1
|
Rammali S, Rahim A, El Aalaoui M, Bencharki B, Dari K, Habach A, Abdeslam L, Khattabi A. Antimicrobial potential of Streptomyces coeruleofuscus SCJ isolated from microbiologically unexplored garden soil in Northwest Morocco. Sci Rep 2024; 14:3359. [PMID: 38336871 PMCID: PMC10858231 DOI: 10.1038/s41598-024-53801-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 02/05/2024] [Indexed: 02/12/2024] Open
Abstract
Research on microorganisms in various biotopes is required to identify new, natural potent molecules. These molecules are essential to control the development of multi-drug resistance (MDR). In the present study, a Streptomyces sp., namely SCJ, was isolated from a soil sample collected from a Moroccan garden. SCJ isolate was identified on the basis of a polyphasic approach, which included cultural, micro-morphological, biochemical, and physiological characteristics. The sequence of the 16S rRNA gene of the SCJ strain showed 99.78% similarity to strains of Streptomyces coeruleofuscus YR-T (KY753282.1). The preliminary screening indicated that the SCJ isolate exhibited activity against Candida albicans ATCC 60,193, Escherichia coli ATCC 25,922, Staphylococcus aureus CECT 976, Staphylococcus aureus ATCC 25,923, Bacillus cereus ATCC 14,579, Pseudomonas aeruginosa ATCC 27,853, as well as various other clinical MDR bacteria and five phytopathogenic fungi. The ethyl acetate extract of the isolated strain demonstrated highly significant (p < 0.05) antimicrobial activity against multi-resistant bacteria and phytopathogenic fungi. The absorption spectral analysis of the ethyl acetate extract of the SCJ isolate obtained showed no absorption peaks characteristic of polyene molecules. Moreover, no hemolytic activity against erythrocytes was observed in this extract. GC-MS analysis of the ethyl acetate extract of the SCJ isolate revealed the presence of 9 volatile compounds including 3,5-Dimethylpyrazole, and pyrrolizidine derivatives (Pyrrolo[1,2-a]pyrazine 1,4-dione, hexahydro-3-(2-methylpropyl)), which could potentially explain the antimicrobial activity demonstrated in this study.
Collapse
Affiliation(s)
- Said Rammali
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco.
| | - Abdellatif Rahim
- Laboratory of Biochemistry, Neurosciences, Natural Ressources and Environment, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Mohamed El Aalaoui
- Regional Center of Agronomic Research of Settat, Tertiary Road 1406, At 5 Km From Settat, 26400, Settat, Morocco
| | - Bouchaib Bencharki
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Khadija Dari
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Aicha Habach
- Biotechnology Unit, National Institute of Agronomic Research of Rabat, Av. Annasr, 10000, Rabat, Morocco
| | - Lamiri Abdeslam
- Applied Chemistry & Environment Laboratory, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| | - Abdelkrim Khattabi
- Laboratory of Agro-Alimentary and Health, Faculty of Sciences and Techniques, Hassan First University of Settat, B.P. 539, 26000, Settat, Morocco
| |
Collapse
|
2
|
Danaeifar M, Mazlomi MA. Combinatorial biosynthesis: playing chess with the metabolism. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:171-190. [PMID: 35435779 DOI: 10.1080/10286020.2022.2065265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
Secondary metabolites are a group of natural products that produced by bacteria, fungi and plants. Many applications of these compounds from medicine to industry have been discovered. However, some changes in their structure and biosynthesis mechanism are necessary for their properties to be more suitable and also for their production to be profitable. The main and most useful method to achieve this goal is combinatorial biosynthesis. This technique uses the multi-unit essence of the secondary metabolites biosynthetic enzymes to make changes in their order, structure and also the organism that produces them.
Collapse
Affiliation(s)
- Mohsen Danaeifar
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Mohammad Ali Mazlomi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| |
Collapse
|
3
|
Bao XW, Li YX, Chen XM, Zhang ZD, Xu LJ, Liu XL, Song SQ, Ma ZJ. Strepolyketide D, a new SEK15-derived polyketide compound from salt-lake-derived Streptomyces sp. DBC5. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2023; 25:197-204. [PMID: 35611796 DOI: 10.1080/10286020.2022.2076673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 06/15/2023]
Abstract
A new SEK15-derived polyketide compound, strepolyketide D (1), was isolated from salt-lake-derived Streptomyces sp. DBC5, together with two known analogues (2-3). Their structures were elucidated based on spectroscopic analysis of IR, MS, 1 D and 2 D NMR. Compound 2 elicited moderate antioxidation with IC50 value of 39.26 μg/ml. The results of the study revealed that salt-lake actinomycetes of Lake Dabancheng appear to have immense potential as a source of polyketide compounds.
Collapse
Affiliation(s)
- Xiao-Wei Bao
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Yi-Xin Li
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Xiao-Ming Chen
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, China
| | - Zhi-Dong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Li-Juan Xu
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China
- College of Agronomy, Xinjiang Agricultural University, Urumqi 830052, China
| | - Xiao-Lu Liu
- School of Food Science and Pharmacy, Xinjiang Agricultural University, Urumqi 830052, China
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Su-Qin Song
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/Xinjiang Key Laboratory of Special Environmental Microbiology, Urumqi 830091, China
| | - Zhong-Jun Ma
- Institute of Marine Biology, Ocean College, Zhejiang University, Zhoushan 316021, China
| |
Collapse
|
4
|
Ke J, Yoshikuni Y. Multi-chassis engineering for heterologous production of microbial natural products. Curr Opin Biotechnol 2019; 62:88-97. [PMID: 31639618 DOI: 10.1016/j.copbio.2019.09.005] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 08/30/2019] [Accepted: 09/09/2019] [Indexed: 12/11/2022]
Abstract
Microbial genomes encode numerous biosynthetic gene clusters (BGCs) that may produce natural products with diverse applications in medicine, agriculture, the environment, and materials science. With the advent of genome sequencing and bioinformatics, heterologous expression of BGCs is of increasing interest in bioactive natural product (NP) discovery. However, this approach has had limited success because expression of BGCs relies heavily on the physiology of just a few commonly available host chassis. Expanding and diversifying the chassis portfolio for heterologous BGC expression may greatly increase the chances for successful NP production. In this review, we first discuss genetic and genome engineering technologies used to clone, modify, and transform BGCs into multiple strains and to engineer chassis strains. We then highlight studies that employed the multi-chassis approach successfully to optimize NP production, discover previously uncharacterized NPs, and better understand BGC function.
