1
|
Uzawa H, Kondo S, Nagatsuka T, Miyaguchi H, Seto Y, Oshita A, Dohi H, Nishida Y, Saito M, Tamiya E. Assembly of Glycochips with Mammalian GSLs Mimetics toward the On-site Detection of Biological Toxins. ACS OMEGA 2021; 6:32597-32606. [PMID: 34901608 PMCID: PMC8655786 DOI: 10.1021/acsomega.1c04154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/01/2021] [Indexed: 05/09/2023]
Abstract
According to our previously proposed scheme, each of three kinds of glycosphingolipid (GSL) derivatives, that is, lactosyl ceramide [Lac-Cer (1)] and gangliosides [GM1-Cer (2) and GT1b-Cer (3)], was installed onto the glass surface modified with Au nanoparticles. In the present study, we tried to apply microwave irradiation to promote their installing reactions. Otherwise, this procedure takes a lot of time as long as a conventional self-assembled monolayer (SAM) technique is applied. Using an advanced microwave reactor capable of adjusting ambient temperatures within a desired range, various GSL glycochips were prepared from the derivatives (1)-(3) under different microwave irradiation conditions. The overall assembling process was programed with an IC controller to finish in 1 h, and the derived GSL glycochips were evaluated in the analysis of three kinds of biological toxins [a Ricinus agglutinin (RCA120), botulinum toxin (BTX), and cholera toxin (CTX)] using a localized surface plasmon resonance (LSPR) biosensor. In the LSPR analysis, most of the irradiated GSL chips showed an enhanced response to the targeting toxin when they were irradiated under optimal temperature conditions. Lac-Cer chips showed the highest response to RCA120 (an agglutinin with β-D-Gal specificity) when the microwave irradiation was conducted at 30-35 °C. Compared to our former Lac-Cer glycochips with the conventional SAM condition, their response was enhanced by 3.6 times. Analogously, GT1b chips gained an approximately 4.1 times enhancement in their response to botulinum type C toxin (BTX/C) when the irradiation was conducted around at 45-60 °C. In the LSPR evaluation of the GM1-Cer glycochips using CTX, an optimal condition also appeared at around 30-35 °C. On the other hand, the microwave irradiation did not lead to a notable increase compared to the former GM1-Cer chips derived with the SAM technique. Judging from these experimental results, the microwave irradiation effectively promotes the installing process for all the three kinds of the GSL derivatives, while the optimal thermal condition becomes different from each other. Many bacterial and botanic proteinous toxins are composed of such carbohydrate binding domains or subunits that can discriminate both the key epitope structure and the dimension of glycoconjugates on the host cell surface. It is assumed that the optimal irradiation and thermal conditions are required to array these semi-synthetic GSL derivatives on the Au nanoparticles in a proper density and geometry for tight adhesion with each of the biological toxins.
Collapse
Affiliation(s)
- Hirotaka Uzawa
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Satoshi Kondo
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Takehiro Nagatsuka
- Nanomaterials
Research Institute, Tsukuba Center, Tsukuba Central, National Institute of Advanced Industrial Science and Technology, 1-1-1 Higashi, Tsukuba 305-8565, Japan
| | - Hajime Miyaguchi
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Yasuo Seto
- National
Research Institute of Police Science, 6-3-1 Kashiwanoha, Kashiwa, Chiba 277-0882, Japan
| | - Aguri Oshita
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Hirofumi Dohi
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Yoshihiro Nishida
- Graduate
School of Environmental Horticulture, Chiba
University, 648 Matsudo, Matsudo, Chiba 271-8510, Japan
- Graduate
School of Advanced Integration Science, Chiba University, 1-33
Yayoi-cho, Inage-ku, Chiba, Chiba 263-8522, Japan
| | - Masato Saito
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Eiichi Tamiya
- Department
of Applied Physics, Graduate School of Engineering, Osaka University, 2-1
Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Abstract
Complex carbohydrates are ubiquitous in nature, and together with proteins and nucleic acids they comprise the building blocks of life. But unlike proteins and nucleic acids, carbohydrates form nonlinear polymers, and they are not characterized by robust secondary or tertiary structures but rather by distributions of well-defined conformational states. Their molecular flexibility means that oligosaccharides are often refractory to crystallization, and nuclear magnetic resonance (NMR) spectroscopy augmented by molecular dynamics (MD) simulation is the leading method for their characterization in solution. The biological importance of carbohydrate-protein interactions, in organismal development as well as in disease, places urgency on the creation of innovative experimental and theoretical methods that can predict the specificity of such interactions and quantify their strengths. Additionally, the emerging realization that protein glycosylation impacts protein function and immunogenicity places the ability to define the mechanisms by which glycosylation impacts these features at the forefront of carbohydrate modeling. This review will discuss the relevant theoretical approaches to studying the three-dimensional structures of this fascinating class of molecules and interactions, with reference to the relevant experimental data and techniques that are key for validation of the theoretical predictions.
