patients. ABDs are often indicators for severe systemic disorders. In everyday clinical practice, analysis of ABDs must be performed in a standardized manner. Highly sensitive diagnostic tools to distinguish the various ABDs include the anion gap and the serum osmolar gap. Drug-induced ABDs can be classified into five different categories in terms of their pathophysiology: (1) metabolic acidosis caused by acid overload, which may occur through accumulation of acids by endogenous (e.g., lactic acidosis by biguanides, propofol-related syndrome) or exogenous (e.g., glycol-dependant drugs, such as diazepam or salicylates) mechanisms or by decreased renal acid excretion (e.g., distal renal tubular acidosis by amphotericin B, nonsteroidal anti-inflammatory drugs, vitamin D); (2) base loss: proximal renal tubular acidosis by drugs (e.g., ifosfamide, aminoglycosides, carbonic anhydrase inhibitors, antiretrovirals, oxaliplatin or cisplatin) in the context of Fanconi syndrome; (3) alkalosis resulting from acid and/or chloride loss by renal (e.g., diuretics, penicillins, aminoglycosides) or extrarenal (e.g., laxative drugs) mechanisms; (4) exogenous bicarbonate loads: milk-alkali syndrome, overshoot alkalosis after bicarbonate therapy or citrate administration; and (5) respiratory acidosis or alkalosis resulting from drug-induced depression of the respiratory center or neuromuscular impairment (e.g., anesthetics, sedatives) or hyperventilation (e.g., salicylates, epinephrine, nicotine).
Collapse
|
22
|
Guo W, Sun N, Qin X, Pei M, Wang L. A novel electrochemical aptasensor for ultrasensitive detection of kanamycin based on MWCNTs-HMIMPF6 and nanoporous PtTi alloy. Biosens Bioelectron 2015. [PMID: 26208174 DOI: 10.1016/j.bios.2015.06.081] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
A novel aptasensor based on a novel composite film consisting of multi-walled carbon nanotubes (MWCNTs), ionic liquid (IL) of 1-hexyl-3-methylimidazolium hexafluorophosphate (HMIMPF6), and nanoporous PtTi (NP-PtTi) alloy was constructed for ultrasensitive detection of kanamycin. The NP-PtTi alloy was successfully fabricated by a simple dealloying of PtTiAl source alloy in HCl solution. The NP-PtTi alloy has uniform interconnected network structure with specific surface area and was used to immobilize aptamer. After modified with the composite material, current signal was amplified obviously, which attributed to the larger specific surface area and excellent electrical conductivity of NP-PtTi and MWCNTs. A number of factors affecting the activity of the aptasensor have been discussed and optimized. Under the optimized conditions, the proposed aptasensor provided a linear range of 0.05-100 ng mL(-1) with a low detection limit of 3.7 pg mL(-1). This aptasensor displayed high sensitivity, stability and reproducibility. In addition, the as-prepared aptasensor was successfully used for the determination of kanamycin in a real sample.
Collapse
Affiliation(s)
- Wenjuan Guo
- Shandong Provincial Key Laboratory of Chemical Sensing & Analysis, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Na Sun
- Environmental Protection Monitoring Station, Jining 272045, China
| | - Xiaoli Qin
- Shandong Provincial Key Laboratory of Chemical Sensing & Analysis, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| | - Meishan Pei
- Shandong Provincial Key Laboratory of Chemical Sensing & Analysis, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China.
| | - Luyan Wang
- Shandong Provincial Key Laboratory of Chemical Sensing & Analysis, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, China
| |
Collapse
|
23
|
Lin X, Cui L, Huang Y, Lin Y, Xie Y, Zhu Z, Yin B, Chen X, Yang CJ. Carbon nanoparticle-protected aptamers for highly sensitive and selective detection of biomolecules based on nuclease-assisted target recycling signal amplification. Chem Commun (Camb) 2015; 50:7646-8. [PMID: 24898824 DOI: 10.1039/c4cc02184c] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Based on the protective properties of carbon nanoparticles for aptamers against the digestion of nuclease, we have developed a nuclease-assisted target recycling signal amplification method for highly sensitive detection of biomolecules, such as ATP and kanamycin. The high binding specificity between aptamers and targets leads to excellent selectivity of the assay.
Collapse
Affiliation(s)
- Xiaoyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Parker N, Wang Y, Meinke D. Natural variation in sensitivity to a loss of chloroplast translation in Arabidopsis. PLANT PHYSIOLOGY 2014; 166:2013-27. [PMID: 25336520 PMCID: PMC4256881 DOI: 10.1104/pp.114.249052] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Mutations that eliminate chloroplast translation in Arabidopsis (Arabidopsis thaliana) result in embryo lethality. The stage of embryo arrest, however, can be influenced by genetic background. To identify genes responsible for improved growth in the absence of chloroplast translation, we examined seedling responses of different Arabidopsis accessions on spectinomycin, an inhibitor of chloroplast translation, and crossed the most tolerant accessions with embryo-defective mutants disrupted in chloroplast ribosomal proteins generated in a sensitive background. The results indicate that tolerance is mediated by ACC2, a duplicated nuclear gene that targets homomeric acetyl-coenzyme A carboxylase to plastids, where the multidomain protein can participate in fatty acid biosynthesis. In the presence of functional ACC2, tolerance is enhanced by a second locus that maps to chromosome 5 and heightened by additional genetic modifiers present in the most tolerant accessions. Notably, some of the most sensitive accessions contain nonsense mutations in ACC2, including the "Nossen" line used to generate several of the mutants studied here. Functional ACC2 protein is therefore not required for survival in natural environments, where heteromeric acetyl-coenzyme A carboxylase encoded in part by the chloroplast genome can function instead. This work highlights an interesting example of a tandem gene duplication in Arabidopsis, helps to explain the range of embryo phenotypes found in Arabidopsis mutants disrupted in essential chloroplast functions, addresses the nature of essential proteins encoded by the chloroplast genome, and underscores the value of using natural variation to study the relationship between chloroplast translation, plant metabolism, protein import, and plant development.