Collapse
Affiliation(s)
- Jing Ke
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598, USA
| | - Yasuo Yoshikuni
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Walnut Creek, CA 94598, USA; Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA; Center for Advanced Bioenergy and Bioproducts Innovation, Urbana, IL 61801, USA; Global Institution for Collaborative Research and Education, Hokkaido University, Hokkaido, 060-8589, Japan.
| |
Collapse
|
5
|
Lu W, Alanzi AR, Abugrain ME, Ito T, Mahmud T. Global and pathway-specific transcriptional regulations of pactamycin biosynthesis in Streptomyces pactum. Appl Microbiol Biotechnol 2018; 102:10589-10601. [PMID: 30276712 DOI: 10.1007/s00253-018-9375-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Revised: 08/28/2018] [Accepted: 09/05/2018] [Indexed: 11/26/2022]
Abstract
Pactamycin, a structurally unique aminocyclitol natural product isolated from Streptomyces pactum, has potent antibacterial, antitumor, and anti-protozoa activities. However, its production yields under currently used culture conditions are generally low. To understand how pactamycin biosynthesis is regulated and explore the possibility of improving pactamycin production in S. pactum, we investigated the transcription regulations of pactamycin biosynthesis. In vivo inactivation of two putative pathway-specific regulatory genes, ptmE and ptmF, resulted in mutant strains that are not able to produce pactamycin. Genetic complementation using a cassette containing ptmE and ptmF integrated into the S. pactum chromosome rescued the production of pactamycin. Transcriptional analysis of the ΔptmE and ΔptmF strains suggests that both genes control the expression of the whole pactamycin biosynthetic gene cluster. However, attempts to overexpress these regulatory genes by introducing a second copy of the genes in S. pactum did not improve the production yield of pactamycin. We discovered that pactamycin biosynthesis is sensitive to phosphate regulation. Concentration of inorganic phosphate higher than 2 mM abolished both the transcription of the biosynthetic genes and the production of the antibiotic. Draft genome sequencing of S. pactum and bioinformatics studies revealed the existence of global regulatory genes, e.g., genes that encode a two-component PhoR-PhoP system, which are commonly involved in secondary metabolism. Inactivation of phoP did not show any significant effect to pactamycin production. However, in the phoP::aac(3)IV mutant, pactamycin biosynthesis is not affected by external inorganic phosphate concentration.
Collapse
Affiliation(s)
- Wanli Lu
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Abdullah R Alanzi
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Mostafa E Abugrain
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA
| | - Takuya Ito
- Faculty of Pharmacy, Osaka-Ohtani University, 3-11-1 Nisikiorikita, Tondabayashi, Osaka, 584-8540, Japan
| | - Taifo Mahmud
- Department of Pharmaceutical Sciences, Oregon State University, Corvallis, OR, 97331-3507, USA.
| |
Collapse
|
6
|
High-Yield Production of Herbicidal Thaxtomins and Thaxtomin Analogs in a Nonpathogenic Streptomyces Strain. Appl Environ Microbiol 2018; 84:AEM.00164-18. [PMID: 29602787 DOI: 10.1128/aem.00164-18] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2018] [Accepted: 03/27/2018] [Indexed: 12/13/2022] Open
Abstract
Thaxtomins are virulence factors of most plant-pathogenic Streptomyces strains. Due to their potent herbicidal activity, attractive environmental compatibility, and inherent biodegradability, thaxtomins are key active ingredients of bioherbicides approved by the U.S. Environmental Protection Agency. However, the low yield of thaxtomins in native Streptomyces producers limits their wide agricultural applications. Here, we describe the high-yield production of thaxtomins in a heterologous host. The thaxtomin gene cluster from S. scabiei 87.22 was cloned and expressed in S. albus J1074 after chromosomal integration. The production of thaxtomins and nitrotryptophan analogs was observed using liquid chromatography-mass spectrometry (LC-MS) analysis. When the engineered S. albus J1074 was cultured in the minimal medium Thx defined medium supplemented with 1% cellobiose (TDMc), the yield of the most abundant and herbicidal analog, thaxtomin A, was 10 times higher than that in S. scabiei 87.22, and optimization of the medium resulted in the highest yield of thaxtomin analogs at about 222 mg/liter. Further engineering of the thaxtomin biosynthetic gene cluster through gene deletion led to the production of multiple biosynthetic intermediates important to the chemical synthesis of new analogs. Additionally, the versatility of the thaxtomin biosynthetic system in S. albus J1074 was capitalized on to produce one unnatural fluorinated analog, 5-fluoro-thaxtomin A (5-F-thaxtomin A), whose structure was elucidated by a combination of MS and one-dimensional (1D) and 2D nuclear magnetic resonance (NMR) analyses. Natural and unnatural thaxtomins demonstrated potent herbicidal activity in radish seedling assays. These results indicated that S. albus J1074 has the potential to produce thaxtomins and analogs thereof with high yield, fostering their agricultural applications.IMPORTANCE Thaxtomins are agriculturally valuable herbicidal natural products, but the productivity of native producers is limiting. Heterologous expression of the thaxtomin gene cluster in S. albus J1074 resulted in the highest yield of thaxtomins ever reported, representing a significant leap forward in its wide agricultural use. Furthermore, current synthetic routes to thaxtomins and analogs are lengthy, and two thaxtomin biosynthetic intermediates produced at high yields in this work can provide precursors and building blocks to advanced synthetic routes. Importantly, the production of 5-F-thaxtomin A in engineered S. albus J1074 demonstrated a viable alternative to chemical methods in the synthesis of new thaxtomin analogs. Moreover, our work presents an attractive synthetic biology strategy to improve the supply of herbicidal thaxtomins, likely finding general applications in the discovery and production of many other bioactive natural products.
