1
|
Mills S, Ijaz UZ, Lens PNL. Environmental instability reduces shock resistance by enriching specialist taxa with distinct two component regulatory systems. NPJ Biofilms Microbiomes 2025; 11:54. [PMID: 40164638 PMCID: PMC11958701 DOI: 10.1038/s41522-025-00679-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 03/05/2025] [Indexed: 04/02/2025] Open
Abstract
Different microbial communities are impacted disproportionately by environmental disturbances. The degree to which a community can remain unchanged under a disturbance is referred to as resistance1. However, the contributing ecological factors, which infer a community's resistance are unknown. In this study, the impact of historical environmental stability on ecological phenomena and microbial community resistance to shocks was investigated. Three separate methanogenic bioreactor consortia, which were subjected to varying degrees of historical environmental stability, and displayed different levels of resistance to an organic loading rate (OLR) shock were sampled. Their community composition was assessed using high throughput sequencing of 16S rRNA genes and assembly based metagenomics. The effect environmental instability on ecological phenomena such as microbial community assembly, microbial niche breadth and the rare biosphere were assessed in the context of each reactor's demonstrated resistance to an OLR shock. Additionally, metagenome assembled genomes were analysed for functional effects of prolonged stability/instability. The system which was subjected to more environmental instability experienced more temporal variation in community beta diversity and a proliferation of specialists, with more abundant two component regulatory systems. This community was more susceptible to deterministic community assembly and demonstrated a lower degree of resistance, indicating that microbial communities experiencing longer term environmental instability (e.g. variations in pH or temperature) are less able to resist a large disturbance.
Collapse
Affiliation(s)
| | - Umer Zeeshan Ijaz
- University of Galway, Galway, Ireland
- Water & Environment Research Group, University of Glasgow, Mazumdar-Shaw Advanced Research Centre, Glasgow, UK
- Department of Molecular and Clinical Cancer Medicine, University of Liverpool, Liverpool, UK
| | | |
Collapse
|
2
|
Mintz KP, Danforth DR, Ruiz T. The Trimeric Autotransporter Adhesin EmaA and Infective Endocarditis. Pathogens 2024; 13:99. [PMID: 38392837 PMCID: PMC10892112 DOI: 10.3390/pathogens13020099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/25/2024] Open
Abstract
Infective endocarditis (IE), a disease of the endocardial surface of the heart, is usually of bacterial origin and disproportionally affects individuals with underlying structural heart disease. Although IE is typically associated with Gram-positive bacteria, a minority of cases are caused by a group of Gram-negative species referred to as the HACEK group. These species, classically associated with the oral cavity, consist of bacteria from the genera Haemophilus (excluding Haemophilus influenzae), Aggregatibacter, Cardiobacterium, Eikenella, and Kingella. Aggregatibacter actinomycetemcomitans, a bacterium of the Pasteurellaceae family, is classically associated with Aggressive Periodontitis and is also concomitant with the chronic form of the disease. Bacterial colonization of the oral cavity serves as a reservoir for infection at distal body sites via hematological spreading. A. actinomycetemcomitans adheres to and causes disease at multiple physiologic niches using a diverse array of bacterial cell surface structures, which include both fimbrial and nonfimbrial adhesins. The nonfimbrial adhesin EmaA (extracellular matrix binding protein adhesin A), which displays sequence heterogeneity dependent on the serotype of the bacterium, has been identified as a virulence determinant in the initiation of IE. In this chapter, we will discuss the known biochemical, molecular, and structural aspects of this protein, including its interactions with extracellular matrix components and how this multifunctional adhesin may contribute to the pathogenicity of A. actinomycetemcomitans.
Collapse
Affiliation(s)
- Keith P. Mintz
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - David R. Danforth
- Department of Microbiology and Molecular Genetics, University of Vermont, Burlington, VT 05405, USA;
| | - Teresa Ruiz
- Department of Molecular Physiology and Biophysics, University of Vermont, Burlington, VT 05405, USA;
| |
Collapse
|
3
|
Zhang C, Liu M, Wu Y, Li X, Zhang C, Call DR, Liu M, Zhao Z. ArcB orchestrates the quorum-sensing system to regulate type III secretion system 1 in Vibrio parahaemolyticus. Gut Microbes 2023; 15:2281016. [PMID: 37982663 PMCID: PMC10841015 DOI: 10.1080/19490976.2023.2281016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Accepted: 11/05/2023] [Indexed: 11/21/2023] Open
Abstract
In many Vibrio species, virulence is regulated by quorum sensing, which is regulated by a complex, multichannel, two-component phosphorelay circuit. Through this circuit, sensor kinases transmit sensory information to the phosphotransferase LuxU via a phosphotransfer mechanism, which in turn transmits the signal to the response regulator LuxO. For Vibrio parahaemolyticus, type III secretion system 1 (T3SS1) is required for cytotoxicity, but it is unclear how quorum sensing regulates T3SS1 expression. Herein, we report that a hybrid histidine kinase, ArcB, instead of LuxU, and sensor kinase LuxQ and response regulator LuxO, collectively orchestrate T3SS1 expression in V. parahaemolyticus. Under high oxygen conditions, LuxQ can interact with ArcB directly and phosphorylates the Hpt domain of ArcB. The Hpt domain of ArcB phosphorylates the downstream response regulator LuxO instead of ArcA. LuxO then activates transcription of the T3SS1 gene cluster. Under hypoxic conditions, ArcB autophosphorylates and phosphorylates ArcA, whereas ArcA does not participate in regulating the expression of T3SS1. Our data provides evidence of an alternative regulatory path involving the quorum sensing phosphorelay and adds another layer of understanding about the environmental regulation of gene expression in V. parahaemolyticus.
Collapse
Affiliation(s)
- Ce Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Min Liu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Ying Wu
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Xixi Li
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Chen Zhang
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| | - Douglas R. Call
- Paul G. Allen School for Global Health, Washington State University, Pullman, WA, USA
| | - Ming Liu
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
- Department of Clinical Laboratory, Shenzhen Third People's Hospital, Second Hospital Affiliated to Southern University of Science and Technology, National Clinical Research Center for Infectious Diseases, Shenzhen, Guangdong Province, China
| | - Zhe Zhao
- Jiangsu Province Engineering Research Center for Marine Bio-resources Sustainable Utilization, Hohai University, Nanjing, China
- Department of Marine Biology, College of Oceanography, Hohai University, Nanjing, China
| |
Collapse
|
4
|
Padilla-Vaca F, de la Mora J, García-Contreras R, Ramírez-Prado JH, Vicente-Gómez M, Vargas-Gasca F, Anaya-Velázquez F, Páramo-Pérez I, Rangel-Serrano Á, Cuéllar-Mata P, Vargas-Maya NI, Franco B. Theoretical study of ArcB and its dimerization, interaction with anaerobic metabolites, and activation of ArcA. PeerJ 2023; 11:e16309. [PMID: 37849831 PMCID: PMC10578306 DOI: 10.7717/peerj.16309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 09/27/2023] [Indexed: 10/19/2023] Open
Abstract
The complex metabolism of Escherichia coli has been extensively studied, including its response to oxygen availability. The ArcA/B two-component system (TCS) is the key regulator for the transition between these two environmental conditions and has been thoroughly characterized using genetic and biochemical approaches. Still, to date, limited structural data is available. The breakthrough provided by AlphaFold2 in 2021 has brought a reliable tool to the scientific community for assessing the structural features of complex proteins. In this report, we analyzed the structural aspects of the ArcA/B TCS using AlphaFold2 models. The models are consistent with the experimentally determined structures of ArcB kinase. The predicted structure of the dimeric form of ArcB is consistent with the extensive genetic and biochemical data available regarding mechanistic signal perception and regulation. The predicted interaction of the dimeric form of ArcB with its cognate response regulator (ArcA) is also consistent with both the forward and reverse phosphotransfer mechanisms. The ArcB model was used to detect putative binding cavities to anaerobic metabolites, encouraging testing of these predictions experimentally. Finally, the highly accurate models of other ArcB homologs suggest that different experimental approaches are needed to determine signal perception in kinases lacking the PAS domain. Overall, ArcB is a kinase with features that need further testing, especially in determining its crystal structure under different conditions.