Collapse
Affiliation(s)
- Nicole Parker
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| | - Yixing Wang
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| | - David Meinke
- Department of Botany, Oklahoma State University, Stillwater, Oklahoma 74078
| |
Collapse
|
25
|
Bauer A, Brönstrup M. Industrial natural product chemistry for drug discovery and development. Nat Prod Rep 2014; 31:35-60. [DOI: 10.1039/c3np70058e] [Citation(s) in RCA: 163] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
26
|
Sun X, Li F, Shen G, Huang J, Wang X. Aptasensor based on the synergistic contributions of chitosan-gold nanoparticles, graphene-gold nanoparticles and multi-walled carbon nanotubes-cobalt phthalocyanine nanocomposites for kanamycin detection. Analyst 2013; 139:299-308. [PMID: 24256770 DOI: 10.1039/c3an01840g] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
An electrochemical aptasensor was developed for the detection of kanamycin based on the synergistic contributions of chitosan-gold nanoparticles (CS-AuNPs), graphene-gold nanoparticles (GR-AuNPs) and multi-walled carbon nanotubes-cobalt phthalocyanine (MWCNTs-CoPc) nanocomposites. The aptasensor was prepared by sequentially dripping CS-AuNPs, GR-AuNPs and MWCNTs-CoPc nanocomposites onto a gold electrode (GE) surface. During the above process, these nanomaterials showed a remarkable synergistic effect towards the aptasensor. CS-AuNPs, GR-AuNPs and MWCNTs-CoPc as the nanocomposites mediator improved electron relay during the entire electron transfer process and the aptasensor response speed. The electrochemical properties of the modified processes were characterized by cyclic voltammetry (CV). The morphologies of the nanocomposites were characterized by scanning electron microscopy (SEM). The experimental conditions such as the concentration of the aptamer, the time, temperature and the pH were optimized. Based on the synergistic contributions of CS-AuNPs, GR-AuNPs and MWCNTs-CoPc nanocomposites, the proposed aptasensor displayed high sensitivity, high specificity, a low detection limit (5.8 × 10(-9) M) (S/N = 3) and excellent stability. It was successfully applied to the detection of kanamycin in real milk spiked samples.
Collapse
Affiliation(s)
- Xia Sun
- School of Agriculture and Food Engineering, Shandong University of Technology, Zibo 255049, P.R. China.
| | | | | | | | | |
Collapse
|
27
|
Panov A, Orynbayeva Z. Bioenergetic and antiapoptotic properties of mitochondria from cultured human prostate cancer cell lines PC-3, DU145 and LNCaP. PLoS One 2013; 8:e72078. [PMID: 23951286 PMCID: PMC3738524 DOI: 10.1371/journal.pone.0072078] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2013] [Accepted: 07/05/2013] [Indexed: 12/03/2022] Open
Abstract
The purpose of this work was to reveal the metabolic features of mitochondria that might be essential for inhibition of apoptotic potential in prostate cancer cells. We studied mitochondria isolated from normal prostate epithelial cells (PrEC), metastatic prostate cancer cell lines LNCaP, PC-3, DU145; and non-prostate cancer cells - human fibrosarcoma HT1080 cells; and normal human lymphoblastoid cells. PrEC cells contained 2 to 4 times less mitochondria per gram of cells than the three PC cell lines. Respiratory activities of PrEC cell mitochondria were 5-20-fold lower than PC mitochondria, depending on substrates and the metabolic state, due to lower content and lower activity of the respiratory enzyme complexes. Mitochondria from the three metastatic prostate cancer cell lines revealed several features that are distinctive only to these cells: low affinity of Complex I for NADH, 20-30 mV higher electrical membrane potential (ΔΨ). Unprotected with cyclosporine A (CsA) the PC-3 mitochondria required 4 times more Ca2+ to open the permeability transition pore (mPTP) when compared with the PrEC mitochondria, and they did not undergo swelling even in the presence of alamethicin, a large pore forming antibiotic. In the presence of CsA, the PC-3 mitochondria did not open spontaneously the mPTP. We conclude that the low apoptotic potential of the metastatic PC cells may arise from inhibition of the Ca2+-dependent permeability transition due to a very high ΔΨ and higher capacity to sequester Ca2+. We suggest that due to the high ΔΨ, mitochondrial metabolism of the metastatic prostate cancer cells is predominantly based on utilization of glutamate and glutamine, which may promote development of cachexia.