Collapse
|
7
|
Huang Z, Lei K, He D, Xu Y, Williams J, Hu L, McNeil M, Ruso JM, Liu Z, Guo Z, Wang Z. Self-regulation in chemical and bio-engineering materials for intelligent systems. CAAI TRANSACTIONS ON INTELLIGENCE TECHNOLOGY 2018; 3:40-48. [PMID: 34113747 PMCID: PMC8188858 DOI: 10.1049/trit.2018.0004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Herein, the authors review the self-regulation system secured by well-designed hybrid materials, composites, and complex system. As a broad concept, the self-regulated material/system has been defined in a wide research field and proven to be of great interest for use in a biomedical system, mechanical system, physical system, as the fact of something such as an organisation regulating itself without intervention from external perturbation. Here, they focus on the most recent discoveries of self-regulation phenomenon and progress in utilising the self-regulation design. This paper concludes by examining various practical applications of the remarkable materials and systems including manipulation of the oil/water interface, cell out-layer structure, radical activity, electron energy level, and mechanical structure of nanomaterials. From material science to bioengineering, self-regulation proves to be not only viable, but increasingly useful in many applications. As part of intelligent engineering, self-regulatory materials are expected to be more used as integrated intelligent components.
Collapse
Affiliation(s)
- Zhongyuan Huang
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- College of Chemistry and Chemical Engineering, Xinyang Normal University, Xinyang 464000, Henan, People’s Republic of China
| | - Kewei Lei
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, People’s Republic of China
| | - Dan He
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
- Department of Pharmaceutical Analysis, Chongqing Medical University, Chongqing 400016, People’s Republic of China
| | - Yanbin Xu
- School of Chemistry and Materials Science, Ludong University, Yantai 264025, Shandong, People’s Republic of China
| | - Jacob Williams
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
- Department of Mechanical Engineering, University of Maryland, College Park, MD 20742, USA
| | - Liu Hu
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
- National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, People’s Republic of China
| | - Macy McNeil
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
| | - Juan M. Ruso
- Soft Matter and Molecular Biophysics Group, Department of Applied Physics, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Zhen Liu
- Department of Physics and Engineering, Frostburg State University, Frostburg, MD 21532, USA
| | - Zhanhu Guo
- Integrated Composites Laboratory (ICL), Department of Chemical & Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Zhe Wang
- Chemistry Department, Xavier University of Louisiana, New Orleans, LA 70125, USA
| |
Collapse
|
8
|
Boya P CA, Fernández-Marín H, Mejía LC, Spadafora C, Dorrestein PC, Gutiérrez M. Imaging mass spectrometry and MS/MS molecular networking reveals chemical interactions among cuticular bacteria and pathogenic fungi associated with fungus-growing ants. Sci Rep 2017; 7:5604. [PMID: 28717220 PMCID: PMC5514151 DOI: 10.1038/s41598-017-05515-6] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Accepted: 05/31/2017] [Indexed: 01/25/2023] Open
Abstract
The fungus-growing ant-microbe symbiosis is an ideal system to study chemistry-based microbial interactions due to the wealth of microbial interactions described, and the lack of information on the molecules involved therein. In this study, we employed a combination of MALDI imaging mass spectrometry (MALDI-IMS) and MS/MS molecular networking to study chemistry-based microbial interactions in this system. MALDI IMS was used to visualize the distribution of antimicrobials at the inhibition zone between bacteria associated to the ant Acromyrmex echinatior and the fungal pathogen Escovopsis sp. MS/MS molecular networking was used for the dereplication of compounds found at the inhibition zones. We identified the antibiotics actinomycins D, X2 and X0β, produced by the bacterium Streptomyces CBR38; and the macrolides elaiophylin, efomycin A and efomycin G, produced by the bacterium Streptomyces CBR53.These metabolites were found at the inhibition zones using MALDI IMS and were identified using MS/MS molecular networking. Additionally, three shearinines D, F, and J produced by the fungal pathogen Escovopsis TZ49 were detected. This is the first report of elaiophylins, actinomycin X0β and shearinines in the fungus-growing ant symbiotic system. These results suggest a secondary prophylactic use of these antibiotics by A. echinatior because of their permanent production by the bacteria.
Collapse
Affiliation(s)
- Cristopher A Boya P
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama.,Department of Biotechnology, Acharya Nagarjuna University, Guntur, Nagarjuna Nagar, 522 510, India
| | - Hermógenes Fernández-Marín
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama
| | - Luis C Mejía
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama
| | - Carmenza Spadafora
- Centro de Biología Celular y Molecular de Enfermedades, INDICASAT AIP, Panamá, Apartado 0843-01103, Republic of Panama
| | - Pieter C Dorrestein
- Collaborative Mass Spectrometry Innovation Center, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California at San Diego, San Diego, California, 92093, United States.,Department of Pharmacology, University of California at San Diego, San Diego, California, 92093, United States
| | - Marcelino Gutiérrez
- Centro de Biodiversidad y Descubrimiento de Drogas, Instituto de Investigaciones Científicas y Servicios de Alta Tecnología (INDICASAT AIP), Panamá, Apartado 0843-01103, Republic of Panama.
