1
|
Sahu S, Sahoo S, Sullivan T, O'Sullivan TN, Turan S, Albaugh ME, Burkett S, Tran B, Salomon DS, Kozlov SV, Koehler KR, Jolly MK, Sharan SK. Spatiotemporal modulation of growth factors directs the generation of multilineage mouse embryonic stem cell-derived mammary organoids. Dev Cell 2024; 59:175-186.e8. [PMID: 38159568 PMCID: PMC10872289 DOI: 10.1016/j.devcel.2023.12.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 09/20/2023] [Accepted: 12/06/2023] [Indexed: 01/03/2024]
Abstract
Ectodermal appendages, such as the mammary gland (MG), are thought to have evolved from hair-associated apocrine glands to serve the function of milk secretion. Through the directed differentiation of mouse embryonic stem cells (mESCs), here, we report the generation of multilineage ESC-derived mammary organoids (MEMOs). We adapted the skin organoid model, inducing the dermal mesenchyme to transform into mammary-specific mesenchyme via the sequential activation of Bone Morphogenetic Protein 4 (BMP4) and Parathyroid Hormone-related Protein (PTHrP) and inhibition of hedgehog (HH) signaling. Using single-cell RNA sequencing, we identified gene expression profiles that demonstrate the presence of mammary-specific epithelial cells, fibroblasts, and adipocytes. MEMOs undergo ductal morphogenesis in Matrigel and can reconstitute the MG in vivo. Further, we demonstrate that the loss of function in placode regulators LEF1 and TBX3 in mESCs results in impaired skin and MEMO generation. In summary, our MEMO model is a robust tool for studying the development of ectodermal appendages, and it provides a foundation for regenerative medicine and disease modeling.
Collapse
Affiliation(s)
- Sounak Sahu
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Sarthak Sahoo
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Teresa Sullivan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - T Norene O'Sullivan
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA
| | - Sevilay Turan
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Mary E Albaugh
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Sandra Burkett
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Bao Tran
- Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - David S Salomon
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Serguei V Kozlov
- Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA; Leidos Biomedical Sciences, Inc., Frederick National Laboratory for Cancer Research, Frederick, MD 21702, USA
| | - Karl R Koehler
- Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, MA 02115, USA; Department of Otolaryngology, Department of Plastic & Oral Surgery, and the F.M. Kirby Neurobiology Center, Boston Children's Hospital, Boston, MA 02115, USA
| | - Mohit Kumar Jolly
- Department of Bioengineering, Indian Institute of Science, Bengaluru 560012, India
| | - Shyam K Sharan
- Mouse Cancer Genetics Program (MCGP), Centre for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA; Centre for Advanced Preclinical Research (CAPR), National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
2
|
Gertsenstein M, Mianné J, Teboul L, Nutter LMJ. Targeted Mutations in the Mouse via Embryonic Stem Cells. Methods Mol Biol 2020; 2066:59-82. [PMID: 31512207 DOI: 10.1007/978-1-4939-9837-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Genetic modification of mouse embryonic stem (ES) cells is a powerful technology that enabled the generation of a plethora of mutant mouse lines to study gene function and mammalian biology. Here we describe ES cell culture and transfection techniques used to manipulate the ES cell genome to obtain targeted ES cell clones. We include the standard gene targeting approach as well as the application of the CRISPR/Cas9 system that can improve the efficiency of homologous recombination in ES cells by introducing a double-strand DNA break at the target site.
Collapse
Affiliation(s)
| | - Joffrey Mianné
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, UK
| | - Lydia Teboul
- The Mary Lyon Centre, MRC Harwell Institute, Didcot, Oxon, UK
| | - Lauryl M J Nutter
- The Centre for Phenogenomics (TCP), Toronto, ON, Canada
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, ON, Canada
| |
Collapse
|
3
|
Hoang PT, Chalif JI, Bikoff JB, Jessell TM, Mentis GZ, Wichterle H. Subtype Diversification and Synaptic Specificity of Stem Cell-Derived Spinal Interneurons. Neuron 2019; 100:135-149.e7. [PMID: 30308166 DOI: 10.1016/j.neuron.2018.09.016] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Revised: 07/06/2018] [Accepted: 09/09/2018] [Indexed: 12/25/2022]
Abstract
Neuronal diversification is a fundamental step in the construction of functional neural circuits, but how neurons generated from single progenitor domains acquire diverse subtype identities remains poorly understood. Here we developed an embryonic stem cell (ESC)-based system to model subtype diversification of V1 interneurons, a class of spinal neurons comprising four clades collectively containing dozens of molecularly distinct neuronal subtypes. We demonstrate that V1 subtype diversity can be modified by extrinsic signals. Inhibition of Notch and activation of retinoid signaling results in a switch to MafA clade identity and enriches differentiation of Renshaw cells, a specialized MafA subtype that mediates recurrent inhibition of spinal motor neurons. We show that Renshaw cells are intrinsically programmed to migrate to species-specific laminae upon transplantation and to form subtype-specific synapses with motor neurons. Our results demonstrate that stem cell-derived neuronal subtypes can be used to investigate mechanisms underlying neuronal subtype specification and circuit assembly.