Collapse
Affiliation(s)
- Robert J Woods
- Complex Carbohydrate Research Center and Department of Biochemistry and Molecular Biology , University of Georgia , 315 Riverbend Road , Athens , Georgia 30602 , United States
| |
Collapse
|
3
|
Matassini C, Vanni C, Goti A, Morrone A, Marradi M, Cardona F. Multimerization of DAB-1 onto Au GNPs affords new potent and selective N-acetylgalactosamine-6-sulfatase (GALNS) inhibitors. Org Biomol Chem 2018; 16:8604-8612. [DOI: 10.1039/c8ob02587h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Gold glyconanoparticles (Au GNPs) decorated with the natural iminosugar DAB-1 at different densities are reported.
Collapse
Affiliation(s)
- C. Matassini
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
- Associated with CNR-INO and LENS
| | - C. Vanni
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
| | - A. Goti
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
- Associated with CNR-INO and LENS
| | - A. Morrone
- Paediatric Neurology Unit and Laboratories
- Neuroscience Department
- Meyer Children's Hospital
- and Department of Neurosciences
- Pharmacology and Child Health
| | - M. Marradi
- CIC biomaGUNE and CIBER-BBN
- Donostia-San Sebastián
- Spain
| | - F. Cardona
- Department of Chemistry ‘Ugo Schiff’
- University of Firenze
- Sesto Fiorentino
- Italy
- Associated with CNR-INO and LENS
| |
Collapse
|
4
|
Murthy RV, Bavireddi H, Gade M, Kikkeri R. Exploiting the Lactose-GM3Interaction for Drug Delivery. ChemMedChem 2015; 10:792-6. [DOI: 10.1002/cmdc.201500046] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Indexed: 11/07/2022]
|
5
|
Kopitzki S, Dilmaghani KA, Thiem J. Synthesis of benzaldehyde-functionalized LewisX trisaccharide analogs for glyco-SAM formation. Tetrahedron 2013. [DOI: 10.1016/j.tet.2013.10.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
6
|
Kopitzki S, Thiem J. Short Synthetic Route to Benzaldehyde-Functionalized Idose and Talose Derivatives by Acetoxonium Ion Rearrangements. European J Org Chem 2013. [DOI: 10.1002/ejoc.201201648] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
Marradi M, Chiodo F, García I, Penadés S. Glyconanoparticles as multifunctional and multimodal carbohydrate systems. Chem Soc Rev 2013; 42:4728-45. [PMID: 23288339 DOI: 10.1039/c2cs35420a] [Citation(s) in RCA: 239] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The quest for the construction of multivalent carbohydrate systems, with precise geometries that are highly efficient in interacting with carbohydrate binding proteins, has been a goal of synthetic chemists since the discovery of the multivalent nature of carbohydrate-mediated interactions. However, the control of the spatial and topological requirements for these systems is still a challenge. Glyconanoparticles (GNPs) are sugar-coated gold, iron oxide or semiconductor nanoparticles with defined thiol-ending glycosides that combine the multivalent presentation of carbohydrates (glycoclusters) with the special chemico-physical properties of the nano-sized metallic core. The possibility of attaching different types of carbohydrates and other molecules (such as luminescent probes, peptides, and magnetic chelates) onto the same gold nanoparticle in a controlled way (multifunctional GNPs), as well as modifying the core in order to obtain glyconanoparticles with magnetic or fluorescence properties (multimodal GNPs) makes this multivalent glyco-scaffold suitable for carrying out studies on carbohydrate-mediated interactions and applications in molecular imaging. In this review, we focus mainly on the rational design of glyconanoparticles as scaffolds for combining different ligands and survey the most recent examples of glyconanoparticles as both multivalent carbohydrate systems and probes for molecular imaging.
