1
|
Liu K, Xie B, Peng L, Wu Q, Hu J. Profiling of RNA editing events in plant organellar transcriptomes with high-throughput sequencing. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:345-357. [PMID: 38149801 DOI: 10.1111/tpj.16607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/28/2023]
Abstract
RNA editing is a crucial post-transcriptional modification process in plant organellar RNA metabolism. rRNA removal-based total RNA-seq is one of the most common methods to study this event. However, the lack of commercial kits to remove rRNAs limits the usage of this method, especially for non-model plant species. DSN-seq is a transcriptome sequencing method utilizing duplex-specific nuclease (DSN) to degrade highly abundant cDNA species especially those from rRNAs while keeping the robustness of transcript levels of the majority of other mRNAs, and has not been applied to study RNA editing in plants before. In this study, we evaluated the capability of DSN-seq to reduce rRNA content and profile organellar RNA editing events in plants, as well we used commercial Ribo-off-seq and standard mRNA-seq as comparisons. Our results demonstrated that DSN-seq efficiently reduced rRNA content and enriched organellar transcriptomes in rice. With high sensitivity to RNA editing events, DSN-seq and Ribo-off-seq provided a more complete and accurate RNA editing profile of rice, which was further validated by Sanger sequencing. Furthermore, DSN-seq also demonstrated efficient organellar transcriptome enrichment and high sensitivity for profiling RNA editing events in Arabidopsis thaliana. Our study highlights the capability of rRNA removal-based total RNA-seq for profiling RNA editing events in plant organellar transcriptomes and also suggests DSN-seq as a widely accessible RNA editing profiling method for various plant species.
Collapse
Affiliation(s)
- Kejia Liu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Bin Xie
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Leilei Peng
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| | - Qijia Wu
- Seqhealth Technology Co., Ltd., Wuhan, Hubei, China
| | - Jun Hu
- State Key Laboratory of Hybrid Rice; Engineering Research Center for Plant Biotechnology and Germplasm Utilization of Ministry of Education; College of Life Sciences, Wuhan University, Wuhan, 430072, Hubei, China
| |
Collapse
|
2
|
Comprehensive Molecular Characterization of the Mitochondrial Genome of the Takin Lungworm Varestrongylus eleguneniensis (Strongylida: Protostrongylidae). Int J Mol Sci 2022; 23:ijms232113597. [PMID: 36362384 PMCID: PMC9658269 DOI: 10.3390/ijms232113597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/02/2022] [Accepted: 11/04/2022] [Indexed: 11/10/2022] Open
Abstract
The takin lungworm Varestrongylus eleguneniensis (Strongylida: Protostrongylidae) causes lethal bronchopneumonia and represents severe threats to captive and wild populations. However, until now there has been very limited information available concerning the molecular epidemiology and evolutionary biology of V. eleguneniensis. Mitochondrial genomes (mtDNAs) can provide resources for investigations in these areas and, therefore, can assist with the surveillance and control of this lungworm. Herein, the complete mtDNA of V. eleguneniensis was sequenced and characterized with Illumina pipeline analyses. This circular genome (13,625 bp) encoded twelve protein-coding genes (PCGs), two rRNAs, and twenty-two tRNAs, with notable levels of AT and GC skews. Comparative genomics revealed a purifying selection among PCGs, with cox1 and nad6 having the lowest and the highest evolutionary rate, respectively. Genome-wide phylogenies showed a close relationship between V. eleguneniensis and Protostrongylus rufescens in Strongylida. Single gene (PCGs or rRNAs)-based phylogenies indicated that cox1 and nad5 genes shared the same family-level topology with that inferred from genomic datasets, suggesting that both genes could be suitable genetic markers for evolutionary and phylogenetic studies of Strongylida species. This was the first mtDNA of any member of the genus Varestrongylus, and its comprehensive molecular characterization represents a new resource for systematic, population genetic and evolutionary biological studies of Varestrongylus lungworms in wildlife.