Collapse
Affiliation(s)
- Phuong T Hoang
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation & Regenerative Medicine, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Joshua I Chalif
- Departments of Pathology and Cell Biology and Neurology, Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Jay B Bikoff
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA; Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Thomas M Jessell
- Departments of Neuroscience and Biochemistry and Molecular Biophysics, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - George Z Mentis
- Departments of Pathology and Cell Biology and Neurology, Center for Motor Neuron Biology and Disease, Columbia University Irving Medical Center, New York, NY 10032, USA
| | - Hynek Wichterle
- Departments of Pathology and Cell Biology, Neuroscience, Rehabilitation & Regenerative Medicine, and Neurology, Center for Motor Neuron Biology and Disease, Columbia Stem Cell Initiative, Columbia University Irving Medical Center, New York, NY 10032, USA.
| |
Collapse
|
4
|
Behringer R, Gertsenstein M, Nagy KV, Nagy A. Testing Serum Batches for Mouse Embryonic Stem Cell Culture. Cold Spring Harb Protoc 2017; 2017:pdb.prot092411. [PMID: 29196597 DOI: 10.1101/pdb.prot092411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
The variability in embryonic stem (ES) cell culture is due primarily to serum. Serum is typically produced in large batches from many animals. However, samples may differ depending on the age and diet of the animals, the country of origin, and other factors creating lot-to-lot variations. Some vendors test FBS lots for compatibility with ES cell culture. Many laboratories prefer to test serum batches themselves to identify the lot giving optimal growth. In this protocol, small quantities of specific serum batches are obtained from different suppliers and tested for their ability to support ES cells in an undifferentiated state. A complete test includes the serum batches' influence on plating efficiency, cell morphology, toxicity, and, if possible, their ability to support generation of chimeras.
Collapse
|
5
|
Chojnowski A, Ong PF, Wong ESM, Lim JSY, Mutalif RA, Navasankari R, Dutta B, Yang H, Liow YY, Sze SK, Boudier T, Wright GD, Colman A, Burke B, Stewart CL, Dreesen O. Progerin reduces LAP2α-telomere association in Hutchinson-Gilford progeria. eLife 2015; 4. [PMID: 26312502 PMCID: PMC4565980 DOI: 10.7554/elife.07759] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Accepted: 08/23/2015] [Indexed: 12/12/2022] Open
Abstract
Hutchinson-Gilford progeria (HGPS) is a premature ageing syndrome caused by a mutation in LMNA, resulting in a truncated form of lamin A called progerin. Progerin triggers loss of the heterochromatic marker H3K27me3, and premature senescence, which is prevented by telomerase. However, the mechanism how progerin causes disease remains unclear. Here, we describe an inducible cellular system to model HGPS and find that LAP2α (lamina-associated polypeptide-α) interacts with lamin A, while its interaction with progerin is significantly reduced. Super-resolution microscopy revealed that over 50% of telomeres localize to the lamina and that LAP2α association with telomeres is impaired in HGPS. This impaired interaction is central to HGPS since increasing LAP2α levels rescues progerin-induced proliferation defects and loss of H3K27me3, whereas lowering LAP2 levels exacerbates progerin-induced defects. These findings provide novel insights into the pathophysiology underlying HGPS, and how the nuclear lamina regulates proliferation and chromatin organization. DOI:http://dx.doi.org/10.7554/eLife.07759.001 Hutchinson-Gilford Progeria Syndrome (HGPS) is a rare genetic disease in which individuals age prematurely. Newborns appear normal at birth, but start ageing rapidly when they are around a year old. Symptoms of the disease include stunted growth and joint stiffness, and individuals often die of heart failure during their teens. A mutated version of a protein called lamin A causes HGPS; this mutant is known as progerin. In cells that produce progerin, the ‘telomeres’ that protect the ends of chromosomes (the structures that contain most of the cell's DNA) from damage, are unusually short. Every time a cell divides, the telomeres get shorter. If they get too short, the DNA is damaged and the cell stops dividing and enters a state known as senescence. HGPS affects some of the tissues in the body more severely than others, and these tissues tend to produce high levels of progerin. By gradually raising the levels of progerin in human cells, Chojnowski et al. found that DNA damage and