Collapse
Affiliation(s)
- Alexander Panov
- Institute of Molecular Biology and Biophysics, Siberian Division of the Russian Academy of Medical Sciences, Novosibirsk, Russia.
| | | |
Collapse
|
28
|
Ilina EN, Malakhova MV, Bodoev IN, Oparina NY, Filimonova AV, Govorun VM. Mutation in ribosomal protein S5 leads to spectinomycin resistance in Neisseria gonorrhoeae. Front Microbiol 2013; 4:186. [PMID: 23847609 PMCID: PMC3706878 DOI: 10.3389/fmicb.2013.00186] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Accepted: 06/19/2013] [Indexed: 11/15/2022] Open
Abstract
Spectinomycin remains a useful reserve option for therapy of gonorrhea. The emergence of multidrug-resistant Neisseria gonorrhoeae strains with decreased susceptibility to cefixime and to ceftriaxone makes it the only medicine still effective for treatment of gonorrhea infection in analogous cases. However, adoption of spectinomycin as a routinely used drug of choice was soon followed by reports of spectinomycin resistance. The main molecular mechanism of spectinomycin resistance in N. gonorrhoeae was C1192T substitution in 16S rRNA genes. Here we reported a Thr-24→Pro mutation in ribosomal protein S5 (RPS5) found in spectinomycin resistant clinical N. gonorrhoeae strain, which carried no changes in 16S rRNA. In a series of experiments, the transfer of rpsE gene allele encoding the mutant RPS5 to the recipient N. gonorrhoeae strains was analyzed. The relatively high rate of transformation [ca. 10−5 colony-forming units (CFUs)] indicates the possibility of spread of spectinonycin resistance within gonococcal population due to the horizontal gene transfer (HGT).
Collapse
Affiliation(s)
- Elena N Ilina
- Research Institute of Physico-Chemical Medicine Moscow, Russia
| | | | | | | | | | | |
Collapse
|
29
|
Blundell CD, Packer MJ, Almond A. Quantification of free ligand conformational preferences by NMR and their relationship to the bioactive conformation. Bioorg Med Chem 2013; 21:4976-87. [PMID: 23886813 PMCID: PMC3744816 DOI: 10.1016/j.bmc.2013.06.056] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2013] [Accepted: 06/24/2013] [Indexed: 12/22/2022]
Abstract
Accurate unbound solution 3D-structures of ligands provide unique opportunities for medicinal chemistry and, in particular, a context to understand binding thermodynamics and kinetics. Previous methods of deriving these 3D-structures have had neither the accuracy nor resolution needed for drug design and have not yet realized their potential. Here, we describe and apply a NMR methodology to the aminoglycoside streptomycin that can accurately quantify accessible 3D-space and rank the occupancy of observed conformers to a resolution that enables medicinal chemistry understanding and design. Importantly, it is based upon conventional small molecule NMR techniques and can be performed in physiologically-relevant solvents. The methodology uses multiple datasets, an order of magnitude more experimental data than previous NMR approaches and a dynamic model during refinement, is independent of computational chemistry and avoids the problem of virtual conformations. The refined set of solution 3D-shapes for streptomycin can be grouped into two major families, of which the most populated is almost identical to the 30S ribosomal subunit bioactive shape. We therefore propose that accurate unbound ligand solution conformations may, in some cases, provide a subsidiary route to bioactive shape without crystallography. This experimental technique opens up new opportunities for drug design and more so when complemented with protein co-crystal structures, SAR data and pharmacophore modeling.
Collapse
Affiliation(s)
- Charles D Blundell
- C4X Discovery Ltd, Unit 310 Ducie House, Ducie Street, Manchester M1 2JW, UK
| | | | | |
Collapse
|
30
|
Disruption of intracellular calcium regulation is integral to aminoglycoside-induced hair cell death. J Neurosci 2013; 33:7513-25. [PMID: 23616556 DOI: 10.1523/jneurosci.4559-12.2013] [Citation(s) in RCA: 73] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Intracellular Ca(2+) is a key regulator of life or death decisions in cultured neurons and sensory cells. The role of Ca(2+) in these processes is less clear in vivo, as the location of these cells often impedes visualization of intracellular Ca(2+) dynamics. We generated transgenic zebrafish lines that express the genetically encoded Ca(2+) indicator GCaMP in mechanosensory hair cells of the lateral line. These lines allow us to monitor intracellular Ca(2+) dynamics in real time during aminoglycoside-induced hair cell death. After exposure of live larvae to aminoglycosides, dying hair cells undergo a transient increase in intracellular Ca(2+) that occurs shortly after mitochondrial membrane potential collapse. Inhibition of intracellular Ca(2+) elevation through either caged chelators or pharmacological inhibitors of Ca(2+) effectors mitigates toxic effects of aminoglycoside exposure. Conversely, artificial elevation of intracellular Ca(2+) by caged Ca(2+) release agents sensitizes hair cells to the toxic effects of aminoglycosides. These data suggest that alterations in intracellular Ca(2+) homeostasis play an essential role in aminoglycoside-induced hair cell death, and indicate several potential therapeutic targets to stem ototoxicity.