Collapse
|
3
|
The recipe for cytonuclear interaction begins with a superabundance of plastid and mitochondrial mRNAs. Proc Natl Acad Sci U S A 2022; 119:e2211133119. [PMID: 35943977 PMCID: PMC9407606 DOI: 10.1073/pnas.2211133119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
4
|
Schröder L, Hohnjec N, Senkler M, Senkler J, Küster H, Braun HP. The gene space of European mistletoe (Viscum album). THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 109:278-294. [PMID: 34713513 DOI: 10.1111/tpj.15558] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 06/13/2023]
Abstract
European mistletoe (Viscum album) is a hemiparasitic flowering plant that is known for its very special life cycle and extraordinary biochemical properties. Particularly, V. album has an unusual mode of cellular respiration that takes place in the absence of mitochondrial complex I. However, insights into the molecular biology of V. album so far are very limited. Since the genome of V. album is extremely large (estimated 600 times larger than the genome of the model plant Arabidopsis thaliana) it has not been sequenced up to now. We here report sequencing of the V. album gene space (defined as the space including and surrounding genic regions, encompassing coding as well as 5' and 3' non-coding regions). mRNA fractions were isolated from different V. album organs harvested in summer or winter and were analyzed via single-molecule real-time sequencing. We determined sequences of 39 092 distinct open reading frames encoding 32 064 V. album proteins (designated V. album protein space). Our data give new insights into the metabolism and molecular biology of V. album, including the biosynthesis of lectins and viscotoxins. The benefits of the V. album gene space information are demonstrated by re-evaluating mass spectrometry-based data of the V. album mitochondrial proteome, which previously had been evaluated using the A. thaliana genome sequence. Our re-examination allowed the additional identification of nearly 200 mitochondrial proteins, including four proteins related to complex I, which all have a secondary function not related to respiratory electron transport. The V. album gene space sequences are available at the NCBI.
Collapse
Affiliation(s)
- Lucie Schröder
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Natalija Hohnjec
- Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Michael Senkler
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Jennifer Senkler
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Helge Küster
- Plant Genomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| | - Hans-Peter Braun
- Plant Proteomics, Institute of Plant Genetics, Leibniz Universität Hannover, Herrenhäuser Str. 2, 30419, Hannover, Germany
| |
Collapse
|
5
|
Francis N, Laishram RS. Transgenesis of mammalian PABP reveals mRNA polyadenylation as a general stress response mechanism in bacteria. iScience 2021; 24:103119. [PMID: 34646982 PMCID: PMC8496165 DOI: 10.1016/j.isci.2021.103119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 04/23/2021] [Accepted: 09/09/2021] [Indexed: 12/01/2022] Open
Abstract
In eukaryotes, mRNA 3′-polyadenylation triggers poly(A) binding protein (PABP) recruitment and stabilization. In a stark contrast, polyadenylation marks mRNAs for degradation in bacteria. To study this difference, we trans-express the mammalian nuclear PABPN1 chromosomally and extra-chromosomally in Escherichia coli. Expression of PABPN1 but not the mutant PABPN1 stabilizes polyadenylated mRNAs and improves their half-lives. In the presence of PABPN1, 3′-exonuclease PNPase is not detected on PA-tailed mRNAs compromising the degradation. We show that PABPN1 trans-expression phenocopies pcnB (that encodes poly(A) polymerase, PAPI) mutation and regulates plasmid copy number. Genome-wide RNA-seq analysis shows a general up-regulation of polyadenylated mRNAs on PABPN1 expression, the largest subset of which are those involved in general stress response. However, major global stress regulators are unaffected on PABPN1 expression. Concomitantly, PABPN1 expression or pcnB mutation imparts cellular tolerance to multiple stresses. This study establishes mRNA 3′-polyadenylation as a general stress response mechanism in E. coli. Trans expression of mammalian PABPN1 stabilizes polyadenyated mRNAs in E. coli PABPN1 expression phenocopies pcnB mutation and regulates plasmid copy number 3′-polyadenylation acts as a general stress response mechanism in bacteria This study indicates an evolutionary significance of PABP in mRNA metabolism
