1
|
Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME JOURNAL 2018. [PMID: 29515170 DOI: 10.1038/s41396-018-0083-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The description of comammox Nitrospira spp., performing complete ammonia-to-nitrate oxidation, and their co-occurrence with canonical β-proteobacterial ammonia oxidizing bacteria (β-AOB) in the environment, calls into question the metabolic potential of comammox Nitrospira and the evolutionary history of their ammonia oxidation pathway. We report four new comammox Nitrospira genomes, constituting two novel species, and the first comparative genomic analysis on comammox Nitrospira. Unlike canonical Nitrospira, comammox Nitrospira genomes lack genes for assimilatory nitrite reduction, suggesting that they have lost the potential to use external nitrite nitrogen sources. By contrast, compared to canonical Nitrospira, comammox Nitrospira harbor a higher diversity of urea transporters and copper homeostasis genes and lack cyanate hydratase genes. Additionally, the two comammox clades differ in their ammonium uptake systems. Contrary to β-AOB, comammox Nitrospira genomes have single copies of the two central ammonia oxidation pathway operons. Similar to ammonia oxidizing archaea and some oligotrophic AOB strains, they lack genes involved in nitric oxide reduction. Furthermore, comammox Nitrospira genomes encode genes that might allow efficient growth at low oxygen concentrations. Regarding the evolutionary history of comammox Nitrospira, our analyses indicate that several genes belonging to the ammonia oxidation pathway could have been laterally transferred from β-AOB to comammox Nitrospira. We postulate that the absence of comammox genes in other sublineage II Nitrospira genomes is the result of subsequent loss.
Collapse
|
2
|
Abstract
Phospholipases are lipolytic enzymes that hydrolyze phospholipid substrates at specific ester bonds. Phospholipases are widespread in nature and play very diverse roles from aggression in snake venom to signal transduction, lipid mediator production, and metabolite digestion in humans. Phospholipases vary considerably in structure, function, regulation, and mode of action. Tremendous advances in understanding the structure and function of phospholipases have occurred in the last decades. This introductory chapter is aimed at providing a general framework of the current understanding of phospholipases and a discussion of their mechanisms of action and emerging biological functions.
Collapse
|
3
|
Djakpa H, Kulkarni A, Barrows-Murphy S, Miller G, Zhou W, Cho H, Török B, Stieglitz K. Identifying New Drug Targets for Potent Phospholipase D Inhibitors: Combining Sequence Alignment, Molecular Docking, and Enzyme Activity/Binding Assays. Chem Biol Drug Des 2016; 87:714-29. [DOI: 10.1111/cbdd.12705] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 11/20/2015] [Indexed: 11/28/2022]
Affiliation(s)
- Helene Djakpa
- STEM Biotechnology Division; Roxbury Community College; Roxbury MA USA
| | - Aditya Kulkarni
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | | | - Greg Miller
- STEM Biotechnology Division; Roxbury Community College; Roxbury MA USA
| | - Weihong Zhou
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | - Hyejin Cho
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | - Béla Török
- Department of Chemistry; University of Massachusetts Boston; 100 Morrissey Blvd Boston MA 02125 USA
| | | |
Collapse
|
4
|
Beligni MV, Bagnato C, Prados MB, Bondino H, Laxalt AM, Munnik T, Ten Have A. The diversity of algal phospholipase D homologs revealed by biocomputational analysis. JOURNAL OF PHYCOLOGY 2015; 51:943-962. [PMID: 26986890 DOI: 10.1111/jpy.12334] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Accepted: 07/09/2015] [Indexed: 06/05/2023]
Abstract
Phospholipase D (PLD) participates in the formation of phosphatidic acid, a precursor in glycerolipid biosynthesis and a second messenger. PLDs are part of a superfamily of proteins that hydrolyze phosphodiesters and share a catalytic motif, HxKxxxxD, and hence a mechanism of action. Although HKD-PLDs have been thoroughly characterized in plants, animals and bacteria, very little is known about these enzymes in algae. To fill this gap in knowledge, we performed a biocomputational analysis by means of HMMER iterative profiling, using most eukaryotic algae genomes available. Phylogenetic analysis revealed that algae exhibit very few eukaryotic-type PLDs but possess, instead, many bacteria-like PLDs. Among algae eukaryotic-type PLDs, we identified C2-PLDs and PXPH-like PLDs. In addition, the dinoflagellate Alexandrium tamarense features several proteins phylogenetically related to oomycete PLDs. Our phylogenetic analysis also showed that algae bacteria-like PLDs (proteins with putative PLD activity) fall into five clades, three of which are novel lineages in eukaryotes, composed almost entirely of algae. Specifically, Clade II is almost exclusive to diatoms, whereas Clade I and IV are mainly represented by proteins from prasinophytes. The other two clades are composed of mitochondrial PLDs (Clade V or Mito-PLDs), previously found in mammals, and a subfamily of potentially secreted proteins (Clade III or SP-PLDs), which includes a homolog formerly characterized in rice. In addition, our phylogenetic analysis shows that algae have non-PLD members within the bacteria-like HKD superfamily with putative cardiolipin synthase and phosphatidylserine/phosphatidylglycerophosphate synthase activities. Altogether, our results show that eukaryotic algae possess a moderate number of PLDs that belong to very diverse phylogenetic groups.