Collapse
|
31
|
Derbyshire N, White SJ, Bunka DHJ, Song L, Stead S, Tarbin J, Sharman M, Zhou D, Stockley PG. Toggled RNA aptamers against aminoglycosides allowing facile detection of antibiotics using gold nanoparticle assays. Anal Chem 2012; 84:6595-602. [PMID: 22793869 PMCID: PMC3413241 DOI: 10.1021/ac300815c] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2012] [Accepted: 07/12/2012] [Indexed: 11/28/2022]
Abstract
We have used systematic evolution of ligands by exponential enrichment (SELEX) to isolate RNA aptamers against aminoglycoside antibiotics. The SELEX rounds were toggled against four pairs of aminoglycosides with the goal of isolating reagents that recognize conserved structural features. The resulting aptamers bind both of their selection targets with nanomolar affinities. They also bind the less structurally related targets, although they show clear specificity for this class of antibiotics. We show that this lack of aminoglycoside specificity is a common property of aptamers previously selected against single compounds and described as "specific". Broad target specificity aptamers would be ideal for sensors detecting the entire class of aminoglycosides. We have used ligand-induced aggregation of gold-nanoparticles coated with our aptamers as a rapid and sensitive assay for these compounds. In contrast to DNA aptamers, unmodified RNA aptamers cannot be used as the recognition ligand in this assay, whereas 2'-fluoro-pyrimidine derivatives work reliably. We discuss the possible application of these reagents as sensors for drug residues and the challenges for understanding the structural basis of aminoglycoside-aptamer recognition highlighted by the SELEX results.
Collapse
Affiliation(s)
- Nicola Derbyshire
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Simon J. White
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - David H. J. Bunka
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Lei Song
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Sara Stead
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Jonathan Tarbin
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Matthew Sharman
- The Food and Environmental
Research Agency, Sand Hutton, Yorkshire, YO41 1LZ, United
Kingdom
| | - Dejian Zhou
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| | - Peter G. Stockley
- Astbury
Centre for Structural Molecular Biology and School of Chemistry, University of Leeds, Leeds, LS2 9JT,
United Kingdom
| |
Collapse
|
32
|
Brown-Elliott BA, Nash KA, Wallace RJ. Antimicrobial susceptibility testing, drug resistance mechanisms, and therapy of infections with nontuberculous mycobacteria. Clin Microbiol Rev 2012; 25:545-82. [PMID: 22763637 PMCID: PMC3416486 DOI: 10.1128/cmr.05030-11] [Citation(s) in RCA: 354] [Impact Index Per Article: 27.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Within the past 10 years, treatment and diagnostic guidelines for nontuberculous mycobacteria have been recommended by the American Thoracic Society (ATS) and the Infectious Diseases Society of America (IDSA). Moreover, the Clinical and Laboratory Standards Institute (CLSI) has published and recently (in 2011) updated recommendations including suggested antimicrobial and susceptibility breakpoints. The CLSI has also recommended the broth microdilution method as the gold standard for laboratories performing antimicrobial susceptibility testing of nontuberculous mycobacteria. This article reviews the laboratory, diagnostic, and treatment guidelines together with established and probable drug resistance mechanisms of the nontuberculous mycobacteria.
Collapse
|
33
|
Jensen-Smith HC, Hallworth R, Nichols MG. Gentamicin rapidly inhibits mitochondrial metabolism in high-frequency cochlear outer hair cells. PLoS One 2012; 7:e38471. [PMID: 22715386 PMCID: PMC3371036 DOI: 10.1371/journal.pone.0038471] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Accepted: 05/10/2012] [Indexed: 01/08/2023] Open
Abstract
Aminoglycosides (AG), including gentamicin (GM), are the most frequently used antibiotics in the world and are proposed to cause irreversible cochlear damage and hearing loss (HL) in 1/4 of the patients receiving these life-saving drugs. Akin to the results of AG ototoxicity studies, high-frequency, basal turn outer hair cells (OHCs) preferentially succumb to multiple HL pathologies while inner hair cells (IHCs) are much more resilient. To determine if endogenous differences in IHC and OHC mitochondrial metabolism dictate differential sensitivities to AG-induced HL, IHC- and OHC-specific changes in mitochondrial reduced nicotinamide adenine dinucleotide (NADH) fluorescence during acute (1 h) GM treatment were compared. GM-mediated decreases in NADH fluorescence and succinate dehydrogenase activity were observed shortly after GM application. High-frequency basal turn OHCs were found to be metabolically biased to rapidly respond to alterations in their microenvironment including GM and elevated glucose exposures. These metabolic biases may predispose high-frequency OHCs to preferentially produce cell-damaging reactive oxygen species during traumatic challenge. Noise-induced and age-related HL pathologies share key characteristics with AG ototoxicity, including preferential OHC loss and reactive oxygen species production. Data from this report highlight the need to address the role of mitochondrial metabolism in regulating AG ototoxicity and the need to illuminate how fundamental differences in IHC and OHC metabolism may dictate differences in HC fate during multiple HL pathologies.
