1
|
Apak R, Calokerinos A, Gorinstein S, Segundo MA, Hibbert DB, Gülçin İ, Demirci Çekiç S, Güçlü K, Özyürek M, Çelik SE, Magalhães LM, Arancibia-Avila P. Methods to evaluate the scavenging activity of antioxidants toward reactive oxygen and nitrogen species (IUPAC Technical Report). PURE APPL CHEM 2021. [DOI: 10.1515/pac-2020-0902] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Abstract
This project was aimed to identify the quenching chemistry of biologically important reactive oxygen and nitrogen species (ROS/RNS, including radicals), to show antioxidant action against reactive species through H‐atom and electron transfer reactions, and to evaluate the ROS/RNS scavenging activity of antioxidants with existing analytical methods while emphasizing the underlying chemical principles and advantages/disadvantages of these methods. In this report, we focused on the applications and impact of existing assays on potentiating future research and innovations to evolve better methods enabling a more comprehensive study of different aspects of antioxidants and to provide a vocabulary of terms related to antioxidants and scavengers for ROS/RNS. The main methods comprise the scavenging activity measurement of the hydroxyl radical (•OH), dioxide(•1–) (O2
•–: commonly known as the superoxide radical), dihydrogen dioxide (H2O2: commonly known as hydrogen peroxide), hydroxidochlorine (HOCl: commonly known as hypochlorous acid), dioxidooxidonitrate(1–) (ONOO−: commonly known as the peroxynitrite anion), and the peroxyl radical (ROO•). In spite of the diversity of methods, there is currently a great need to evaluate the scavenging activity of antioxidant compounds in vivo and in vitro. In addition, there are unsatisfactory methods frequently used, such as non-selective UV measurement of H2O2 scavenging, producing negative errors due to incomplete reaction of peroxide with flavonoids in the absence of transition metal ion catalysts. We also discussed the basic mechanisms of spectroscopic and electrochemical nanosensors for measuring ROS/RNS scavenging activity of antioxidants, together with leading trends and challenges and a wide range of applications. This project aids in the identification of reactive species and quantification of scavenging extents of antioxidants through various assays, makes the results comparable and more understandable, and brings a more rational basis to the evaluation of these assays and provides a critical evaluation of existing ROS/RNS scavenging assays to analytical, food chemical, and biomedical/clinical communities by emphasizing the need for developing more refined, rapid, simple, and low‐cost assays and thus opening the market for a wide range of analytical instruments, including reagent kits and sensors.
Collapse
Affiliation(s)
- Reşat Apak
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Antony Calokerinos
- Department of Chemistry , National and Kapodistrian University of Athens, School of Sciences , Panepistimiopolis, 15771 Athens , Greece
| | - Shela Gorinstein
- The Hebrew University, Hadassah Medical School, School of Pharmacy, The Institute for Drug Research , Jerusalem , Israel
| | - Marcela Alves Segundo
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - David Brynn Hibbert
- New South Wales University, School of Chemistry , Sydney , NSW 2052 , Australia
| | - İlhami Gülçin
- Department of Chemistry , Faculty of Science, Atatürk University , Erzurum , Turkey
| | - Sema Demirci Çekiç
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Kubilay Güçlü
- Department of Chemistry , Adnan Menderes University, Faculty of Arts and Sciences , Aydın , Turkey
| | - Mustafa Özyürek
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Saliha Esin Çelik
- Department of Chemistry , Istanbul University-Cerrahpaşa, Faculty of Engineering , Avcılar, 34320 Istanbul , Turkey
| | - Luís M. Magalhães
- Department of Chemical Sciences , LAQV, REQUIMTE, Faculty of Pharmacy, University of Porto , Rua de Jorge Viterbo Ferreira, 228, 4050-313 Porto , Portugal
| | - Patricia Arancibia-Avila
- Departamento de Ciencias Básicas , Laboratorio de Ecofisiología y Microalgas, Universidad del Bio-Bio , Chillán , Chile
| |
Collapse
|
5
|
Wang F, Guo X, Shen X, Kream RM, Mantione KJ, Stefano GB. Vascular dysfunction associated with type 2 diabetes and Alzheimer's disease: a potential etiological linkage. Med Sci Monit Basic Res 2014; 20:118-29. [PMID: 25082505 PMCID: PMC4138067 DOI: 10.12659/msmbr.891278] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
The endothelium performs a crucial role in maintaining vascular integrity leading to whole organ metabolic homeostasis. Endothelial dysfunction represents a key etiological factor leading to moderate to severe vasculopathies observed in both Type 2 diabetic and Alzheimer’s Disease (AD) patients. Accordingly, evidence-based epidemiological factors support a compelling hypothesis stating that metabolic rundown encountered in Type 2 diabetes engenders severe cerebral vascular insufficiencies that are causally linked to long term neural degenerative processes in AD. Of mechanistic importance, Type 2 diabetes engenders an immunologically mediated chronic pro-inflammatory state involving interactive deleterious effects of leukocyte-derived cytokines and endothelial-derived chemotactic agents leading to vascular and whole organ dysfunction. The long term negative consequences of vascular pro-inflammatory processes on the integrity of CNS basal forebrain neuronal populations mediating complex cognitive functions establish a striking temporal comorbidity of AD with Type 2 diabetes. Extensive biomedical evidence supports the pivotal multi-functional role of constitutive nitric oxide (NO) production and release as a critical vasodilatory, anti-inflammatory, and anti-oxidant, mechanism within the vascular endothelium. Within this context, we currently review the functional contributions of dysregulated endothelial NO expression to the etiology and persistence of Type 2 diabetes-related and co morbid AD-related vasculopathies. Additionally, we provide up-to-date perspectives on critical areas of AD research with special reference to common NO-related etiological factors linking Type 2 diabetes to the pathogenesis of AD.