| |
Collapse
|
9
|
Tan GY, Deng K, Liu X, Tao H, Chang Y, Chen J, Chen K, Sheng Z, Deng Z, Liu T. Heterologous Biosynthesis of Spinosad: An Omics-Guided Large Polyketide Synthase Gene Cluster Reconstitution in Streptomyces. ACS Synth Biol 2017; 6:995-1005. [PMID: 28264562 DOI: 10.1021/acssynbio.6b00330] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
With the advent of the genomics era, heterologous gene expression has been used extensively as a means of accessing natural products (NPs) from environmental DNA samples. However, the heterologous production of NPs often has very low efficiency or is unable to produce targeted NPs. Moreover, due to the complicated transcriptional and metabolic regulation of NP biosynthesis in native producers, especially in the cases of genome mining, it is also difficult to rationally and systematically engineer synthetic pathways to improved NPs biosynthetic efficiency. In this study, various strategies ranging from heterologous production of a NP to subsequent application of omics-guided synthetic modules optimization for efficient biosynthesis of NPs with complex structure have been developed. Heterologous production of spinosyn in Streptomyces spp. has been demonstrated as an example of the application of these approaches. Combined with the targeted omics approach, several rate-limiting steps of spinosyn heterologous production in Streptomyces spp. have been revealed. Subsequent engineering work overcame three of selected rate-limiting steps, and the production of spinosad was increased step by step and finally reached 1460 μg/L, which is about 1000-fold higher than the original strain S. albus J1074 (C4I6-M). These results indicated that the omics platform developed in this work was a powerful tool for guiding the rational refactoring of heterologous biosynthetic pathway in Streptomyces host. Additionally, this work lays the foundation for further studies aimed at the more efficient production of spinosyn in a heterologous host. And the strategy developed in this study is expected to become readily adaptable to highly efficient heterologous production of other NPs with complex structure.
Collapse
Affiliation(s)
- Gao-Yi Tan
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- State
Key Laboratory of Bioreactor Engineering, School of Bioengineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Kunhua Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Xinhua Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Hui Tao
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Yingying Chang
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Jia Chen
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| | - Kai Chen
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zhi Sheng
- Shenyang Research Institute of Chemical Industry Ltd., Co., SINOCHEM Group, Shengyang 110021, China
| | - Zixin Deng
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Tiangang Liu
- Key
Laboratory of Combinatorial Biosynthesis and Drug Discovery (Wuhan
University), Ministry of Education, and Wuhan University School of Pharmaceutical Sciences, Wuhan 430071, China
- Hubei
Engineering Laboratory for Synthetic Microbiology, Wuhan Institute of Biotechnology, Wuhan 430075, China
| |
Collapse
|
10
|
Undabarrena A, Ugalde JA, Seeger M, Cámara B. -Genomic data mining of the marine actinobacteria Streptomyces sp. H-KF8 unveils insights into multi-stress related genes and metabolic pathways involved in antimicrobial synthesis. PeerJ 2017; 5:e2912. [PMID: 28229018 PMCID: PMC5312570 DOI: 10.7717/peerj.2912] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/14/2016] [Indexed: 12/25/2022] Open
Abstract
Streptomyces sp. H-KF8 is an actinobacterial strain isolated from marine sediments of a Chilean Patagonian fjord. Morphological characterization together with antibacterial activity was assessed in various culture media, revealing a carbon-source dependent activity mainly against Gram-positive bacteria (S. aureus and L. monocytogenes). Genome mining of this antibacterial-producing bacterium revealed the presence of 26 biosynthetic gene clusters (BGCs) for secondary metabolites, where among them, 81% have low similarities with known BGCs. In addition, a genomic search in Streptomyces sp. H-KF8 unveiled the presence of a wide variety of genetic determinants related to heavy metal resistance (49 genes), oxidative stress (69 genes) and antibiotic resistance (97 genes). This study revealed that the marine-derived Streptomyces sp. H-KF8 bacterium has the capability to tolerate a diverse set of heavy metals such as copper, cobalt, mercury, chromate and nickel; as well as the highly toxic tellurite, a feature first time described for Streptomyces. In addition, Streptomyces sp. H-KF8 possesses a major resistance towards oxidative stress, in comparison to the soil reference strain Streptomyces violaceoruber A3(2). Moreover, Streptomyces sp. H-KF8 showed resistance to 88% of the antibiotics tested, indicating overall, a strong response to several abiotic stressors. The combination of these biological traits confirms the metabolic versatility of Streptomyces sp. H-KF8, a genetically well-prepared microorganism with the ability to confront the dynamics of the fjord-unique marine environment.
Collapse
Affiliation(s)
- Agustina Undabarrena
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Juan A Ugalde
- Centro de Genética y Genómica, Facultad de Medicina Clinica Alemana, Universidad del Desarrollo , Santiago , Chile
| | - Michael Seeger
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| | - Beatriz Cámara
- Departmento de Química & Centro de Biotecnología, Universidad Técnica Federico Santa María , Valparaiso , Chile
| |
Collapse
|
11
|
Biogenesis of antibiotics-viewing its history and glimpses of the future. Folia Microbiol (Praha) 2016; 61:347-58. [PMID: 27188629 DOI: 10.1007/s12223-016-0462-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/02/2016] [Indexed: 01/07/2023]
Abstract
This review aims at comparing some historical data with the current situation in the study of biogenesis of natural compounds, antibiotics in the first place. Biogenesis of tetracyclines and cycloheximide and related compounds serves as example. Examples of molecular biological and bioinformatics methods used in the study of antibiotic biogenesis are described both in terms of its historical aspects and the current knowledge.
Collapse
|
12
|
Myronovskyi M, Luzhetskyy A. Native and engineered promoters in natural product discovery. Nat Prod Rep 2016; 33:1006-19. [DOI: 10.1039/c6np00002a] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transcriptional activation of biosynthetic gene clusters.