Collapse
Affiliation(s)
- Heather C Jensen-Smith
- Department of Biomedical Sciences, Creighton University, Omaha, Nebraska, United States of America.
| | | | | |
Collapse
|
34
|
Smith CA, Toth M, Frase H, Byrnes LJ, Vakulenko SB. Aminoglycoside 2''-phosphotransferase IIIa (APH(2'')-IIIa) prefers GTP over ATP: structural templates for nucleotide recognition in the bacterial aminoglycoside-2'' kinases. J Biol Chem 2012; 287:12893-903. [PMID: 22367198 DOI: 10.1074/jbc.m112.341206] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Contrary to the accepted dogma that ATP is the canonical phosphate donor in aminoglycoside kinases and protein kinases, it was recently demonstrated that all members of the bacterial aminoglycoside 2''-phosphotransferase IIIa (APH(2'')) aminoglycoside kinase family are unique in their ability to utilize GTP as a cofactor for antibiotic modification. Here we describe the structural determinants for GTP recognition in these enzymes. The crystal structure of the GTP-dependent APH(2'')-IIIa shows that although this enzyme has templates for both ATP and GTP binding superimposed on a single nucleotide specificity motif, access to the ATP-binding template is blocked by a bulky tyrosine residue. Substitution of this tyrosine by a smaller amino acid opens access to the ATP template. Similar GTP binding templates are conserved in other bacterial aminoglycoside kinases, whereas in the structurally related eukaryotic protein kinases this template is less conserved. The aminoglycoside kinases are important antibiotic resistance enzymes in bacteria, whose wide dissemination severely limits available therapeutic options, and the GTP binding templates could be exploited as new, previously unexplored targets for inhibitors of these clinically important enzymes.
Collapse
Affiliation(s)
- Clyde A Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, California 94025, USA.
| | | | | | | | | |
Collapse
|
35
|
Thakur CS, Dayie TK. Asymmetry of 13C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2012; 52:65-77. [PMID: 22089526 PMCID: PMC3266500 DOI: 10.1007/s10858-011-9582-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2011] [Accepted: 10/10/2011] [Indexed: 05/07/2023]
Abstract
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using Escherichia coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure and Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
36
|
Sett A, Das S, Sharma P, Bora U. Aptasensors in Health, Environment and Food Safety Monitoring. ACTA ACUST UNITED AC 2012. [DOI: 10.4236/ojab.2012.12002] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Thakur CS, Dayie TK. Asymmetry of (13)C labeled 3-pyruvate affords improved site specific labeling of RNA for NMR spectroscopy. JOURNAL OF BIOMOLECULAR NMR 2011; 51:505-17. [PMID: 22038649 PMCID: PMC3222825 DOI: 10.1007/s10858-011-9581-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2011] [Accepted: 10/11/2011] [Indexed: 05/15/2023]
Abstract
Selective isotopic labeling provides an unparalleled window within which to study the structure and dynamics of RNAs by high resolution NMR spectroscopy. Unlike commonly used carbon sources, the asymmetry of (13)C-labeled pyruvate provides selective labeling in both the ribose and base moieties of nucleotides using E. coli variants, that until now were not feasible. Here we show that an E. coli mutant strain that lacks succinate and malate dehydrogenases (DL323) and grown on [3-(13)C]-pyruvate affords ribonucleotides with site specific labeling at C5' (~95%) and C1' (~42%) and minimal enrichment elsewhere in the ribose ring. Enrichment is also achieved at purine C2 and C8 (~95%) and pyrimidine C5 (~100%) positions with minimal labeling at pyrimidine C6 and purine C5 positions. These labeling patterns contrast with those obtained with DL323 E. coli grown on [1, 3-(13)C]-glycerol for which the ribose ring is labeled in all but the C4' carbon position, leading to multiplet splitting of the C1', C2' and C3' carbon atoms. The usefulness of these labeling patterns is demonstrated with a 27-nt RNA fragment derived from the 30S ribosomal subunit. Removal of the strong magnetic coupling within the ribose and base leads to increased sensitivity, substantial simplification of NMR spectra, and more precise and accurate dynamic parameters derived from NMR relaxation measurements. Thus these new labels offer valuable probes for characterizing the structure and dynamics of RNA that were previously limited by the constraint of uniformly labeled nucleotides.
Collapse
Affiliation(s)
- Chandar S. Thakur
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| | - T. Kwaku Dayie
- Department of Chemistry and Biochemistry, Center for Biomolecular Structure & Organization, University of Maryland, 1115 Biomolecular Sciences Bldg (#296), College Park, MD 20742-3360 USA
| |
Collapse
|
38
|
Kim S, Nguyen CMT, Yeo SJ, Ahn JW, Kim EJ, Kim KJ. Cloning, expression, purification, crystallization and X-ray crystallographic analysis of Rv3168 from Mycobacterium tuberculosis H37Rv. Acta Crystallogr Sect F Struct Biol Cryst Commun 2011; 67:627-9. [PMID: 21543877 DOI: 10.1107/s1744309111010487] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Accepted: 03/21/2011] [Indexed: 11/10/2022]
Abstract
Tuberculosis is a widespread and deadly infectious disease, with one third of the human population already being infected. Aminoglycoside antibiotics have become less effective in recent years owing to antibiotic resistance, which arises primarily through enzymatic modification of the antibiotics. The gene product Rv3168, a putative aminoglycoside phosphotransferase (APH), from Mycobacterium tuberculosis was crystallized using the sitting-drop vapour-diffusion method in the presence of 0.2 M calcium acetate, 0.1 M Tris-HCl pH 7.0 and 20% PEG 3000 at 295 K. X-ray diffraction data were collected to a maximum resolution of 1.67 Å on a synchrotron beamline. The crystal belonged to space group P2(1)2(1)2(1), with unit-cell parameters a = 56.74, b = 62.37, c = 103.61 Å. With one molecule per asymmetric unit, the crystal volume per unit protein weight (V(M)) is 2.91 Å(3) Da(-1). The structure was solved by the single-wavelength anomalous dispersion method and refinement of the selenomethionine structure is in progress.