Collapse
Affiliation(s)
- Fuzhou Wang
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternit and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xirong Guo
- Institutes of Pediatrics, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Xiaofeng Shen
- Department of Anesthesiology and Critical Care Medicine, Nanjing Maternity and Child Health Care Hospital, Nanjing Medical University, Nanjing, China (mainland)
| | - Richard M Kream
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - Kirk J Mantione
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| | - George B Stefano
- Neuroscience Research Institute, State University of New York - College at Old Westbury, Old Westbury, USA
| |
Collapse
|
6
|
Sundararajan M, Neese F. Detailed QM/MM study of the Electron Paramagnetic Resonance Parameters of Nitrosyl Myoglobin. J Chem Theory Comput 2012; 8:563-74. [DOI: 10.1021/ct200401q] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Mahesh Sundararajan
- Max-Planck Institutfür Bioanorganische Chemie, Stiftstrasse 32-34, D-45470 Mülheim an der Ruhr, Germany
| | - Frank Neese
- Max-Planck Institutfür Bioanorganische Chemie, Stiftstrasse 32-34, D-45470 Mülheim an der Ruhr, Germany
| |
Collapse
|
7
|
Radoul M, Sundararajan M, Potapov A, Riplinger C, Neese F, Goldfarb D. Revisiting the nitrosyl complex of myoglobin by high-field pulse EPR spectroscopy and quantum mechanical calculations. Phys Chem Chem Phys 2010; 12:7276-89. [PMID: 20490401 DOI: 10.1039/c000652a] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The binding of NO to reduced myoglobin in solution results in the formation of two paramagnetic nitrosyl myoglobin (MbNO) complexes: one with a rhombic g-factor and the other with an axial one, referred to as the R- and A-forms. In spite of past extensive studies of MbNO by crystallography, spectroscopy and quantum chemical calculations it is still not clear what factors determine the appearance of the two forms. In this work we applied a combination of state of the art quantum chemical calculations and high field pulsed EPR spectroscopy (W-band, 3.4 T/95 GHz) to further characterize the two forms. Specifically, we have used (1)H and (2)H electron-nuclear double resonance (ENDOR) spectroscopy to identify and characterize the H-bond to the NO, and hyperfine sub-level correlation (HYSCORE) spectroscopy to determine the hyperfine and quadrupole interactions of the Fe(ii) coordinated (14)N of the proximal histidine (14)N(His93). The calculations employed quantum mechanics (QM), particularly density functional theory (DFT) methods in combination with molecular mechanics (MM) force-field to model the protein environment. Through QM/MM calculations of the EPR parameters we have explored their dependence on several geometrical factors of the Fe-NO bond and found those that reproduce the best experimental results. The spread of the W-band EPR spectrum of MbNO due to the g-anisotropy is large and there is a significant part of the spectrum where the R-form is the sole contributor. This allowed us to resolve some new characteristics of the R-form: (i) a NO-H hydrogen bond has been detected and characterized and through QM/MM calculations has been unambiguously assigned to (epsilon2)H(His64). (ii) The complete hyperfine and quadrupole interactions of (14)N(His93) have been determined and correlated with structural parameters again using QM/MM calculations. The agreement between the experimental results and calculations varied between excellent and good, depending on the EPR parameter in question. As for the more elusive A-form, the results only suggest that it does have a (14)N(His93) ligand with a hyperfine comparable to that of the R-form and it has less hydrogen bonding interaction with His(64). The calculations also established the orientation of the principal g-values, finding that they are closely related to the orientation of the NO bond. This information is essential for deriving structural information from the experimental orientation selective HYSCORE and ENDOR data.
Collapse
Affiliation(s)
- Marina Radoul
- Department of Chemical Physics, Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | | | | | | | |
Collapse
|
8
|
Hetrick EM, Schoenfisch MH. Analytical chemistry of nitric oxide. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2009; 2:409-33. [PMID: 20636069 PMCID: PMC3563389 DOI: 10.1146/annurev-anchem-060908-155146] [Citation(s) in RCA: 225] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Nitric oxide (NO) is the focus of intense research primarily because of its wide-ranging biological and physiological actions. To understand its origin, activity, and regulation, accurate and precise measurement techniques are needed. Unfortunately, analytical assays for monitoring NO are challenged by NO's unique chemical and physical properties, including its reactivity, rapid diffusion, and short half-life. Moreover, NO concentrations may span the picomolar-to-micromolar range in physiological milieus, requiring techniques with wide dynamic response ranges. Despite such challenges, many analytical techniques have emerged for the detection of NO. Herein, we review the most common spectroscopic and electrochemical methods, with a focus on the underlying mechanism of each technique and on approaches that have been coupled with modern analytical measurement tools to create novel NO sensors.
Collapse
Affiliation(s)
- Evan M. Hetrick
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Mark H. Schoenfisch
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|