Collapse
Affiliation(s)
- Maksym Myronovskyi
- Helmholtz-Institute for Pharmaceutical Research Saarland
- 66123 Saarbrücken
- Germany
| | - Andriy Luzhetskyy
- Helmholtz-Institute for Pharmaceutical Research Saarland
- 66123 Saarbrücken
- Germany
- Department of Pharmaceutical Biotechnology
- Saarland University
| |
Collapse
|
13
|
Luo Y, Zhang L, Barton KW, Zhao H. Systematic Identification of a Panel of Strong Constitutive Promoters from Streptomyces albus. ACS Synth Biol 2015; 4:1001-10. [PMID: 25924180 DOI: 10.1021/acssynbio.5b00016] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Actinomycetes are important organisms for the biosynthesis of valuable natural products. However, only a limited number of well-characterized native constitutive promoters from actinomycetes are available for the construction and engineering of large biochemical pathways. Here, we report the discovery and characterization of 32 candidate promoters identified from Streptomyces albus J1074 by RNA-seq analysis. These 32 promoters were cloned and characterized using a streptomycete reporter gene, xylE, encoding catechol 2,3-dioxygenase. The strengths of the identified strong promoters varied from 200 to 1300% of the strength of the well-known ermE*p in MYG medium, and the strongest of these promoters was by far the strongest actinomycete promoter ever reported in the literature. To further confirm the strengths of these promoters, qPCR was employed to determine the transcriptional levels of the xylE reporter. In total, 10 strong promoters were identified and four constitutive promoters were characterized via a time-course study. These promoters were used in a plug-and-play platform to activate a cryptic gene cluster from Streptomyces griseus, and successful activation of the target pathway was observed in three widely used Streptomyces strains. Therefore, these promoters should be highly useful in current synthetic biology platforms for activation and characterization of silent natural product biosynthetic pathways as well as the optimization of pathways for the synthesis of important natural products in actinomycetes.
Collapse
Affiliation(s)
- Yunzi Luo
- Institute
for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States,
| | | | | | - Huimin Zhao
- Institute
for Genomic Biology, University of Illinois at Urbana−Champaign, 1206 West Gregory Drive, Urbana, Illinois 61801, United States,
| |
Collapse
|
14
|
Genetic manipulation of secondary metabolite biosynthesis for improved production in Streptomyces and other actinomycetes. J Ind Microbiol Biotechnol 2015; 43:343-70. [PMID: 26364200 DOI: 10.1007/s10295-015-1682-x] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 08/28/2015] [Indexed: 12/18/2022]
Abstract
Actinomycetes continue to be important sources for the discovery of secondary metabolites for applications in human medicine, animal health, and crop protection. With the maturation of actinomycete genome mining as a robust approach to identify new and novel cryptic secondary metabolite gene clusters, it is critical to continue developing methods to activate and enhance secondary metabolite biosynthesis for discovery, development, and large-scale manufacturing. This review covers recent reports on promising new approaches and further validations or technical improvements of existing approaches to strain improvement applicable to a wide range of Streptomyces species and other actinomycetes.
Collapse
|
15
|
Metabolic profiling as a tool for prioritizing antimicrobial compounds. J Ind Microbiol Biotechnol 2015; 43:299-312. [PMID: 26335567 PMCID: PMC4752588 DOI: 10.1007/s10295-015-1666-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Accepted: 07/25/2015] [Indexed: 11/29/2022]
Abstract
Metabolomics is an analytical technique that allows scientists to globally profile low molecular weight metabolites between samples in a medium- or high-throughput environment. Different biological samples are statistically analyzed and correlated to a bioactivity of interest, highlighting differentially produced compounds as potential biomarkers. Here, we review NMR- and MS-based metabolomics as technologies to facilitate the identification of novel antimicrobial natural products from microbial sources. Approaches to elicit the production of poorly expressed (cryptic) molecules are thereby a key to allow statistical analysis of samples to identify bioactive markers, while connection of compounds to their biosynthetic gene cluster is a determining step in elucidating the biosynthetic pathway and allows downstream process optimization and upscaling. The review focuses on approaches built around NMR-based metabolomics, which enables efficient dereplication and guided fractionation of (antimicrobial) compounds.
Collapse
|
16
|
Antoraz S, Santamaría RI, Díaz M, Sanz D, Rodríguez H. Toward a new focus in antibiotic and drug discovery from the Streptomyces arsenal. Front Microbiol 2015; 6:461. [PMID: 26029195 PMCID: PMC4429630 DOI: 10.3389/fmicb.2015.00461] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 04/28/2015] [Indexed: 11/13/2022] Open
Abstract
Emergence of antibiotic resistant pathogens is changing the way scientists look for new antibiotic compounds. This race against the increased prevalence of multi-resistant strains makes it necessary to expedite the search for new compounds with antibiotic activity and to increase the production of the known. Here, we review a variety of new scientific approaches aiming to enhance antibiotic production in Streptomyces. These include: (i) elucidation of the signals that trigger the antibiotic biosynthetic pathways to improve culture media, (ii) bacterial hormone studies aiming to reproduce intra and interspecific communications resulting in antibiotic burst, (iii) co-cultures to mimic competition-collaboration scenarios in nature, and (iv) the very recent in situ search for antibiotics that might be applied in Streptomyces natural habitats. These new research strategies combined with new analytical and molecular techniques should accelerate the discovery process when the urgency for new compounds is higher than ever.