Collapse
Affiliation(s)
- Sangwoo Kim
- Pohang Accelerator Laboratory, Pohang University of Science and Technology, Pohang, Kyungbuk 790-784, Republic of Korea
| | | | | | | | | | | |
Collapse
|
39
|
Song KM, Cho M, Jo H, Min K, Jeon SH, Kim T, Han MS, Ku JK, Ban C. Gold nanoparticle-based colorimetric detection of kanamycin using a DNA aptamer. Anal Biochem 2011; 415:175-81. [PMID: 21530479 DOI: 10.1016/j.ab.2011.04.007] [Citation(s) in RCA: 288] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2011] [Revised: 03/30/2011] [Accepted: 04/04/2011] [Indexed: 02/07/2023]
Abstract
A selective kanamycin-binding single-strand DNA (ssDNA) aptamer (TGGGGGTTGAGGCTAAGCCGA) was discovered through in vitro selection using affinity chromatography with kanamycin-immobilized sepharose beads. The selected aptamer has a high affinity for kanamycin and also for kanamycin derivatives such as kanamycin B and tobramycin. The dissociation constants (K(d) [kanamycin]=78.8 nM, K(d) [kanamycin B]=84.5 nM, and K(d) [tobramycin]=103 nM) of the new aptamer were determined by fluorescence intensity analysis using 5'-fluorescein amidite (FAM) modification. Using this aptamer, kanamycin was detected down to 25 nM by the gold nanoparticle-based colorimetric method. Because the designed colorimetric method is simple, easy, and visible to the naked eye, it has advantages that make it useful for the detection of kanamycin. Furthermore, the selected new aptamer has many potential applications as a bioprobe for the detection of kanamycin, kanamycin B, and tobramycin in pharmaceutical preparations and food products.
Collapse
Affiliation(s)
- Kyung-Mi Song
- Department of Chemistry, Pohang University of Science and Technology, Pohang, Gyungbuk 790-784, South Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
McCoy LS, Xie Y, Tor Y. Antibiotics that target protein synthesis. WILEY INTERDISCIPLINARY REVIEWS-RNA 2010; 2:209-32. [DOI: 10.1002/wrna.60] [Citation(s) in RCA: 95] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
41
|
Alguacil J, Defaus S, Claudio A, Trapote A, Masides M, Robles J. A Straightforward Preparation of Aminoglycoside-Dinucleotide and -diPNA Conjugates via Click Ligation Assisted by Microwaves. European J Org Chem 2010. [DOI: 10.1002/ejoc.201000182] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
42
|
Xie Y, Dix AV, Tor Y. FRET enabled real time detection of RNA-small molecule binding. J Am Chem Soc 2010; 131:17605-14. [PMID: 19908830 DOI: 10.1021/ja905767g] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
A robust analysis and discovery platform for antibiotics targeting the bacterial rRNA A-site has been developed by incorporating a new emissive U surrogate into the RNA and labeling the aminoglycosides with an appropriate fluorescence acceptor. Specifically, a 5-methoxyquinazoline-2,4(1H,3H)-dione-based emissive uracil analogue was identified to be an ideal donor for 7-diethylaminocoumarin-3-carboxylic acid. This donor/acceptor pair displays a critical Forster radius (R(0)) of 27 A, a value suitable for an A-site-aminoglycoside assembly. Titrating the coumarin labeled aminoglycosides into the emissive A-site construct, labeled at position U1406, shows a decrease in donor emission (at 395 nm) and concurrent increase of the acceptor emission (at 473 nm). Titration curves, obtained by fitting the donor's emission quenching or the augmentation of the acceptor's sensitized emission, faithfully generate EC(50) values. Titration of unlabeled ligands into the preformed FRET complex showed a continuous increase of the donor emission, with a concurrent decrease of the acceptor emission, yielding valuable data regarding competitive displacement of aminoglycosides by A-site binders. Detection of antibiotic binding is therefore not dependent on changes in the environment of a single fluorophore, but rather on the responsive interaction between two chromophores acting as a FRET pair, facilitating the determination of direct binding and competitive displacement events with FRET accuracy.