Collapse
Affiliation(s)
- Marco Marradi
- Laboratory of GlycoNanotechnology, Biofunctional Nanomaterials Unit, CIC biomaGUNE, Paseo Miramón 182, 20009, San Sebastián, Spain.
| | | | | | | |
Collapse
|
8
|
Bavireddi H, Bharate P, Kikkeri R. Probing carbohydrate–carbohydrate interactions by photoswitchable supramolecular glycoclusters. Chem Commun (Camb) 2013; 49:3988-90. [DOI: 10.1039/c3cc41025k] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
9
|
Bavireddi H, Bharate P, Kikkeri R. Use of Boolean and fuzzy logics in lactose glycocluster research. Chem Commun (Camb) 2013; 49:9185-7. [DOI: 10.1039/c3cc44615h] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
10
|
Sunasee R, Narain R. Glycopolymers and Glyco-nanoparticles in Biomolecular Recognition Processes and Vaccine Development. Macromol Biosci 2012; 13:9-27. [DOI: 10.1002/mabi.201200222] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Revised: 08/01/2012] [Indexed: 12/22/2022]
|
11
|
Gold manno-Glyconanoparticles for Intervening in HIV gp120 Carbohydrate-Mediated Processes. Methods Enzymol 2012; 509:21-40. [DOI: 10.1016/b978-0-12-391858-1.00002-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
12
|
Watanabe S, Yamamoto S, Yoshida K, Shinkawa K, Kumagawa D, Seguchi H. Surface plasmon resonance scattering and absorption sensing of Concanavalin A using glycoconjugated gold nanoparticles. Supramol Chem 2011. [DOI: 10.1080/10610278.2010.527977] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
- Shigeru Watanabe
- a Department of Applied Science, Faculty of Science , Kochi University , Kochi, 780 8520, Japan
| | - Shuji Yamamoto
- a Department of Applied Science, Faculty of Science , Kochi University , Kochi, 780 8520, Japan
| | - Kazuma Yoshida
- a Department of Applied Science, Faculty of Science , Kochi University , Kochi, 780 8520, Japan
| | - Keitaro Shinkawa
- a Department of Applied Science, Faculty of Science , Kochi University , Kochi, 780 8520, Japan
| | - Daisuke Kumagawa
- a Department of Applied Science, Faculty of Science , Kochi University , Kochi, 780 8520, Japan
| | - Hideki Seguchi
- a Department of Applied Science, Faculty of Science , Kochi University , Kochi, 780 8520, Japan
| |
Collapse
|
13
|
Utkina N, Yoon SJ, Hakomori SI. Glycosyl conjugates of biotinylated diaminopyridine applied for study of carbohydrate-to-carbohydrate interaction. Glycoconj J 2010; 27:601-11. [DOI: 10.1007/s10719-010-9304-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2010] [Revised: 07/16/2010] [Accepted: 07/20/2010] [Indexed: 10/19/2022]
|
14
|
|
15
|
Santos JI, Carvalho de Souza A, Cañada FJ, Martín-Santamaría S, Kamerling JP, Jiménez-Barbero J. Assessing carbohydrate-carbohydrate interactions by NMR spectroscopy: the trisaccharide epitope from the marine sponge Microciona prolifera. Chembiochem 2009; 10:511-9. [PMID: 19123195 DOI: 10.1002/cbic.200800548] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
WEAK RECOGNITION PROCESSES: Weak calcium-mediated carbohydrate-carbohydrate interactions have been detected by DOSY and TRNOESY NMR methods by employing a gold glyconanoparticle as a multivalent system. In addition, 3D models of trisaccharide-Ca(II)-trisaccharide complexes based on results from molecular dynamics simulations are proposed. Diffusion-ordered NMR spectroscopy (DOSY-NMR) and TR-NOESY-NMR experiments are used to detect ligand binding to macromolecular receptors. These techniques have been applied to detect weak carbohydrate-carbohydrate self-recognition in solution, making use of sugar-decorated gold nanoparticles as the "macromolecule" and the same carbohydrate as the ligand. Changes in the diffusion coefficient of the free carbohydrate