Collapse
Affiliation(s)
- Sergio Antoraz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Ramón I Santamaría
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Margarita Díaz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - David Sanz
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| | - Héctor Rodríguez
- Departamento de Microbiología y Genética, Instituto de Biología Funcional y Genómica, Consejo Superior de Investigaciones Científicas, Universidad de Salamanca Salamanca, Spain
| |
Collapse
|
17
|
Novel and tightly regulated resorcinol and cumate-inducible expression systems for Streptomyces and other actinobacteria. Appl Microbiol Biotechnol 2014; 98:8641-55. [DOI: 10.1007/s00253-014-5918-x] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2014] [Revised: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/07/2023]
|
18
|
Shao Z, Zhao H. Manipulating natural product biosynthetic pathways via DNA assembler. ACTA ACUST UNITED AC 2014; 6:65-100. [PMID: 24903884 DOI: 10.1002/9780470559277.ch130191] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
DNA assembler is an efficient synthetic biology method for constructing and manipulating biochemical pathways. The rapidly increasing number of sequenced genomes provides a rich source for discovery of gene clusters involved in synthesizing new natural products. However, both discovery and economical production are hampered by our limited knowledge in manipulating most organisms and the corresponding pathways. By taking advantage of yeast in vivo homologous recombination, DNA assembler synthesizes an entire expression vector containing the target biosynthetic pathway and the genetic elements needed for DNA maintenance and replication. Here we use the spectinabilin clusters originated from two hosts as examples to illustrate the guidelines of using DNA assembler for cluster characterization and silent cluster activation. Such strategies offer unprecedented versatility in cluster manipulation, bypass the traditional laborious strategies to elicit pathway expression, and provide a new platform for de novo cluster assembly and genome mining for discovering new natural products.
Collapse
Affiliation(s)
- Zengyi Shao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Department of Chemical and Biological Engineering, Iowa State University, Ames, Iowa
| | - Huimin Zhao
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.,Departments of Chemistry, Biochemistry, and Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois
| |
Collapse
|
19
|
Deciphering the regulon of Streptomyces coelicolor AbrC3, a positive response regulator of antibiotic production. Appl Environ Microbiol 2014; 80:2417-28. [PMID: 24509929 DOI: 10.1128/aem.03378-13] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The atypical two-component system (TCS) AbrC1/C2/C3 (encoded by SCO4598, SCO4597, and SCO4596), comprising two histidine kinases (HKs) and a response regulator (RR), is crucial for antibiotic production in Streptomyces coelicolor and for morphological differentiation under certain nutritional conditions. In this study, we demonstrate that deletion of the RR-encoding gene, abrC3 (SCO4596), results in a dramatic decrease in actinorhodin (ACT) and undecylprodiginine (RED) production and delays morphological development. In contrast, the overexpression of abrC3 in the parent strain leads to a 33% increase in ACT production in liquid medium. Transcriptomic analysis and chromatin immunoprecipitation with microarray technology (ChIP-chip) analysis of the ΔabrC3 mutant and the parent strain revealed that AbrC3 directly controls ACT production by binding to the actII-ORF4 promoter region; this was independently verified by in vitro DNA-binding assays. This binding is dependent on the sequence 5'-GAASGSGRMS-3'. In contrast, the regulation of RED production is not due to direct binding of AbrC3 to either the redZ or redD promoter region. This study also revealed other members of the AbrC3 regulon: AbrC3 is a positive autoregulator which also binds to the promoter regions of SCO0736, bdtA (SCO3328), absR1 (SCO6992), and SCO6809. The direct targets share the 10-base consensus binding sequence and may be responsible for some of the phenotypes of the ΔabrC3 mutant. The identification of the AbrC3 regulon as part of the complex regulatory network governing antibiotic production widens our knowledge regarding TCS involvement in control of antibiotic synthesis and may contribute to the rational design of new hyperproducer host strains through genetic manipulation of such systems.
Collapse
|
20
|
Carbon-flux distribution within Streptomyces coelicolor metabolism: a comparison between the actinorhodin-producing strain M145 and its non-producing derivative M1146. PLoS One 2013; 8:e84151. [PMID: 24376790 PMCID: PMC3871631 DOI: 10.1371/journal.pone.0084151] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 11/19/2013] [Indexed: 01/12/2023] Open
Abstract
Metabolic Flux Analysis is now viewed as essential to elucidate the metabolic pattern of cells and to design appropriate genetic engineering strategies to improve strain performance and production processes. Here, we investigated carbon flux distribution in two Streptomyces coelicolor A3 (2) strains: the wild type M145 and its derivative mutant M1146, in which gene clusters encoding the four main antibiotic biosynthetic pathways were deleted. Metabolic Flux Analysis and (13)C-labeling allowed us to reconstruct a flux map under steady-state conditions for both strains. The mutant strain M1146 showed a higher growth rate, a higher flux through the pentose phosphate pathway and a higher flux through the anaplerotic phosphoenolpyruvate carboxylase. In that strain, glucose uptake and the flux through the Krebs cycle were lower than in M145. The enhanced flux through the pentose phosphate pathway in M1146 is thought to generate NADPH enough to face higher needs for biomass biosynthesis and other processes. In both strains, the production of NADPH was higher than NADPH needs, suggesting a key role for nicotinamide nucleotide transhydrogenase for redox homeostasis. ATP production is also likely to exceed metabolic ATP needs, indicating that ATP consumption for maintenance is substantial.Our results further suggest a possible competition between actinorhodin and triacylglycerol biosynthetic pathways for their common precursor, acetyl-CoA. These findings may be instrumental in developing new strategies exploiting S. coelicolor as a platform for the production of bio-based products of industrial interest.
Collapse
|
21
|
Trends in the biosynthesis and production of the immunosuppressant tacrolimus (FK506). Appl Microbiol Biotechnol 2013; 98:497-507. [PMID: 24272367 DOI: 10.1007/s00253-013-5362-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2013] [Revised: 10/26/2013] [Accepted: 10/28/2013] [Indexed: 01/03/2023]
Abstract
The current off-patent state of tacrolimus (FK506) has opened the hunting season for new generic pharmaceutical formulations of this immunosuppressant. This fact has boosted the scientific and industrial research on tacrolimus for the last 5 years in order to improve its production. The fast discovery of tacrolimus producer strains has generated a huge number of producers, which presents the biosynthetic cluster of FK506 as a high promiscuous genetic region. For the first time, the current state-of-the-art on the tacrolimus biosynthesis, production improvements and drug purification is reviewed. On one hand, all the genes involved in the tacrolimus biosynthesis, in addition to the traditional PKS/NRPS, as well as their regulation are analysed. On the other hand, tacrolimus direct and indirect precursors are reviewed as a straight manner to improve the final yield, which is a current trend in the field. Twenty years of industrial and scientific improvements on tacrolimus production are summarised, whereas future trends are also drafted.