Collapse
Affiliation(s)
- Yun Xie
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, California 92093-0358, USA
| | | | | |
Collapse
|
43
|
Scheunemann AE, Graham WD, Vendeix FAP, Agris PF. Binding of aminoglycoside antibiotics to helix 69 of 23S rRNA. Nucleic Acids Res 2010; 38:3094-105. [PMID: 20110260 PMCID: PMC2875026 DOI: 10.1093/nar/gkp1253] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Aminoglycosides antibiotics negate dissociation and recycling of the bacterial ribosome’s subunits by binding to Helix 69 (H69) of 23S rRNA. The differential binding of various aminoglycosides to the chemically synthesized terminal domains of the Escherichia coli and human H69 has been characterized using spectroscopy, calorimetry and NMR. The unmodified E. coli H69 hairpin exhibited a significantly higher affinity for neomycin B and tobramycin than for paromomycin (Kds = 0.3 ± 0.1, 0.2 ± 0.2 and 5.4 ± 1.1 µM, respectively). The binding of streptomycin was too weak to assess. In contrast to the E. coli H69, the human 28S rRNA H69 had a considerable decrease in affinity for the antibiotics, an important validation of the bacterial target. The three conserved pseudouridine modifications (Ψ1911, Ψ1915, Ψ1917) occurring in the loop of the E. coli H69 affected the dissociation constant, but not the stoichiometry for the binding of paromomycin (Kd = 2.6 ± 0.1 µM). G1906 and G1921, observed by NMR spectrometry, figured predominantly in the aminoglycoside binding to H69. The higher affinity of the E. coli H69 for neomycin B and tobramycin, as compared to paromomycin and streptomycin, indicates differences in the efficacy of the aminoglycosides.
Collapse
Affiliation(s)
- Ann E Scheunemann
- Department of Molecular and Structural Biochemistry, North Carolina State University, Raleigh, NC 27695-7622, USA
| | | | | | | |
Collapse
|
44
|
Toth M, Vakulenko S, Smith CA. Purification, crystallization and preliminary X-ray analysis of Enterococcus casseliflavus aminoglycoside-2''-phosphotransferase-IVa. Acta Crystallogr Sect F Struct Biol Cryst Commun 2010; 66:81-4. [PMID: 20057078 PMCID: PMC2805544 DOI: 10.1107/s1744309109050039] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2009] [Accepted: 11/20/2009] [Indexed: 11/11/2022]
Abstract
The deactivation of aminoglycoside antibiotics by chemical modification is one of the major sources of bacterial resistance to this family of therapeutic compounds, which includes the clinically relevant drugs streptomycin, kanamycin and gentamicin. The aminoglycoside phosphotransferases (APHs) form one such family of enzymes responsible for this resistance. The gene encoding one of these enzymes, aminoglycoside-2''-phosphotransferase-IVa [APH(2'')-IVa] from Enterococcus casseliflavus, has been cloned and the protein (comprising 306 amino-acid residues) has been expressed in Escherichia coli and purified. The enzyme was crystallized in three substrate-free forms. Two of the crystal forms belonged to the orthorhombic space group P2(1)2(1)2(1) with similar unit-cell parameters, although one of the crystal forms had a unit-cell volume that was approximately 13% smaller than the other and a very low solvent content of around 38%. The third crystal form belonged to the monoclinic space group P2(1) and preliminary X-ray diffraction analysis was consistent with the presence of two molecules in the asymmetric unit. The orthorhombic crystal forms of apo APH(2'')-IVa both diffracted to 2.2 A resolution and the monoclinic crystal form diffracted to 2.4 A resolution; synchrotron diffraction data were collected from these crystals at SSRL (Stanford, California, USA). Structure determination by molecular replacement using the structure of the related enzyme APH(2'')-IIa is proceeding.
Collapse
Affiliation(s)
- Marta Toth
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Sergei Vakulenko
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN 46556, USA
| | - Clyde A. Smith
- Stanford Synchrotron Radiation Lightsource, Stanford University, Menlo Park, CA 94025, USA
| |
Collapse
|
45
|
Donald RG, Skwish S, Forsyth RA, Anderson JW, Zhong T, Burns C, Lee S, Meng X, LoCastro L, Jarantow LW, Martin J, Lee SH, Taylor I, Robbins D, Malone C, Wang L, Zamudio CS, Youngman PJ, Phillips JW. A Staphylococcus aureus Fitness Test Platform for Mechanism-Based Profiling of Antibacterial Compounds. ACTA ACUST UNITED AC 2009; 16:826-36. [DOI: 10.1016/j.chembiol.2009.07.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2009] [Revised: 05/25/2009] [Accepted: 07/09/2009] [Indexed: 10/20/2022]
|
46
|
The crystal structures of substrate and nucleotide complexes of Enterococcus faecium aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] provide insights into substrate selectivity in the APH(2'') subfamily. J Bacteriol 2009; 191:4133-43. [PMID: 19429619 DOI: 10.1128/jb.00149-09] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Aminoglycoside-2''-phosphotransferase-IIa [APH(2'')-IIa] is one of a number of homologous bacterial enzymes responsible for the deactivation of the aminoglycoside family of antibiotics and is thus a major component in bacterial resistance to these compounds. APH(2'')-IIa produces resistance to several clinically important aminoglycosides (including kanamycin and gentamicin) in both gram-positive and gram-negative bacteria, most notably in Enterococcus species. We have determined the structures of two complexes of APH(2'')-IIa, the binary gentamicin complex and a ternary complex containing adenosine-5'-(beta,gamma-methylene)triphosphate (AMPPCP) and streptomycin. This is the first crystal structure of a member of the APH(2'') family of aminoglycoside phosphotransferases. The structure of the gentamicin-APH(2'')-IIa complex was solved by multiwavelength anomalous diffraction methods from a single selenomethionine-substituted crystal and was refined to a crystallographic R factor of 0.210 (R(free), 0.271) at a resolution of 2.5 A. The structure of the AMPPCP-streptomycin complex was solved by molecular replacement using the gentamicin-APH(2'')-IIa complex as the starting model. The enzyme has a two-domain structure with the substrate binding site located in a cleft in the C-terminal domain. Gentamicin binding is facilitated by a number of conserved acidic residues lining the binding cleft, with the A and B rings of the substrate forming the majority of the interactions. The inhibitor streptomycin, although binding in the same pocket as gentamicin, is orientated such that no potential phosphorylation sites are adjacent to the catalytic aspartate residue. The binding of gentamicin and streptomycin provides structural insights into the substrate selectivity of the APH(2'') subfamily of aminoglycoside phosphotransferases, specifically, the selectivity between the 4,6-disubstituted and the 4,5-disubstituted aminoglycosides.