Collapse
Affiliation(s)
| | - Javier de la Mora
- Genética Molecular, Instituto de Fisiología Celular, Mexico City, Mexico City, México
| | | | | | | | | | | | | | | | | | | | - Bernardo Franco
- Biology, Universidad de Guanajuato, Guanajuato, Guanajuato, México
| |
Collapse
|
5
|
Roles of Two-Component Signal Transduction Systems in Shigella Virulence. Biomolecules 2022; 12:biom12091321. [PMID: 36139160 PMCID: PMC9496106 DOI: 10.3390/biom12091321] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/13/2022] [Indexed: 11/17/2022] Open
Abstract
Two-component signal transduction systems (TCSs) are widespread types of protein machinery, typically consisting of a histidine kinase membrane sensor and a cytoplasmic transcriptional regulator that can sense and respond to environmental signals. TCSs are responsible for modulating genes involved in a multitude of bacterial functions, including cell division, motility, differentiation, biofilm formation, antibiotic resistance, and virulence. Pathogenic bacteria exploit the capabilities of TCSs to reprogram gene expression according to the different niches they encounter during host infection. This review focuses on the role of TCSs in regulating the virulence phenotype of Shigella, an intracellular pathogen responsible for severe human enteric syndrome. The pathogenicity of Shigella is the result of the complex action of a wide number of virulence determinants located on the chromosome and on a large virulence plasmid. In particular, we will discuss how five TCSs, EnvZ/OmpR, CpxA/CpxR, ArcB/ArcA, PhoQ/PhoP, and EvgS/EvgA, contribute to linking environmental stimuli to the expression of genes related to virulence and fitness within the host. Considering the relevance of TCSs in the expression of virulence in pathogenic bacteria, the identification of drugs that inhibit TCS function may represent a promising approach to combat bacterial infections.
Collapse
|
6
|
Chiang CJ, Huang ZC, Ta T, Chao YP. Deciphering glutamate and aspartate metabolism to improve production of succinate in Escherichia coli. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
7
|
Brown AN, Anderson MT, Bachman MA, Mobley HLT. The ArcAB Two-Component System: Function in Metabolism, Redox Control, and Infection. Microbiol Mol Biol Rev 2022; 86:e0011021. [PMID: 35442087 PMCID: PMC9199408 DOI: 10.1128/mmbr.00110-21] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
ArcAB, also known as the Arc system, is a member of the two-component system family of bacterial transcriptional regulators and is composed of sensor kinase ArcB and response regulator ArcA. In this review, we describe the structure and function of these proteins and assess the state of the literature regarding ArcAB as a sensor of oxygen consumption. The bacterial quinone pool is the primary modulator of ArcAB activity, but questions remain for how this regulation occurs. This review highlights the role of quinones and their oxidation state in activating and deactivating ArcB and compares competing models of the regulatory mechanism. The cellular processes linked to ArcAB regulation of central metabolic pathways and potential interactions of the Arc system with other regulatory systems are also reviewed. Recent evidence for the function of ArcAB under aerobic conditions is challenging the long-standing characterization of this system as strictly an anaerobic global regulator, and the support for additional ArcAB functionality in this context is explored. Lastly, ArcAB-controlled cellular processes with relevance to infection are assessed.
Collapse
Affiliation(s)
- Aric N. Brown
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Mark T. Anderson
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Michael A. Bachman
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pathology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Harry L. T. Mobley
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
8
|
Jindal S, Iyer MS, Jyoti P, Masakapalli SK, Venkatesh KV. Mutants lacking global regulators, fis and arcA, in Escherichia coli enhanced growth fitness under acetate metabolism by pathway reprogramming. Appl Microbiol Biotechnol 2022; 106:3231-3243. [PMID: 35416487 DOI: 10.1007/s00253-022-11890-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 11/25/2022]
Abstract
Global regulatory transcription factors play a significant role in controlling microbial metabolism under genetic and environmental perturbations. A system-level effect of carbon sources such as acetate on microbial metabolism under disrupted global regulators has not been well established. Acetate is one of the major substrates available in various nutrient niches such as the mammalian gut and a keto diet. A substantial amount of acetate gets secreted in aerobic metabolism. Therefore, investigating the study on acetate metabolism is highly significant. It is known that the global regulators fis and arcA regulate acetate uptake genes in E. coli under glucose conditions. This study deciphered the growth and flux distribution of E. coli transcription regulatory knockouts Δfis, ΔarcA and double deletion mutant, ΔarcAΔfis under acetate using 13C-metabolic flux analysis (MFA), which has not been investigated before. We observed that the mutants exhibited an expeditious growth rate (~ 1.2-1.6-fold) with a proportionate increase in acetate uptake rates compared to the wild type. 13C-MFA displayed the distinct metabolic reprogramming of intracellular fluxes via the TCA cycle, anaplerotic pathway and gluconeogenesis, which conferred an advantage of a faster growth rate with better carbon usage in all the mutants. This resulted in higher metabolic fluxes through the TCA cycle (~ 18-90%), lower gluconeogenesis (~ 15-35%) and higher CO2 and ATP production with the proportional increase in growth rate. The study reveals a novel insight by stating the sub-optimality of the wild-type strain grown under acetate substrate aerobically. These mutant strains efficiently oxidize acetate, thus acting as potential candidates for the biosynthesis of isoprenoids, biofuels, vitamins and various pharmaceutical products.Key Points• Mutants exhibited a better balance between energy and precursor synthesis than WT.• Leveraged in the unravelling of regulatory control under various nutrient shifts.• Metabolic readjustment resulted in optimal biomass requirement and faster growth.