Collapse
|
22
|
Shao Z, Rao G, Li C, Abil Z, Luo Y, Zhao H. Refactoring the silent spectinabilin gene cluster using a plug-and-play scaffold. ACS Synth Biol 2013; 2:662-9. [PMID: 23968564 DOI: 10.1021/sb400058n] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Natural products (secondary metabolites) are a rich source of compounds with important biological activities. Eliciting pathway expression is always challenging but extremely important in natural product discovery because an individual pathway is tightly controlled through a unique regulation mechanism and hence often remains silent under the routine culturing conditions. To overcome the drawbacks of the traditional approaches that lack general applicability, we developed a simple synthetic biology approach that decouples pathway expression from complex native regulations. Briefly, the entire silent biosynthetic pathway is refactored using a plug-and-play scaffold and a set of heterologous promoters that are functional in a heterologous host under the target culturing condition. Using this strategy, we successfully awakened the silent spectinabilin pathway from Streptomyces orinoci. This strategy bypasses the traditional laborious processes to elicit pathway expression and represents a new platform for discovering novel natural products.
Collapse
Affiliation(s)
- Zengyi Shao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Guodong Rao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Chun Li
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Zhanar Abil
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Yunzi Luo
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| | - Huimin Zhao
- Department
of Chemical and Biomolecular Engineering, ‡Department of Chemistry, and §Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801,
United States
| |
Collapse
|
23
|
Horbal L, Kobylyanskyy A, Yushchuk O, Zaburannyi N, Luzhetskyy A, Ostash B, Marinelli F, Fedorenko V. Evaluation of heterologous promoters for genetic analysis of Actinoplanes teichomyceticus--Producer of teicoplanin, drug of last defense. J Biotechnol 2013; 168:367-72. [PMID: 24161919 DOI: 10.1016/j.jbiotec.2013.10.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 10/09/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
Actinoplanes teichomyceticus is the only known producer of the valuable glycopeptide antibiotic teicoplanin. Random mutagenesis and selection were extensively applied to teicoplanin producers, while the gene engineering methods were not used, because of the paucity of genetic tools for A. teichomyceticus. Particularly, availability of promoters of different strength that are functional in Actinoplanes would be very useful for overexpression of beneficial genes. Here we report the use of a glucuronidase reporter system (gusA) for studying transcriptional activity in A. teichomyceticus and describe the behavior of a set of heterologous promoters in this strain. We reveal several elements that exceed in their strength the well-established Streptomyces promoter ermEp, underscoring the utility of the gusA reporter for Actinoplanes sp. Remarkable overproduction of teicoplanin was achieved by constructing strains carrying additional copies of the regulatory gene tcp28 under the control of one of the two most active promoters, moeE5p and actp, discovered in this study.
Collapse
Affiliation(s)
- Liliya Horbal
- Department of Genetics and Biotechnology, Ivan Franko National University of Lviv, 4 Hrushevskoho st, Lviv 79005, Ukraine
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Strakova E, Zikova A, Vohradsky J. Inference of sigma factor controlled networks by using numerical modeling applied to microarray time series data of the germinating prokaryote. Nucleic Acids Res 2013; 42:748-63. [PMID: 24157841 PMCID: PMC3902916 DOI: 10.1093/nar/gkt917] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
A computational model of gene expression was applied to a novel test set of microarray time series measurements to reveal regulatory interactions between transcriptional regulators represented by 45 sigma factors and the genes expressed during germination of a prokaryote Streptomyces coelicolor. Using microarrays, the first 5.5 h of the process was recorded in 13 time points, which provided a database of gene expression time series on genome-wide scale. The computational modeling of the kinetic relations between the sigma factors, individual genes and genes clustered according to the similarity of their expression kinetics identified kinetically plausible sigma factor-controlled networks. Using genome sequence annotations, functional groups of genes that were predominantly controlled by specific sigma factors were identified. Using external binding data complementing the modeling approach, specific genes involved in the control of the studied process were identified and their function suggested.
Collapse
Affiliation(s)
- Eva Strakova
- Laboratory of Bioinformatics, Institute of Microbiology, Academy of Sciences of the Czech Republic, Prague 142 20, Czech Republic
| | | | | |
Collapse
|
25
|
Zhu H, Sandiford SK, van Wezel GP. Triggers and cues that activate antibiotic production by actinomycetes. J Ind Microbiol Biotechnol 2013; 41:371-86. [PMID: 23907251 DOI: 10.1007/s10295-013-1309-z] [Citation(s) in RCA: 129] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/30/2013] [Indexed: 12/24/2022]
Abstract
Actinomycetes are a rich source of natural products, and these mycelial bacteria produce the majority of the known antibiotics. The increasing difficulty to find new drugs via high-throughput screening has led to a decline in antibiotic research, while infectious diseases associated with multidrug resistance are spreading rapidly. Here we review new approaches and ideas that are currently being developed to increase our chances of finding novel antimicrobials, with focus on genetic, chemical, and ecological methods to elicit the expression of biosynthetic gene clusters. The genome sequencing revolution identified numerous gene clusters for natural products in actinomycetes, associated with a potentially huge reservoir of unknown molecules, and prioritizing them is a major challenge for in silico screening-based approaches. Some antibiotics are likely only expressed under very specific conditions, such as interaction with other microbes, which explains the renewed interest in soil and marine ecology. The identification of new gene clusters, as well as chemical elicitors and culturing conditions that activate their expression, should allow scientists to reinforce their efforts to find the necessary novel antimicrobial drugs.