cell senescence only occur when the amount of progerin in a cell exceeds a particular threshold. Moreover, the expression of telomerase—a complex that can elongate telomeres—prevented progerin-induced DNA damage and premature senescence. To find out how progerin affects cells, Chojnowski et al. compared how lamin A and progerin interact with other proteins. This revealed that progerin interacts with a protein called LAP2α more weakly than lamin A. LAP2α normally associates with telomeres, but using super-high resolution microscopy, Chojnowski et al. observed that this association is less likely to occur in the cells of people with HGPS. Importantly, increasing the amount of LAP2α in progerin-expressing cells prevented DNA damage and senescence and enabled these cells to continue dividing. Chojnowski et al. propose that in HGPS, the weak interaction between LAP2α and progerin disrupts how LAP2α interacts with telomeres, which prevents cells from dividing. Understanding this process may help to design new ways of treating HGPS, and may also help us to understand other diseases that are caused by mutations in lamin proteins. DOI:http://dx.doi.org/10.7554/eLife.07759.002
Collapse
Affiliation(s)
- Alexandre Chojnowski
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Peh Fern Ong
- Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
| | - Esther S M Wong
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - John S Y Lim
- Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
| | - Rafidah A Mutalif
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Raju Navasankari
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Bamaprasad Dutta
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Henry Yang
- Bioinformatics Core, Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Yi Y Liow
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Siu K Sze
- School of Biological Sciences, Nanyang Technological University, Singapore, Singapore
| | - Thomas Boudier
- Bioinformatics Institute, IPAL UMI 2955, Singapore, Singapore
| | - Graham D Wright
- Microscopy Unit, Institute of Medical Biology, Singapore, Singapore
| | - Alan Colman
- Stem Cell Disease Models, Institute of Medical Biology, Singapore, Singapore
| | - Brian Burke
- Nuclear Dynamics and Architecture, Institute of Medical Biology, Singapore, Singapore
| | - Colin L Stewart
- Developmental and Regenerative Biology, Institute of Medical Biology, Singapore, Singapore
| | - Oliver Dreesen
- Cellular Ageing, Institute of Medical Biology, Singapore, Singapore
| |
Collapse
|
6
|
Rajanahalli P, Stucke CJ, Hong Y. The effects of silver nanoparticles on mouse embryonic stem cell self-renewal and proliferation. Toxicol Rep 2015; 2:758-764. [PMID: 28962411 PMCID: PMC5598476 DOI: 10.1016/j.toxrep.2015.05.005] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 05/01/2015] [Accepted: 05/04/2015] [Indexed: 11/17/2022] Open
Abstract
Silver nanoparticles (AgNPs) are gaining rapid popularity in many commonly used medical and commercial products for their unique anti-bacterial properties. The molecular mechanisms of effects of AgNPs on stem cell self-renewal and proliferation have not yet been well understood. The aim of the work is to use mouse embryonic stem cells (mESCs) as a cellular model to evaluate the toxicity of AgNPs. mESC is a very special cell type which has self-renewal and differentiation properties. The objective of this project is to determine the effects of AgNPs with different surface chemical compositions on the self-renewal and cell cycle of mESCs. Two different surface chemical compositions of AgNPs, polysaccharide-coated and hydrocarbon-coated, were used to test their toxic effects on self-renewal and proliferation of mESCs. The results indicated that both polysaccharide-coated and hydrocarbon-coated AgNPs changed the cell morphology of mESCs. Cell cycle analysis indicated that AgNPs induced mESCs cell cycle arrest at G1 and S phases through inhibition of the hyperphosphorylation of Retinoblastoma (Rb) protein. Furthermore, AgNPs exposure reduced Oct4A isoform expression which is responsible for the pluripotency of mESCs, and induced the expression of several isoforms OCT4B-265, OCT4B-190, OCT4B-164 which were suggested involved in stem cell stresses responses. In addition, the evidence of reactive oxygen species (ROS) production with two different surface chemical compositions of AgNPs supported our hypothesis that the toxic effect AgNPs exposure is due to overproduction of ROS which altered the gene expression and protein modifications. Polysaccharide coating reduced ROS production, and thus reduced the AgNPs toxicity.