Collapse
Affiliation(s)
- Shikha Jindal
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Mahesh S Iyer
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India
| | - Poonam Jyoti
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, 175075, India
| | - Shyam Kumar Masakapalli
- BioX Center, School of Basic Sciences, Indian Institute of Technology Mandi, Kamand, 175075, India.
| | - K V Venkatesh
- Department of Chemical Engineering, Indian Institute of Technology Bombay, Powai, Mumbai, 400076, India.
| |
Collapse
|
9
|
The Escherichia coli Amino Acid Uptake Protein CycA: Regulation of Its Synthesis and Practical Application in l-Isoleucine Production. Microorganisms 2022; 10:microorganisms10030647. [PMID: 35336222 PMCID: PMC8948829 DOI: 10.3390/microorganisms10030647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/11/2022] [Accepted: 03/15/2022] [Indexed: 02/04/2023] Open
Abstract
Amino acid transport systems perform important physiological functions; their role should certainly be considered in microbial production of amino acids. Typically, in the context of metabolic engineering, efforts are focused on the search for and application of specific amino acid efflux pumps. However, in addition, importers can also be used to improve the industrial process as a whole. In this study, the protein CycA, which is known for uptake of nonpolar amino acids, was characterized from the viewpoint of regulating its expression and range of substrates. We prepared a cycA-overexpressing strain and found that it exhibited high sensitivity to branched-chain amino acids and their structural analogues, with relatively increased consumption of these amino acids, suggesting that they are imported by CycA. The expression of cycA was found to be dependent on the extracellular concentrations of substrate amino acids. The role of some transcription factors in cycA expression, including of Lrp and Crp, was studied using a reporter gene construct. Evidence for the direct binding of Crp to the cycA regulatory region was obtained using a gel-retardation assay. The enhanced import of named amino acids due to cycA overexpression in the l-isoleucine-producing strain resulted in a significant reduction in the generation of undesirable impurities. This work demonstrates the importance of uptake systems with respect to their application in metabolic engineering.
Collapse
|
10
|
Chiang CJ, Hu RC, Huang ZC, Chao YP. Production of Succinic Acid from Amino Acids in Escherichia coli. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8172-8178. [PMID: 34282894 DOI: 10.1021/acs.jafc.1c02958] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Glutamate (Glu) and aspartate (Asp) are the most abundant amino acids in various sources of protein waste, recognized as a sustainable resource. In this study, Escherichia coli was engineered to produce succinic acid (SA) from Glu and Asp. Succinate dehydrogenase involved in the tricarboxylic acid was inactivated in the Glu-utilizing strain. To grow on Asp, this mutant strain was subjected to metabolic evolution. One resulting strain capable of metabolizing Asp was further evolved to improve the growth of Glu and Asp. After the deletion of arcA, the resulting strain was employed for the aerobic production of SA. The shake-flask culture was conducted with the minimal medium containing 10 g/L Glu and 10 g/L Asp. Finally, it resulted in the SA production, with a titer, the molar yield, and productivity reaching 72.8 mM (i.e., 8.6 g/L), 0.54 (ca. 75.4% of the theoretical yield), and 0.66 g/L/h, respectively. Overall, this study opens up a new avenue of the biorefinery platform based on renewable amino acids.
Collapse
Affiliation(s)
- Chung-Jen Chiang
- Department of Medical Laboratory Science and Biotechnology, China Medical University, No. 91, Hsueh-Shih Road, Taichung 40402, Taiwan
| | - Ruo-Ciao Hu
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Zih-Ci Huang
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
| | - Yun-Peng Chao
- Department of Chemical Engineering, Feng Chia University 100 Wenhwa Road, Taichung 40724, Taiwan
- Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
- Department of Food Nutrition and Health Biotechnology, Asia University, Taichung 41354, Taiwan
| |
Collapse
|
11
|
Anzai T, Imamura S, Ishihama A, Shimada T. Expanded roles of pyruvate-sensing PdhR in transcription regulation of the Escherichia coli K-12 genome: fatty acid catabolism and cell motility. Microb Genom 2020; 6. [PMID: 32975502 PMCID: PMC7660256 DOI: 10.1099/mgen.0.000442] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
The transcription factor PdhR has been recognized as the master regulator of the pyruvate catabolism pathway in Escherichia coli, including both NAD-linked oxidative decarboxylation of pyruvate to acetyl-CoA by PDHc (pyruvate dehydrogenase complex) and respiratory electron transport of NADH to oxygen by Ndh-CyoABCD enzymes. To identify the whole set of regulatory targets under the control of pyruvate-sensing PdhR, we performed genomic SELEX (gSELEX) screening in vitro. A total of 35 PdhR-binding sites were identified along the E. coli K-12 genome, including previously identified targets. Possible involvement of PdhR in regulation of the newly identified target genes was analysed in detail by gel shift assay, RT-qPCR and Northern blot analysis. The results indicated the participation of PdhR in positive regulation of fatty acid degradation genes and negative regulation of cell mobility genes. In fact, GC analysis indicated an increase in free fatty acids in the mutant lacking PdhR. We propose that PdhR is a bifunctional global regulator for control of a total of 16–23 targets, including not only the genes involved in central carbon metabolism but also some genes for the surrounding pyruvate-sensing cellular pathways such as fatty acid degradation and flagella formation. The activity of PdhR is controlled by pyruvate, the key node between a wide variety of metabolic pathways, including generation of metabolic energy and cell building blocks.
Collapse
Affiliation(s)
- Takumi Anzai
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| | - Sousuke Imamura
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Yokohama, Kanagawa, Japan
| | - Akira Ishihama
- Micro-Nanotechnology Research Center, Hosei University, Koganei, Tokyo, Japan
| | - Tomohiro Shimada
- School of Agriculture, Meiji University, Kawasaki, Kanagawa, Japan
| |
Collapse
|
12
|
Arroyo-Pérez EE, González-Cerón G, Soberón-Chávez G, Georgellis D, Servín-González L. A Novel Two-Component System, Encoded by the s co5282/ sco5283 Genes, Affects Streptomyces coelicolor Morphology in Liquid Culture. Front Microbiol 2019; 10:1568. [PMID: 31354667 PMCID: PMC6629963 DOI: 10.3389/fmicb.2019.01568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Accepted: 06/24/2019] [Indexed: 01/23/2023] Open
Abstract
Streptomyces are mycelial bacteria adapted to grow in soil. They have become important producers of biomolecules with medical applications, but their growth in industrial fermenters is challenged by their peculiar morphology in liquid culture: the hyphae tend to clump and grow as large pellets, which are oxygen- and nutrient-limited, grow slowly and present diminished protein production. Here, by implementing an experimental evolution strategy, a S. coelicolor strain, 2L12, with dispersed morphology and reduced pellet size in liquid culture and no defects in either differentiation or secondary metabolism was selected. Genome sequencing revealed a single amino acid substitution in a sensor kinase, Sco5282, of unknown function to be responsible for the morphological changes. Moreover, genetic and biochemical scrutiny identified Sco5283 as the cognate response regulator and demonstrated that the acquired mutation activates this two-component system. Finally, transcriptomic analysis of the mutant strain revealed changes in expression of genes involved in central processes such as glycolysis, gluconeogenesis, stress-signaling pathways, proteins secretion and cell envelope metabolism. Thus a novel two-component system is proposed to play a key role in the control of Streptomyces extracellular metabolism.