Collapse
Affiliation(s)
- Nimmy Francis
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum 695014, India.,Manipal Academy of Higher Education, Manipal 576104, India
| | - Rakesh S Laishram
- Cardiovascular and Diabetes Biology Group, Rajiv Gandhi Centre for Biotechnology, Thycaud Post, Poojappura, Trivandrum 695014, India
| |
Collapse
|
6
|
Guilcher M, Liehrmann A, Seyman C, Blein T, Rigaill G, Castandet B, Delannoy E. Full Length Transcriptome Highlights the Coordination of Plastid Transcript Processing. Int J Mol Sci 2021; 22:ijms222011297. [PMID: 34681956 PMCID: PMC8537030 DOI: 10.3390/ijms222011297] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/08/2021] [Accepted: 10/11/2021] [Indexed: 11/29/2022] Open
Abstract
Plastid gene expression involves many post-transcriptional maturation steps resulting in a complex transcriptome composed of multiple isoforms. Although short-read RNA-Seq has considerably improved our understanding of the molecular mechanisms controlling these processes, it is unable to sequence full-length transcripts. This information is crucial, however, when it comes to understanding the interplay between the various steps of plastid gene expression. Here, we describe a protocol to study the plastid transcriptome using nanopore sequencing. In the leaf of Arabidopsis thaliana, with about 1.5 million strand-specific reads mapped to the chloroplast genome, we could recapitulate most of the complexity of the plastid transcriptome (polygenic transcripts, multiple isoforms associated with post-transcriptional processing) using virtual Northern blots. Even if the transcripts longer than about 2500 nucleotides were missing, the study of the co-occurrence of editing and splicing events identified 42 pairs of events that were not occurring independently. This study also highlighted a preferential chronology of maturation events with splicing happening after most sites were edited.
Collapse
Affiliation(s)
- Marine Guilcher
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Arnaud Liehrmann
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, 91000 Evry, France;
| | - Chloé Seyman
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, 91000 Evry, France;
| | - Thomas Blein
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Guillem Rigaill
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Laboratoire de Mathématiques et de Modélisation d’Evry (LaMME), Université d’Evry-Val-d’Essonne, UMR CNRS 8071, ENSIIE, USC INRAE, 91000 Evry, France;
| | - Benoit Castandet
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
| | - Etienne Delannoy
- Institute of Plant Sciences Paris-Saclay (IPS2), Université Paris-Saclay, CNRS, INRAE, Université Evry, 91405 Orsay, France; (M.G.); (A.L.); (T.B.); (G.R.); (B.C.)
- Institute of Plant Sciences Paris-Saclay (IPS2), Université de Paris, CNRS, INRAE, 91405 Orsay, France
- Correspondence:
| |
Collapse
|
7
|
Hirayama T. PARN-like Proteins Regulate Gene Expression in Land Plant Mitochondria by Modulating mRNA Polyadenylation. Int J Mol Sci 2021; 22:ijms221910776. [PMID: 34639116 PMCID: PMC8509313 DOI: 10.3390/ijms221910776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/21/2021] [Accepted: 10/02/2021] [Indexed: 11/20/2022] Open
Abstract
Mitochondria have their own double-stranded DNA genomes and systems to regulate transcription, mRNA processing, and translation. These systems differ from those operating in the host cell, and among eukaryotes. In recent decades, studies have revealed several plant-specific features of mitochondrial gene regulation. The polyadenylation status of mRNA is critical for its stability and translation in mitochondria. In this short review, I focus on recent advances in understanding the mechanisms regulating mRNA polyadenylation in plant mitochondria, including the role of poly(A)-specific ribonuclease-like proteins (PARNs). Accumulating evidence suggests that plant mitochondria have unique regulatory systems for mRNA poly(A) status and that PARNs play pivotal roles in these systems.