Collapse
Affiliation(s)
- Pavan Rajanahalli
- College of Veterinary Medicine, Department of Anatomy and Physiology, Kansas State University, Manhattan, KA 66506, USA
| | - Christopher J. Stucke
- Kent State University College of Podiatric Medicine, 6000 Rockside Woods Boulevard Independence, OH 44131, USA
| | - Yiling Hong
- College of Veterinary Medicine, Western University of Health Sciences, Pomona, CA 91766, USA
- Corresponding author. Tel.: +1 909 469 8685.
| |
Collapse
|
7
|
Hassani SN, Totonchi M, Sharifi-Zarchi A, Mollamohammadi S, Pakzad M, Moradi S, Samadian A, Masoudi N, Mirshahvaladi S, Farrokhi A, Greber B, Araúzo-Bravo MJ, Sabour D, Sadeghi M, Salekdeh GH, Gourabi H, Schöler HR, Baharvand H. Inhibition of TGFβ Signaling Promotes Ground State Pluripotency. Stem Cell Rev Rep 2014; 10:16-30. [DOI: 10.1007/s12015-013-9473-0] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
8
|
Zscan4 restores the developmental potency of embryonic stem cells. Nat Commun 2013; 4:1966. [PMID: 23739662 PMCID: PMC3682791 DOI: 10.1038/ncomms2966] [Citation(s) in RCA: 90] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2012] [Accepted: 05/01/2013] [Indexed: 11/08/2022] Open
Abstract
The developmental potency of mouse embryonic stem (ES) cells, which is the ability to contribute to a whole embryo, is known to deteriorate during long-term cell culture. Previously, we have shown that ES cells oscillate between Zscan4(-) and Zscan4(+) states, and the transient activation of Zscan4 is required for the maintenance of telomeres and genome stability of ES cells. Here we show that increasing the frequency of Zscan4 activation in mouse ES cells restores and maintains their developmental potency in long-term cell culture. Injection of a single ES cell with such increased potency into a tetraploid blastocyst gives rise to an entire embryo with a higher success rate. These results not only provide a means to rejuvenate ES cells by manipulating Zscan4 expression, but also indicate the active roles of Zscan4 in the long-term maintenance of ES cell potency.
Collapse
|
9
|
Baharvand H, Hassani SN. A new chemical approach to the efficient generation of mouse embryonic stem cells. Methods Mol Biol 2013; 997:13-22. [PMID: 23546744 DOI: 10.1007/978-1-62703-348-0_2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Here, we present a highly efficient and reproducible method for the establishment of mouse embryonic stem cells (mESCs) from embryonic day 3.5 (E3.5) whole blastocysts. This protocol involves the use of small molecules SB431542 and PD0325901, which inhibit transforming growth factor-β (TGF-β) and extracellular signal-regulated kinases (ERK1/2), respectively. This protocol is universal in the derivation of mESC lines from NMRI, C57BL/6, BALB/c, DBA/2, and FVB/N strains, which have previously been considered refractory or non-permissive for ESC establishment. The efficiency of mESC lines generation is 100%, regardless of genetic background.
Collapse
Affiliation(s)
- Hossein Baharvand
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | | |
Collapse
|
10
|
Using targeted transgenic reporter mice to study promoter-specific p53 transcriptional activity. Proc Natl Acad Sci U S A 2012; 109:1685-90. [PMID: 22307631 DOI: 10.1073/pnas.1114173109] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
The p53 transcription factor modulates gene expression programs that induce cell cycle arrest, senescence, or apoptosis, thereby preventing tumorigenesis. However, the mechanisms by which these fates are selected are unclear. Our objective is to understand p53 target gene selection and, thus, enable its optimal manipulation for cancer therapy. We have generated targeted transgenic reporter mice in which EGFP expression is driven by p53 transcriptional activity at a response element from either the p21 or Puma promoter, which induces cell cycle arrest/senescence and apoptosis, respectively. We demonstrate that we could monitor p53 activity in vitro and in vivo and detect variations in p53 activity depending on the response element, tissue type, and stimulus, thereby validating our reporter system and illustrating its utility for preclinical drug studies. Our results also show that the sequence of the p53 response element itself is sufficient to strongly influence p53 target gene selection. Finally, we use our reporter system to provide evidence for p53 transcriptional activity during early embryogenesis, showing that p53 is active as early as embryonic day 3.5 and that p53 activity becomes restricted to embryonic tissue by embryonic day 6.5. The data from this study demonstrate that these reporter mice could serve as powerful tools to answer questions related to basic biology of the p53 pathway, as well as cancer therapy and drug discovery.
Collapse
|