Collapse
Affiliation(s)
- Erick Eligio Arroyo-Pérez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriela González-Cerón
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gloria Soberón-Chávez
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Dimitris Georgellis
- Instituto de Fisiología Celular, Departamento de Genética Molecular, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Luis Servín-González
- Instituto de Investigaciones Biomédicas, Departamento de Biología Molecular y Biotecnología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
13
|
A Novel Redox-Sensing Histidine Kinase That Controls Carbon Catabolite Repression in Azoarcus sp. CIB. mBio 2019; 10:mBio.00059-19. [PMID: 30967457 PMCID: PMC6456745 DOI: 10.1128/mbio.00059-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
We have identified and characterized the AccS multidomain sensor kinase that mediates the activation of the AccR master regulator involved in carbon catabolite repression (CCR) of the anaerobic catabolism of aromatic compounds in Azoarcus sp. CIB. A truncated AccS protein that contains only the soluble C-terminal autokinase module (AccS') accounts for the succinate-dependent CCR control. In vitro assays with purified AccS' revealed its autophosphorylation, phosphotransfer from AccS'∼P to the Asp60 residue of AccR, and the phosphatase activity toward its phosphorylated response regulator, indicating that the equilibrium between the kinase and phosphatase activities of AccS' may control the phosphorylation state of the AccR transcriptional regulator. Oxidized quinones, e.g., ubiquinone 0 and menadione, switched the AccS' autokinase activity off, and three conserved Cys residues, which are not essential for catalysis, are involved in such inhibition. Thiol oxidation by quinones caused a change in the oligomeric state of the AccS' dimer resulting in the formation of an inactive monomer. This thiol-based redox switch is tuned by the cellular energy state, which can change depending on the carbon source that the cells are using. This work expands the functional diversity of redox-sensitive sensor kinases, showing that they can control new bacterial processes such as CCR of the anaerobic catabolism of aromatic compounds. The AccSR two-component system is conserved in the genomes of some betaproteobacteria, where it might play a more general role in controlling the global metabolic state according to carbon availability.IMPORTANCE Two-component signal transduction systems comprise a sensor histidine kinase and its cognate response regulator, and some have evolved to sense and convert redox signals into regulatory outputs that allow bacteria to adapt to the altered redox environment. The work presented here expands knowledge of the functional diversity of redox-sensing kinases to control carbon catabolite repression (CCR), a phenomenon that allows the selective assimilation of a preferred compound among a mixture of several carbon sources. The newly characterized AccS sensor kinase is responsible for the phosphorylation and activation of the AccR master regulator involved in CCR of the anaerobic degradation of aromatic compounds in the betaproteobacterium Azoarcus sp. CIB. AccS seems to have a thiol-based redox switch that is modulated by the redox state of the quinone pool. The AccSR system is conserved in several betaproteobacteria, where it might play a more general role controlling their global metabolic state.
Collapse
|
14
|
Retapamulin-Assisted Ribosome Profiling Reveals the Alternative Bacterial Proteome. Mol Cell 2019; 74:481-493.e6. [PMID: 30904393 DOI: 10.1016/j.molcel.2019.02.017] [Citation(s) in RCA: 114] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/25/2019] [Accepted: 02/12/2019] [Indexed: 12/21/2022]
Abstract
The use of alternative translation initiation sites enables production of more than one protein from a single gene, thereby expanding the cellular proteome. Although several such examples have been serendipitously found in bacteria, genome-wide mapping of alternative translation start sites has been unattainable. We found that the antibiotic retapamulin specifically arrests initiating ribosomes at start codons of the genes. Retapamulin-enhanced Ribo-seq analysis (Ribo-RET) not only allowed mapping of conventional initiation sites at the beginning of the genes, but strikingly, it also revealed putative internal start sites in a number of Escherichia coli genes. Experiments demonstrated that the internal start codons can be recognized by the ribosomes and direct translation initiation in vitro and in vivo. Proteins, whose synthesis is initiated at internal in-frame and out-of-frame start sites, can be functionally important and contribute to the "alternative" bacterial proteome. The internal start sites may also play regulatory roles in gene expression.
Collapse
|
15
|
Evolution of gene knockout strains of E. coli reveal regulatory architectures governed by metabolism. Nat Commun 2018; 9:3796. [PMID: 30228271 PMCID: PMC6143558 DOI: 10.1038/s41467-018-06219-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Accepted: 07/27/2018] [Indexed: 01/13/2023] Open
Abstract
Biological regulatory network architectures are multi-scale in their function and can adaptively acquire new functions. Gene knockout (KO) experiments provide an established experimental approach not just for studying gene function, but also for unraveling regulatory networks in which a gene and its gene product are involved. Here we study the regulatory architecture of Escherichia coli K-12 MG1655 by applying adaptive laboratory evolution (ALE) to metabolic gene KO strains. Multi-omic analysis reveal a common overall schema describing the process of adaptation whereby perturbations in metabolite concentrations lead regulatory networks to produce suboptimal states, whose function is subsequently altered and re-optimized through acquisition of mutations during ALE. These results indicate that metabolite levels, through metabolite-transcription factor interactions, have a dominant role in determining the function of a multi-scale regulatory architecture that has been molded by evolution. The function of metabolic genes in the context of regulatory networks is not well understood. Here, the authors investigate the adaptive responses of E. coli after knockout of metabolic genes and highlight the influence of metabolite levels in the evolution of regulatory function.
Collapse
|
16
|
Teran-Melo JL, Peña-Sandoval GR, Silva-Jimenez H, Rodriguez C, Alvarez AF, Georgellis D. Routes of phosphoryl group transfer during signal transmission and signal decay in the dimeric sensor histidine kinase ArcB. J Biol Chem 2018; 293:13214-13223. [PMID: 29945971 PMCID: PMC6109937 DOI: 10.1074/jbc.ra118.003910] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/14/2018] [Indexed: 11/06/2022] Open
Abstract
The Arc (anoxic redox control) two-component system of Escherichia coli, comprising ArcA as the response regulator and ArcB as the sensor histidine kinase, modulates the expression of numerous genes in response to respiratory growth conditions. Under reducing growth conditions, ArcB autophosphorylates at the expense of ATP, and transphosphorylates ArcA via a His292 → Asp576 → His717 → Asp54 phosphorelay, whereas under oxidizing growth conditions, ArcB catalyzes the dephosphorylation of ArcA-P by a reverse Asp54 → His717 → Asp576 → Pi phosphorelay. However, the exact phosphoryl group transfer routes and the molecular mechanisms determining their directions are unclear. Here, we show that, during signal propagation, the His292 → Asp576 and Asp576 → His717 phosphoryl group transfers within ArcB dimers occur intra- and intermolecularly, respectively. Moreover, we report that, during signal decay, the phosphoryl group transfer from His717 to Asp576 takes place intramolecularly. In conclusion, we present a mechanism that dictates the direction of the phosphoryl group transfer within ArcB dimers and that enables the discrimination of the kinase and phosphatase activities of ArcB.