in the presence of the glyconanoparticle (only with Ca(II) ions in the sample solution), as well as changes in the sign of the sugar NOE peaks--positive for the free sugar (in the presence or absence of Ca(II)) and negative for the sugar only in the simultaneous presence of the glyconanoparticle and Ca(II) ions--have been taken as proof of weak Ca(II)-mediated carbohydrate-carbohydrate interactions in solution. Although different methods such as SPR, TEM, and AFM have been used in the past to detect carbohydrate-carbohydrate interactions with the aid of gold nanoparticles and gold selfassembled monolayers, they are restricted to high-affinity ranges. The methods used in this study allow expansion of the number of techniques to tackle this relevant biological problem, also for approaching ligand-receptor interactions below the high-affinity range. Additionally, 3D models of trisaccharide-Ca(II)-trisaccharide complexes based on results from molecular dynamics simulations are proposed.
Collapse
|
16
|
Hasegawa T. Intramolecular approach to investigating carbohydrate-carbohydrate interactions. TRENDS GLYCOSCI GLYC 2009. [DOI: 10.4052/tigg.21.345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
17
|
Otsuka A, Sakurai K, Hasegawa T. Ferrocenes with two carbohydrate appendages at the upper and lower rings are useful for investigating carbohydrate–carbohydrate interactions. Chem Commun (Camb) 2009:5442-4. [DOI: 10.1039/b910534d] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Regina Todeschini A, Hakomori SI. Functional role of glycosphingolipids and gangliosides in control of cell adhesion, motility, and growth, through glycosynaptic microdomains. BIOCHIMICA ET BIOPHYSICA ACTA 2008; 1780:421-33. [PMID: 17991443 PMCID: PMC2312458 DOI: 10.1016/j.bbagen.2007.10.008] [Citation(s) in RCA: 340] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2007] [Revised: 09/29/2007] [Accepted: 10/12/2007] [Indexed: 01/11/2023]
Abstract
At cell surface microdomains, glycosyl epitopes, carried either by glycosphingolipids, N- or O-linked oligosaccharides, are recognized by carbohydrate-binding proteins or complementary carbohydrates. In both cases, the carbohydrate epitopes may be clustered with specific signal transducers, tetraspanins, adhesion receptors or growth factor receptors. Through this framework, carbohydrates can mediate cell signaling leading to changes in cellular phenotype. Microdomains involved in carbohydrate-dependent cell adhesion inducing cell activation, motility, and growth are termed "glycosynapse". In this review a historical synopsis of glycosphingolipids-enriched microdomains study leading to the concept of glycosynapse is presented. Examples of glycosynapse as signaling unit controlling the tumor cell phenotype are discussed in three contexts: (i) Cell-to-cell adhesion mediated by glycosphingolipids-to-glycosphingolipids interaction between interfacing glycosynaptic domains, through head-to-head (trans) carbohydrate-to-carbohydrate interaction. (ii) Functional role of GM3 complexed with tetraspanin CD9, and interaction of such complex with integrins, or with fibroblast growth factor receptor, to control tumor cell phenotype and its reversion to normal cell phenotype. (iii) Inhibition of integrin-dependent Met kinase activity by GM2/tetraspanin CD82 complex in glycosynaptic microdomain. Data present here suggest that the organizational status of glycosynapse strongly affects cellular phenotype influencing tumor cell malignancy.
Collapse
Affiliation(s)
- Adriane Regina Todeschini
- Division of Biomembrane Research, Pacific Northwest Research Institute, University of Washington, Seattle, WA, USA.
| | | |
Collapse
|