Collapse
|
47
|
Bockenhauer D, Hug MJ, Kleta R. Cystic fibrosis, aminoglycoside treatment and acute renal failure: the not so gentle micin. Pediatr Nephrol 2009; 24:925-8. [PMID: 19005685 DOI: 10.1007/s00467-008-1036-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Revised: 09/30/2008] [Accepted: 10/02/2008] [Indexed: 11/25/2022]
Abstract
Aminoglycosides have a wide spectrum of gram-negative anti-bacterial activities and are available at low cost, which makes them commonly used drugs, especially for patients with cystic fibrosis (CF), who often suffer from chronic lung infections from Pseudomonas aeruginosa. Unfortunately, this treatment seems to have resulted in an increased incidence of acute renal failure (ARF) in patients with CF. A recent case-control study investigated risk factors for ARF in CF patients and suggested intravenous use of gentamicin as the prime culprit. Moreover, in most cases, at least one other risk factor, such as CF-related diabetes, pre-existing renal failure, dehydration or concurrent use of other nephrotoxic drugs, was present. We comment on the renal handling of aminoglycosides and the possible mechanisms of toxicity, as well as strategies for risk minimisation.
Collapse
|
48
|
Zietse R, Zoutendijk R, Hoorn EJ. Fluid, electrolyte and acid–base disorders associated with antibiotic therapy. Nat Rev Nephrol 2009; 5:193-202. [DOI: 10.1038/nrneph.2009.17] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
49
|
Olano C, Méndez C, Salas JA. Antitumor compounds from actinomycetes: from gene clusters to new derivatives by combinatorial biosynthesis. Nat Prod Rep 2009; 26:628-60. [PMID: 19387499 DOI: 10.1039/b822528a] [Citation(s) in RCA: 98] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Covering: up to October 2008. Antitumor compounds produced by actinomycetes and novel derivatives generated by combinatorial biosynthesis are reviewed (with 318 references cited.) The different structural groups for which the relevant gene clusters have been isolated and characterized are reviewed, with a description of the strategies used for the generation of the novel derivatives and the activities of these compounds against tumor cell lines.
Collapse
Affiliation(s)
- Carlos Olano
- Departamento de Biología Funcional and Instituto Universitario de Oncología del Principado de Asturias (I.U.O.P.A.), Universidad de Oviedo, 33006, Oviedo, Spain
| | | | | |
Collapse
|
50
|
A novel insertion mutation in Streptomyces coelicolor ribosomal S12 protein results in paromomycin resistance and antibiotic overproduction. Antimicrob Agents Chemother 2008; 53:1019-26. [PMID: 19104019 DOI: 10.1128/aac.00388-08] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We identified a novel paromomycin resistance-associated mutation in rpsL, caused by the insertion of a glycine residue at position 92, in Streptomyces coelicolor ribosomal protein S12. This insertion mutation (GI92) resulted in a 20-fold increase in the paromomycin resistance level. In combination with another S12 mutation, K88E, the GI92 mutation markedly enhanced the production of the blue-colored polyketide antibiotic actinorhodin and the red-colored antibiotic undecylprodigiosin. The gene replacement experiments demonstrated that the K88E-GI92 double mutation in the rpsL gene was responsible for the marked enhancement of antibiotic production observed. Ribosomes with the K88E-GI92 double mutation were characterized by error restrictiveness (i.e., hyperaccuracy). Using a cell-free translation system, we found that mutant ribosomes harboring the K88E-GI92 double mutation but not ribosomes harboring the GI92 mutation alone displayed sixfold greater translation activity relative to that of the wild-type ribosomes at late growth phase. This resulted in the overproduction of actinorhodin, caused by the transcriptional activation of the pathway-specific regulatory gene actII-orf4, possibly due to the increased translation of transcripts encoding activators of actII-orf4. The mutant with the K88E-GI92 double mutation accumulated a high level of ribosome recycling factor at late stationary phase, underlying the high level of protein synthesis activity observed.
Collapse
|