Collapse
Affiliation(s)
- Juan L Teran-Melo
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Gabriela R Peña-Sandoval
- the Unidad Académica de Agricultura, Universidad Autónoma de Nayarit, 63190 Tepic, Nayarit, Mexico, and
| | - Hortencia Silva-Jimenez
- the Area de Oceanografía Química, Instituto de Investigaciones Oceanológicas, Universidad Autónoma de Baja California, 22860 Ensenada, Baja California, Mexico
| | - Claudia Rodriguez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Adrián F Alvarez
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico
| | - Dimitris Georgellis
- From the Departamento de Genética Molecular, Instituto de Fisiología Celular Universidad Nacional Autónoma de México, 04510 Mexico City, Mexico,
| |
Collapse
|
17
|
Propolis potentiates the effect of cranberry (Vaccinium macrocarpon) against the virulence of uropathogenic Escherichia coli. Sci Rep 2018; 8:10706. [PMID: 30013052 PMCID: PMC6048107 DOI: 10.1038/s41598-018-29082-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2017] [Accepted: 06/29/2018] [Indexed: 01/08/2023] Open
Abstract
Uropathogenic Escherichia coli (UPEC), the most prevalent bacteria isolated in urinary tract infections (UTI), is now frequently resistant to antibiotics used to treat this pathology. The antibacterial properties of cranberry and propolis could reduce the frequency of UTIs and thus the use of antibiotics, helping in the fight against the emergence of antibiotic resistance. Transcriptomic profiles of a clinical UPEC strain exposed to cranberry proanthocyanidins alone (190 µg/mL), propolis alone (102.4 µg/mL) and a combination of both were determined. Cranberry alone, but more so cranberry + propolis combined, modified the expression of genes involved in different essential pathways: down-expression of genes involved in adhesion, motility, and biofilm formation, and up-regulation of genes involved in iron metabolism and stress response. Phenotypic assays confirmed the decrease of motility (swarming and swimming) and biofilm formation (early formation and formed biofilm). This study showed for the first time that propolis potentiated the effect of cranberry proanthocyanidins on adhesion, motility, biofilm formation, iron metabolism and stress response of UPEC. Cranberry + propolis treatment could represent an interesting new strategy to prevent recurrent UTI.
Collapse
|
18
|
Wareham LK, McLean S, Begg R, Rana N, Ali S, Kendall JJ, Sanguinetti G, Mann BE, Poole RK. The Broad-Spectrum Antimicrobial Potential of [Mn(CO) 4(S 2CNMe(CH 2CO 2H))], a Water-Soluble CO-Releasing Molecule (CORM-401): Intracellular Accumulation, Transcriptomic and Statistical Analyses, and Membrane Polarization. Antioxid Redox Signal 2018; 28:1286-1308. [PMID: 28816060 PMCID: PMC5905950 DOI: 10.1089/ars.2017.7239] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide (CO)-releasing molecules (CORMs) are candidates for animal and antimicrobial therapeutics. We aimed to probe the antimicrobial potential of a novel manganese CORM. RESULTS [Mn(CO)4S2CNMe(CH2CO2H)], CORM-401, inhibits growth of Escherichia coli and several antibiotic-resistant clinical pathogens. CORM-401 releases CO that binds oxidases in vivo, but is an ineffective respiratory inhibitor. Extensive CORM accumulation (assayed as intracellular manganese) accompanies antimicrobial activity. CORM-401 stimulates respiration, polarizes the cytoplasmic membrane in an uncoupler-like manner, and elicits loss of intracellular potassium and zinc. Transcriptomics and mathematical modeling of transcription factor activities reveal a multifaceted response characterized by elevated expression of genes encoding potassium uptake, efflux pumps, and envelope stress responses. Regulators implicated in stress responses (CpxR), respiration (Arc, Fnr), methionine biosynthesis (MetJ), and iron homeostasis (Fur) are significantly disturbed. Although CORM-401 reduces bacterial growth in combination with cefotaxime and trimethoprim, fractional inhibition studies reveal no interaction. INNOVATION We present the most detailed microbiological analysis yet of a CORM that is not a ruthenium carbonyl. We demonstrate CO-independent striking effects on the bacterial membrane and global transcriptomic responses. CONCLUSIONS CORM-401, contrary to our expectations of a CO delivery vehicle, does not inhibit respiration. It accumulates in the cytoplasm, acts like an uncoupler in disrupting cytoplasmic ion balance, and triggers multiple effects, including osmotic stress and futile respiration. Rebound Track: This work was rejected during standard peer review and rescued by rebound peer review (Antioxid Redox Signal 16: 293-296, 2012) with the following serving as open reviewers: Miguel Aon, Giancarlo Biagini, James Imlay, and Nigel Robinson. Antioxid. Redox Signal. 28, 1286-1308.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom .,2 School of Science and Technology , Nottingham Trent University, Nottingham, United Kingdom
| | - Ronald Begg
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Namrata Rana
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - John J Kendall
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Guido Sanguinetti
- 3 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Brian E Mann
- 4 Department of Chemistry, The University of Sheffield , Sheffield, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
19
|
Basan M. Resource allocation and metabolism: the search for governing principles. Curr Opin Microbiol 2018; 45:77-83. [PMID: 29544124 DOI: 10.1016/j.mib.2018.02.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 01/30/2018] [Accepted: 02/19/2018] [Indexed: 11/28/2022]
Abstract
Elucidating strategies of resource allocation and metabolism is crucial for a better understanding of microbial phenotypes. In particular, uncovering the governing principles underlying these processes would be a crucial step for achieving a central aim of systems microbiology, which is to quantitatively predict phenotypes of microbial cells or entire populations in diverse conditions. Here, some of the key concepts for understanding cellular resource allocation and metabolism that have been suggested over the past years are reviewed. In particular, recent experimental studies that have shown how phenotypic patterns from orthogonal genetic and environmental perturbations can help to differentiate between competing hypotheses and their respective predictions are discussed. Phenomenological models have proven to be a valuable addition to genome-scale models, capable of making quantitative predictions with only few parameters and having aided the identification of molecular mechanisms.
Collapse
Affiliation(s)
- Markus Basan
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
20
|
Basan M, Hui S, Williamson JR. ArcA overexpression induces fermentation and results in enhanced growth rates of E. coli. Sci Rep 2017; 7:11866. [PMID: 28928483 PMCID: PMC5605494 DOI: 10.1038/s41598-017-12144-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2017] [Accepted: 09/04/2017] [Indexed: 12/20/2022] Open
Abstract
Overflow metabolism in the presence of oxygen occurs at fast growth rates in a wide range of organisms including bacteria, yeast and cancer cells and plays an important role in biotechnology during production of proteins or metabolic compounds. As recently suggested, overflow metabolism can be understood in terms of proteome allocation, since fermentation has lower proteome cost for energy production than respiration. Here, we demonstrate that ArcA overexpression in aerobic conditions, results in downregulation of respiratory pathways and enhanced growth rates on glycolytic substrates of E. coli, coinciding with acetate excretion and increased carbon uptake rates. These results suggest that fermentation enables faster growth and demonstrate that fermentation on many glycolytic carbon sources is not limited by carbon uptake. Hence, these findings are difficult to reconcile with many alternative hypotheses that have been proposed for the origin of overflow metabolism and the growth rate dependence of fermentation and respiration, which are based on limited capacity of respiration or limitations in uptake rates and catabolic pathways. Instead, as suggested by increased lag phases of ArcA overexpression strains, respiratory energy metabolism may be related to a general preparatory response, observed for decreasing growth rates, but with limited advantages for maximizing steady-state growth rate.