Collapse
Affiliation(s)
- Hua Zhu
- Molecular Biotechnology, Institute of Biology, Leiden University, Sylviusweg 72, 2333 BE, Leiden, The Netherlands
| | | | | |
Collapse
|
26
|
Horbal L, Rebets Y, Rabyk M, Makitrynskyy R, Luzhetskyy A, Fedorenko V, Bechthold A. SimReg1 is a master switch for biosynthesis and export of simocyclinone D8 and its precursors. AMB Express 2012; 2:1. [PMID: 22214346 PMCID: PMC3261101 DOI: 10.1186/2191-0855-2-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Accepted: 01/03/2012] [Indexed: 11/10/2022] Open
Abstract
Analysis of the simocyclinone biosynthesis (sim) gene cluster of Streptomyces antibioticus Tü6040 led to the identification of a putative pathway specific regulatory gene simReg1. In silico analysis places the SimReg1 protein in the OmpR-PhoB subfamily of response regulators. Gene replacement of simReg1 from the S. antibioticus chromosome completely abolishes simocyclinone production indicating that SimReg1 is a key regulator of simocyclinone biosynthesis. Results of the DNA-shift assays and reporter gene expression analysis are consistent with the idea that SimReg1 activates transcription of simocyclinone biosynthesis, transporter genes, regulatory gene simReg3 and his own transcription. The presence of extracts (simocyclinone) from S. antibioticus Tü6040 × pSSimR1-1 could dissociate SimReg1 from promoter regions. A preliminary model for regulation of simocyclinone biosynthesis and export is discussed.
Collapse
|
27
|
|
28
|
Gomez-Escribano JP, Bibb MJ. Streptomyces coelicolor as an expression host for heterologous gene clusters. Methods Enzymol 2012; 517:279-300. [PMID: 23084944 DOI: 10.1016/b978-0-12-404634-4.00014-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
The expression of a gene or a set of genes from one organism in a different species is known as "heterologous expression." In actinomycetes, prolific producers of natural products, heterologous gene expression has been used to confirm the clustering of secondary metabolite biosynthetic genes, to analyze natural product biosynthesis, to produce variants of natural products by genetic engineering, and to discover new compounds by screening genomic libraries. Recent advances in DNA sequencing have enabled the rapid and affordable sequencing of actinomycete genomes and revealed a large number of secondary metabolite gene clusters with no known products. Heterologous expression of these cryptic gene clusters combined with comparative metabolic profiling provides an important means to identify potentially novel compounds. In this chapter, the methods and strategies used to heterologously express actinomycete gene clusters, including the techniques used for cloning secondary metabolite gene clusters, the Streptomyces hosts used for their expression, and the techniques employed to analyze their products by metabolic profiling, are described.
Collapse
|
29
|
Affiliation(s)
- Diego Romero
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | - Matthew F. Traxler
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| | | | - Roberto Kolter
- Department of Microbiology and Molecular Genetics, Harvard Medical School, Boston, MA 02115
| |
Collapse
|
30
|
Baltz RH. Strain improvement in actinomycetes in the postgenomic era. J Ind Microbiol Biotechnol 2011; 38:657-66. [PMID: 21253811 DOI: 10.1007/s10295-010-0934-z] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 12/20/2010] [Indexed: 01/08/2023]
Abstract
With the recent advances in DNA sequencing technologies, it is now feasible to sequence multiple actinomycete genomes rapidly and inexpensively. An important observation that emerged from early Streptomyces genome sequencing projects was that each strain contains genes that encode 20 or more potential secondary metabolites, only a fraction of which are expressed during fermentation. More recently, this observation has been extended to many other actinomycetes with large genomes. The discovery of a wealth of orphan or cryptic secondary metabolite biosynthetic gene clusters has suggested that sequencing large numbers of actinomycete genomes may provide the starting materials for a productive new approach to discover novel secondary metabolites. The key issue for this approach to be successful is to find ways to turn on or turn up the expression of cryptic or poorly expressed pathways to provide material for structure elucidation and biological testing. In this review, I discuss several genetic approaches that are potentially applicable to many actinomycetes for this application.
Collapse
Affiliation(s)
- Richard H Baltz
- CognoGen Biotechnology Consulting, 6438 North Olney Street, Indianapolis, IN 46220, USA.
| |
Collapse
|
31
|
Do we need new antibiotics? The search for new targets and new compounds. J Ind Microbiol Biotechnol 2010; 37:1241-8. [PMID: 21086099 DOI: 10.1007/s10295-010-0849-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2010] [Accepted: 08/16/2010] [Indexed: 02/01/2023]
Abstract
Resistance to antibiotics and other antimicrobial compounds continues to increase. There are several possibilities for protection against pathogenic microorganisms, for instance, preparation of new vaccines against resistant bacterial strains, use of specific bacteriophages, and searching for new antibiotics. The antibiotic search includes: (1) looking for new antibiotics from nontraditional or less traditional sources, (2) sequencing microbial genomes with the aim of finding genes specifying biosynthesis of antibiotics, (3) analyzing DNA from the environment (metagenomics), (4) re-examining forgotten natural compounds and products of their transformations, and (5) investigating new antibiotic targets in pathogenic bacteria.
Collapse
|
32
|
Streptomyces and Saccharopolyspora hosts for heterologous expression of secondary metabolite gene clusters. J Ind Microbiol Biotechnol 2010; 37:759-72. [DOI: 10.1007/s10295-010-0730-9] [Citation(s) in RCA: 151] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2010] [Accepted: 04/22/2010] [Indexed: 10/19/2022]
|