Collapse
Affiliation(s)
- María Verónica Beligni
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Carolina Bagnato
- Consejo Nacional de Investigaciones Científicas y Técnicas, Universidad Nacional de Río Negro, Mitre 630. S. C. de Bariloche 8400, Río Negro, Argentina
| | - María Belén Prados
- Instituto de Energía y Desarrollo Sustentable - Comisión Nacional de Energía Atómica, Centro Atómico Bariloche, Av. Bustillo 9500, S. C. de Bariloche 8400, Río Negro, Argentina
| | - Hernán Bondino
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Ana María Laxalt
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| | - Teun Munnik
- Department of Plant Physiology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, Amsterdam, NL-1098 XH, the Netherlands
| | - Arjen Ten Have
- Instituto de Investigaciones Biológicas (IIB-CONICET-UNMdP), Facultad de Ciencias Exactas y Naturales, Universidad Nacional de Mar del Plata, CC 1245, Mar del Plata, 7600, Argentina
| |
Collapse
|
6
|
Meijer HJG, Hassen HH, Govers F. Phytophthora infestans has a plethora of phospholipase D enzymes including a subclass that has extracellular activity. PLoS One 2011; 6:e17767. [PMID: 21423760 PMCID: PMC3056787 DOI: 10.1371/journal.pone.0017767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2011] [Accepted: 02/14/2011] [Indexed: 11/18/2022] Open
Abstract
In eukaryotes phospholipase D (PLD) is involved in many cellular processes. Currently little is known about PLDs in oomycetes. Here we report that the oomycete plant pathogen Phytophthora infestans has a large repertoire of PLDs divided over six subfamilies: PXPH-PLD, PXTM-PLD, TM-PLD, PLD-likes, and type A and B sPLD-likes. Since the latter have signal peptides we developed a method using metabolically labelled phospholipids to monitor if P. infestans secretes PLD. In extracellular medium of ten P. infestans strains PLD activity was detected as demonstrated by the production of phosphatidic acid and the PLD specific marker phosphatidylalcohol.
Collapse
Affiliation(s)
- Harold J G Meijer
- Laboratory of Phytopathology, Plant Sciences Group, Wageningen University, Wageningen, The Netherlands.
| | | | | |
Collapse
|
8
|
Wagner K, Brezesinski G. Phospholipase D activity is regulated by product segregation and the structure formation of phosphatidic acid within model membranes. Biophys J 2007; 93:2373-83. [PMID: 17557794 PMCID: PMC1965428 DOI: 10.1529/biophysj.107.108787] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Phospholipase D from Streptomyces chromofuscus (scPLD) hydrolyzes phosphatidylcholines (PC) to produce choline and phosphatidic acid (PA), a lipid messenger molecule within biological membranes. To scrutinize the influence of membrane structure on scPLD activity, three different substrate-containing monolayers are used as model systems: pure dipalmitoylphosphatidylcholine (DPPC) as well as equimolar mixtures of DPPC/n-hexadecanol (C(16)OH) and DPPC/dipalmitoylglycerol (DPG). The activity of scPLD toward these monolayers is tested by infrared reflection-absorption spectroscopy and exhibits different dependencies on surface pressure. For pure DPPC, the catalytic turnover drastically drops above 20 mN/m. On addition of C(16)OH, this strong decrease starts at 5 mN/m. For the DPPC/DPG system, the reaction yield linearly decreases between 5 and 25 mN/m. The difference in scPLD activity is correlated to the phase state of the monolayers as examined by x-ray diffraction, Brewster angle microscopy, and atomic force microscopy. Because the additives C(16)OH and DPG mediate the miscibility of PC and PA, only a basal activity of scPLD is observed toward the mixed systems at higher surface pressures. At pure DPPC monolayers, scPLD is activated after the segregation of initially formed PA. Furthermore, scPLD is inhibited when the lipids in the PA-rich domains adopt an upright orientation. This phenomenon offers a self-regulating mechanism for the concentration of the second messenger PA within biological membranes.
Collapse
Affiliation(s)
- Kerstin Wagner
- Max Planck Institute of Colloids and Interfaces, 14424 Potsdam, Germany.
| | | |
Collapse
|
9
|
Rose TM, Prestwich GD. Synthesis and evaluation of fluorogenic substrates for phospholipase D and phospholipase C. Org Lett 2006; 8:2575-8. [PMID: 16737317 PMCID: PMC2535796 DOI: 10.1021/ol060773d] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluorogenic analogues of phosphatidylcholine and lysophosphatidylcholine, DDPB and lysoDDPB, were synthesized by an enzyme-assisted strategy. The analogues were evaluated as substrates for phospholipases C and D and lysophospholipase D. DDPB was cleaved by bacterial and plant phospholipase D (PLD) enzymes and represents the first direct fluorogenic substrate for real-time measurement of PLD activity. Both fluorogenic substrates have potential in screening for PLD and PC-PLC inhibitors and for monitoring spatiotemporal changes in PLD activity in cells. [structure: see text]
Collapse
Affiliation(s)
- Tyler M. Rose
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108
| | - Glenn D. Prestwich
- Department of Medicinal Chemistry, University of Utah, 419 Wakara Way, Suite 205, Salt Lake City, UT 84108
| |
Collapse
|