Collapse
Affiliation(s)
- Markus Basan
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
| | - Sheng Hui
- Department of Physics, University of California at San Diego, La Jolla, CA, 92093, USA
| | - James R Williamson
- Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA
| |
Collapse
|
21
|
Rodríguez-González M, Kawasaki L, Velázquez-Zavala N, Domínguez-Martín E, Trejo-Medecigo A, Martagón N, Espinoza-Simón E, Vázquez-Ibarra A, Ongay-Larios L, Georgellis D, de Nadal E, Posas F, Coria R. Role of the Sln1-phosphorelay pathway in the response to hyperosmotic stress in the yeastKluyveromyces lactis. Mol Microbiol 2017; 104:822-836. [DOI: 10.1111/mmi.13664] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/07/2017] [Indexed: 11/26/2022]
Affiliation(s)
- Miriam Rodríguez-González
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Laura Kawasaki
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Nancy Velázquez-Zavala
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Eunice Domínguez-Martín
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Abraham Trejo-Medecigo
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Natalia Martagón
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Emilio Espinoza-Simón
- Departamento de Bioquímica; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Araceli Vázquez-Ibarra
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Laura Ongay-Larios
- Unidad de Biología Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Dimitris Georgellis
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| | - Eulàlia de Nadal
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona E-08003 Spain
| | - Francesc Posas
- Cell Signaling Research Group, Departament de Ciències Experimentals i de la Salut; Universitat Pompeu Fabra; Barcelona E-08003 Spain
| | - Roberto Coria
- Departamento de Genética Molecular; Instituto de Fisiología Celular, Universidad Nacional Autónoma de México; México D.F. México
| |
Collapse
|
22
|
Wareham LK, Begg R, Jesse HE, Van Beilen JWA, Ali S, Svistunenko D, McLean S, Hellingwerf KJ, Sanguinetti G, Poole RK. Carbon Monoxide Gas Is Not Inert, but Global, in Its Consequences for Bacterial Gene Expression, Iron Acquisition, and Antibiotic Resistance. Antioxid Redox Signal 2016; 24:1013-28. [PMID: 26907100 PMCID: PMC4921903 DOI: 10.1089/ars.2015.6501] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
AIMS Carbon monoxide is a respiratory poison and gaseous signaling molecule. Although CO-releasing molecules (CORMs) deliver CO with temporal and spatial specificity in mammals, and are proven antimicrobial agents, we do not understand the modes of CO toxicity. Our aim was to explore the impact of CO gas per se, without intervention of CORMs, on bacterial physiology and gene expression. RESULTS We used tightly controlled chemostat conditions and integrated transcriptomic datasets with statistical modeling to reveal the global effects of CO. CO is known to inhibit bacterial respiration, and we found expression of genes encoding energy-transducing pathways to be significantly affected via the global regulators, Fnr, Arc, and PdhR. Aerobically, ArcA-the response regulator-is transiently phosphorylated and pyruvate accumulates, mimicking anaerobiosis. Genes implicated in iron acquisition, and the metabolism of sulfur amino acids and arginine, are all perturbed. The global iron-related changes, confirmed by modulation of activity of the transcription factor Fur, may underlie enhanced siderophore excretion, diminished intracellular iron pools, and the sensitivity of CO-challenged bacteria to metal chelators. Although CO gas (unlike H2S and NO) offers little protection from antibiotics, a ruthenium CORM is a potent adjuvant of antibiotic activity. INNOVATION This is the first detailed exploration of global bacterial responses to CO, revealing unexpected targets with implications for employing CORMs therapeutically. CONCLUSION This work reveals the complexity of bacterial responses to CO and provides a basis for understanding the impacts of CO from CORMs, heme oxygenase activity, or environmental sources. Antioxid. Redox Signal. 24, 1013-1028.
Collapse
Affiliation(s)
- Lauren K Wareham
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Ronald Begg
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Helen E Jesse
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Johan W A Van Beilen
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Salar Ali
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Dimitri Svistunenko
- 4 Biomedical EPR Facility, School of Biological Sciences, University of Essex , Colchester, United Kingdom
| | - Samantha McLean
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- 3 Molecular Microbial Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam , Amsterdam, The Netherlands
| | - Guido Sanguinetti
- 2 School of Informatics, The University of Edinburgh , Edinburgh, United Kingdom
| | - Robert K Poole
- 1 Department of Molecular Biology and Biotechnology, The University of Sheffield , Sheffield, United Kingdom
| |
Collapse
|
23
|
Bettenbrock K, Bai H, Ederer M, Green J, Hellingwerf KJ, Holcombe M, Kunz S, Rolfe MD, Sanguinetti G, Sawodny O, Sharma P, Steinsiek S, Poole RK. Towards a systems level understanding of the oxygen response of Escherichia coli. Adv Microb Physiol 2014; 64:65-114. [PMID: 24797925 DOI: 10.1016/b978-0-12-800143-1.00002-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Escherichia coli is a facultatively anaerobic bacterium. With glucose if no external electron acceptors are available, ATP is produced by substrate level phosphorylation. The intracellular redox balance is maintained by mixed-acid fermentation, that is, the production and excretion of several organic acids. When oxygen is available, E. coli switches to aerobic respiration to achieve redox balance and optimal energy conservation by proton translocation linked to electron transfer. The switch between fermentative and aerobic respiratory growth is driven by extensive changes in gene expression and protein synthesis, resulting in global changes in metabolic fluxes and metabolite concentrations. This oxygen response is determined by the interaction of global and local genetic regulatory mechanisms, as well as by enzymatic regulation. The response is affected by basic physical constraints such as diffusion, thermodynamics and the requirement for a balance of carbon, electrons and energy (predominantly the proton motive force and the ATP pool). A comprehensive systems level understanding of the oxygen response of E. coli requires the integrated interpretation of experimental data that are pertinent to the multiple levels of organization that mediate the response. In the pan-European venture, Systems Biology of Microorganisms (SysMO) and specifically within the project Systems Understanding of Microbial Oxygen Metabolism (SUMO), regulator activities, gene expression, metabolite levels and metabolic flux datasets were obtained using a standardized and reproducible chemostat-based experimental system. These different types and qualities of data were integrated using mathematical models. The approach described here has revealed a much more detailed picture of the aerobic-anaerobic response, especially for the environmentally critical microaerobic range that is located between unlimited oxygen availability and anaerobiosis.
Collapse
Affiliation(s)
- Katja Bettenbrock
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany.
| | - Hao Bai
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Michael Ederer
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Jeffrey Green
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Klaas J Hellingwerf
- Swammerdam Institute for Life Sciences, University of Amsterdam, Amsterdam, The Netherlands
| | - Michael Holcombe
- Department of Computer Science, The University of Sheffield, Sheffield, United Kingdom
| | - Samantha Kunz
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Matthew D Rolfe
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Guido Sanguinetti
- School of Informatics, University of Edinburgh, Edinburgh, United Kingdom
| | - Oliver Sawodny
- Institute for System Dynamics, University of Stuttgart, Stuttgart, Germany
| | - Poonam Sharma
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| | - Sonja Steinsiek
- Max Planck Institute for Dynamics of Complex Technical Systems, Magdeburg, Germany
| | - Robert K Poole
- Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
24
|
Los sistemas de dos componentes: circuitos moleculares versátiles. TIP REVISTA ESPECIALIZADA EN CIENCIAS QUÍMICO-BIOLÓGICAS 2014. [DOI: 10.1016/s1405-888x(14)70320-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
25
|
Park DM, Akhtar MS, Ansari AZ, Landick R, Kiley PJ. The bacterial response regulator ArcA uses a diverse binding site architecture to regulate carbon oxidation globally. PLoS Genet 2013; 9:e1003839. [PMID: 24146625 PMCID: PMC3798270 DOI: 10.1371/journal.pgen.1003839] [Citation(s) in RCA: 112] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 08/13/2013] [Indexed: 12/02/2022] Open
Abstract
Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ(70)-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis.
Collapse
Affiliation(s)
- Dan M. Park
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Md. Sohail Akhtar
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Aseem Z. Ansari
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Department of Bacteriology; University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Patricia J. Kiley
- Department of Biomolecular Chemistry, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| |
Collapse
|
26
|
Lynnes T, Prüss BM, Samanta P. Acetate metabolism and Escherichia coli biofilm: new approaches to an old problem. FEMS Microbiol Lett 2013; 344:95-103. [PMID: 23651469 DOI: 10.1111/1574-6968.12174] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2013] [Revised: 03/29/2013] [Accepted: 05/04/2013] [Indexed: 10/26/2022] Open
Abstract
Current antibiotics continue to lose effectiveness for infectious diseases, especially in cases where the bacteria from a biofilm. This review article summarizes control mechanisms for bacterial biofilm, with an emphasis on the modification of signal transduction pathways, such as quorum sensing and two-component signaling, by externally added metabolic intermediates. As a link between central metabolism and signal transduction, we discuss the activation of two-component response regulators by activated acetate intermediates in response to signals from the environment. These signals constitute 'nutrients' for the bacteria in most cases. Depending on the identity of the nutrient, biofilm amounts may be reduced. The nutrient may then be used for the development of both novel prevention and treatment options for biofilm-associated infectious diseases.
Collapse
Affiliation(s)
- Ty Lynnes
- Department of Veterinary and Microbiological Sciences, North Dakota State University, Fargo, ND 58108-6050, USA
| | | | | |
Collapse
|
27
|
Ubiquinone and menaquinone electron carriers represent the yin and yang in the redox regulation of the ArcB sensor kinase. J Bacteriol 2013; 195:3054-61. [PMID: 23645604 DOI: 10.1128/jb.00406-13] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
The Arc two-component system, comprising the ArcB sensor kinase and the ArcA response regulator, modulates the expression of numerous genes in response to respiratory growth conditions. Under aerobic growth conditions, the ubiquinone electron carriers were proposed to silence the kinase activity of ArcB by oxidizing two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we confirm the role of the ubiquinone electron carriers as the silencing signal of ArcB in vivo, we show that the redox potential of ArcB is about -41 mV, and we demonstrate that the menaquinols are required for proper ArcB activation upon a shift from aerobic to anaerobic growth conditions. Thus, an essential link in the Arc signal transduction pathway connecting the redox state of the quinone pool to the transcriptional apparatus is elucidated.
Collapse
|
28
|
Manipulation of the anoxic metabolism in Escherichia coli by ArcB deletion variants in the ArcBA two-component system. Appl Environ Microbiol 2012; 78:8784-94. [PMID: 23064346 DOI: 10.1128/aem.02558-12] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Bioprocesses conducted under conditions with restricted O(2) supply are increasingly exploited for the synthesis of reduced biochemicals using different biocatalysts. The model facultative anaerobe Escherichia coli has elaborate sensing and signal transduction mechanisms for redox control in response to the availability of O(2) and other electron acceptors. The ArcBA two-component system consists of ArcB, a membrane-associated sensor kinase, and ArcA, the cognate response regulator. The tripartite hybrid kinase ArcB possesses a transmembrane, a PAS, a primary transmitter (H1), a receiver (D1), and a phosphotransfer (H2) domain. Metabolic fluxes were compared under anoxic conditions in a wild-type E. coli strain, its ΔarcB derivative, and two partial arcB deletion mutants in which ArcB lacked either the H1 domain or the PAS-H1-D1 domains. These analyses revealed that elimination of different segments in ArcB determines a distinctive distribution of d-glucose catabolic fluxes, different from that observed in the ΔarcB background. Metabolite profiles, enzyme activity levels, and gene expression patterns were also investigated in these strains. Relevant alterations were observed at the P-enol-pyruvate/pyruvate and acetyl coenzyme A metabolic nodes, and the formation of reduced fermentation metabolites, such as succinate, d-lactate, and ethanol, was favored in the mutant strains to different extents compared to the wild-type strain. These phenotypic traits were associated with altered levels of the enzymatic activities operating at these nodes, as well as with elevated NADH/NAD(+) ratios. Thus, targeted modification of global regulators to obtain different metabolic flux distributions under anoxic conditions is emerging as an attractive tool for metabolic engineering purposes.
Collapse
|
29
|
ArcA and AppY antagonize IscR repression of hydrogenase-1 expression under anaerobic conditions, revealing a novel mode of O2 regulation of gene expression in Escherichia coli. J Bacteriol 2012; 194:6892-9. [PMID: 23065979 DOI: 10.1128/jb.01757-12] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the Escherichia coli hydrogenase-1 operon (hyaABCDEF) is increased by the transcription factors ArcA and AppY under anaerobic growth conditions. However, IscR, which represses transcription of the hyaA promoter (P(hyaA)) under aerobic conditions, was not known to repress transcription of this promoter under anaerobic conditions. Here, we report that ArcA and AppY increase P(hyaA) expression under anaerobic conditions by antagonizing IscR binding at P(hyaA), since IscR repression is observed when either ArcA or AppY is eliminated. The ability of ArcA and AppY to act as antirepressors of IscR repression of P(hyaA) depended on IscR levels, suggesting that IscR competes with ArcA and/or AppY for binding. In support of this competition model, electrophoretic mobility shift assays and DNase I footprinting showed that the ArcA and IscR binding sites overlap and that binding of ArcA and IscR is mutually exclusive. Unexpectedly, IscR with a C92A mutation (IscR-C92A), which mimics the clusterless form of the protein that is present predominantly under aerobic conditions, was a better repressor under anaerobic conditions of both P(hyaA) and a constitutive promoter containing the IscR binding site from P(hyaA) than wild-type IscR, which is predominantly in the [2Fe-2S] form under anaerobic conditions. This observation could not be explained by differences in DNA binding affinities or IscR levels, so we conclude that [2Fe-2S]-IscR is a weaker repressor of P(hyaA) than clusterless IscR. In sum, a combination of ArcA and AppY antirepression of IscR function, lower levels of IscR, and weak repression by [2Fe-2S]-IscR leads to increased P(hyaA) expression under anaerobic conditions.
Collapse
|
30
|
The ArcB leucine zipper domain is required for proper ArcB signaling. PLoS One 2012; 7:e38187. [PMID: 22666479 PMCID: PMC3364231 DOI: 10.1371/journal.pone.0038187] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2012] [Accepted: 05/01/2012] [Indexed: 01/01/2023] Open
Abstract
The Arc two-component system modulates the expression of numerous genes in response to respiratory growth conditions. This system comprises ArcA as the response regulator and ArcB as the sensor kinase. ArcB is a tripartite histidine kinase whose activity is regulated by the oxidation of two cytosol-located redox-active cysteine residues that participate in intermolecular disulfide bond formation. Here, we report that the ArcB protein segment covering residues 70-121, fulfills the molecular characteristics of a leucine zipper containing coiled coil structure. Also, mutational analyses of this segment reveal three different phenotypical effects to be distributed along the coiled coil structure of ArcB, demonstrating that this motif is essential for proper ArcB signaling.
Collapse
|
31
|
Lobstein J, Emrich CA, Jeans C, Faulkner M, Riggs P, Berkmen M. SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb Cell Fact 2012; 11:56. [PMID: 22569138 PMCID: PMC3526497 DOI: 10.1186/1475-2859-11-56] [Citation(s) in RCA: 388] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 05/08/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Production of correctly disulfide bonded proteins to high yields remains a challenge. Recombinant protein expression in Escherichia coli is the popular choice, especially within the research community. While there is an ever growing demand for new expression strains, few strains are dedicated to post-translational modifications, such as disulfide bond formation. Thus, new protein expression strains must be engineered and the parameters involved in producing disulfide bonded proteins must be understood. RESULTS We have engineered a new E. coli protein expression strain named SHuffle, dedicated to producing correctly disulfide bonded active proteins to high yields within its cytoplasm. This strain is based on the trxB gor suppressor strain SMG96 where its cytoplasmic reductive pathways have been diminished, allowing for the formation of disulfide bonds in the cytoplasm. We have further engineered a major improvement by integrating into its chromosome a signal sequenceless disulfide bond isomerase, DsbC. We probed the redox state of DsbC in the oxidizing cytoplasm and evaluated its role in assisting the formation of correctly folded multi-disulfide bonded proteins. We optimized protein expression conditions, varying temperature, induction conditions, strain background and the co-expression of various helper proteins. We found that temperature has the biggest impact on improving yields and that the E. coli B strain background of this strain was superior to the K12 version. We also discovered that auto-expression of substrate target proteins using this strain resulted in higher yields of active pure protein. Finally, we found that co-expression of mutant thioredoxins and PDI homologs improved yields of various substrate proteins. CONCLUSIONS This work is the first extensive characterization of the trxB gor suppressor strain. The results presented should help researchers design the appropriate protein expression conditions using SHuffle strains.
Collapse
|
32
|
Bueno E, Mesa S, Bedmar EJ, Richardson DJ, Delgado MJ. Bacterial adaptation of respiration from oxic to microoxic and anoxic conditions: redox control. Antioxid Redox Signal 2012; 16:819-52. [PMID: 22098259 PMCID: PMC3283443 DOI: 10.1089/ars.2011.4051] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2011] [Revised: 11/16/2011] [Accepted: 11/18/2011] [Indexed: 12/22/2022]
Abstract
Under a shortage of oxygen, bacterial growth can be faced mainly by two ATP-generating mechanisms: (i) by synthesis of specific high-affinity terminal oxidases that allow bacteria to use traces of oxygen or (ii) by utilizing other substrates as final electron acceptors such as nitrate, which can be reduced to dinitrogen gas through denitrification or to ammonium. This bacterial respiratory shift from oxic to microoxic and anoxic conditions requires a regulatory strategy which ensures that cells can sense and respond to changes in oxygen tension and to the availability of other electron acceptors. Bacteria can sense oxygen by direct interaction of this molecule with a membrane protein receptor (e.g., FixL) or by interaction with a cytoplasmic transcriptional factor (e.g., Fnr). A third type of oxygen perception is based on sensing changes in redox state of molecules within the cell. Redox-responsive regulatory systems (e.g., ArcBA, RegBA/PrrBA, RoxSR, RegSR, ActSR, ResDE, and Rex) integrate the response to multiple signals (e.g., ubiquinone, menaquinone, redox active cysteine, electron transport to terminal oxidases, and NAD/NADH) and activate or repress target genes to coordinate the adaptation of bacterial respiration from oxic to anoxic conditions. Here, we provide a compilation of the current knowledge about proteins and regulatory networks involved in the redox control of the respiratory adaptation of different bacterial species to microxic and anoxic environments.
Collapse
Affiliation(s)
- Emilio Bueno
- Estación Experimental del Zaidín, CSIC, Granada, Spain
| | | | | | | | | |
Collapse
|
33
|
Berkmen M. Production of disulfide-bonded proteins in Escherichia coli. Protein Expr Purif 2012; 82:240-51. [DOI: 10.1016/j.pep.2011.10.009] [Citation(s) in RCA: 115] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Revised: 10/24/2011] [Accepted: 10/27/2011] [Indexed: 10/15/2022]
|
34
|
Zaoui C, Overhage J, Löns D, Zimmermann A, Müsken M, Bielecki P, Pustelny C, Becker T, Nimtz M, Häussler S. An orphan sensor kinase controls quinolone signal production via MexT in Pseudomonas aeruginosa. Mol Microbiol 2012; 83:536-47. [PMID: 22168309 DOI: 10.1111/j.1365-2958.2011.07947.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Pseudomonas aeruginosa employs both N-acylhomoserine lactone and 2-alkyl-4(1H)-quinolone (AQ)-mediated interbacterial signalling for the orchestration of a genome-wide gene regulatory network. Despite the many advances that have been made in understanding the target genes of quorum sensing regulation, little is known on how quorum sensing systems are influenced by environmental cues. In this study, we show that AQ production is modulated by an orphan P. aeruginosa sensor kinase. Transcriptional studies of the sensor kinase (MxtR) mutant demonstrated that an induced expression of MexT, a LysR-type transcriptional regulator, largely determined the global transcriptional profile. Thereby, overexpression of the MexT-regulated MexEF-OprN efflux pump led to a delayed expression of the AQ biosynthetic genes and of AQ-dependent virulence factors. Furthermore, we demonstrated that autophosphorylation of MxtR was inhibited by ubiquinone, the central electron carrier of respiration in in vitro experiments. Our results elucidate on a mechanism by which P. aeruginosa senses environmental conditions and adapts by controlling the production of interbacterial AQ signal molecules. A regulatory function of a sensor kinase may indicate that there is a pre-emptive role of adaptation mechanisms that are turned on under distinct environmental conditions and that are important for efficient colonization and pathogenesis.
Collapse
Affiliation(s)
- Caroline Zaoui
- Chronic Pseudomonas Infection Research Group, Helmholtz Center for Infection Research, Braunschweig, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|