Collapse
Affiliation(s)
- Takashi Hirayama
- Institute of Plant Science and Resources, Okayama University, 2-20-1 Chuo, Kurahiki 710-0046, Okayama, Japan
| |
Collapse
|
8
|
Manavski N, Vicente A, Chi W, Meurer J. The Chloroplast Epitranscriptome: Factors, Sites, Regulation, and Detection Methods. Genes (Basel) 2021; 12:genes12081121. [PMID: 34440296 PMCID: PMC8394491 DOI: 10.3390/genes12081121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 07/20/2021] [Accepted: 07/22/2021] [Indexed: 12/24/2022] Open
Abstract
Modifications in nucleic acids are present in all three domains of life. More than 170 distinct chemical modifications have been reported in cellular RNAs to date. Collectively termed as epitranscriptome, these RNA modifications are often dynamic and involve distinct regulatory proteins that install, remove, and interpret these marks in a site-specific manner. Covalent nucleotide modifications-such as methylations at diverse positions in the bases, polyuridylation, and pseudouridylation and many others impact various events in the lifecycle of an RNA such as folding, localization, processing, stability, ribosome assembly, and translational processes and are thus crucial regulators of the RNA metabolism. In plants, the nuclear/cytoplasmic epitranscriptome plays important roles in a wide range of biological processes, such as organ development, viral infection, and physiological means. Notably, recent transcriptome-wide analyses have also revealed novel dynamic modifications not only in plant nuclear/cytoplasmic RNAs related to photosynthesis but especially in chloroplast mRNAs, suggesting important and hitherto undefined regulatory steps in plastid functions and gene expression. Here we report on the latest findings of known plastid RNA modifications and highlight their relevance for the post-transcriptional regulation of chloroplast gene expression and their role in controlling plant development, stress reactions, and acclimation processes.
Collapse
Affiliation(s)
- Nikolay Manavski
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Alexandre Vicente
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
| | - Wei Chi
- Photosynthesis Research Center, Key Laboratory of Photobiology, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China;
| | - Jörg Meurer
- Plant Molecular Biology, Faculty of Biology, Ludwig-Maximilians-University Munich, Großhaderner Street 2-4, 82152 Planegg-Martinsried, Germany; (N.M.); (A.V.)
- Correspondence: ; Tel.: +49-89-218074556
| |
Collapse
|
9
|
Choi IS, Wojciechowski MF, Ruhlman TA, Jansen RK. In and out: Evolution of viral sequences in the mitochondrial genomes of legumes (Fabaceae). Mol Phylogenet Evol 2021; 163:107236. [PMID: 34147655 DOI: 10.1016/j.ympev.2021.107236] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 10/21/2022]
Abstract
Plant specific mitoviruses in the 'genus' Mitovirus (Narnaviridae) and their integrated sequences (non-retroviral endogenous RNA viral elements or NERVEs) have been recently identified in various plant lineages. However, the sparse phylogenetic coverage of complete plant mitochondrial genome (mitogenome) sequences and the non-conserved nature of mitochondrial intergenic regions have hindered comparative studies on mitovirus NERVEs in plants. In this study, 10 new mitogenomes were sequenced from legumes (Fabaceae). Based on comparative genomic analysis of 27 total mitogenomes, we identified mitovirus NERVEs and transposable elements across the family. All legume mitogenomes included NERVEs and total NERVE length varied from ca. 2 kb in the papilionoid Trifolium to 35 kb in the mimosoid Acacia. Most of the NERVE integration sites were in highly variable intergenic regions, however, some were positioned in six cis-spliced mitochondrial introns. In the Acacia mitogenome, there were L1-like transposon sequences including an almost full-length copy with target site duplications (TSDs). The integration sites of NERVEs in four introns showed evidence of L1-like retrotransposition events. Phylogenetic analysis revealed that there were multiple instances of precise deletion of NERVEs between TSDs. This study provides clear evidence that a L1-like retrotransposition mechanism has a long history of contributing to the integration of viral RNA into plant mitogenomes while microhomology-mediated deletion can restore the integration site.
Collapse
Affiliation(s)
- In-Su Choi
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; School of Life Sciences, Arizona State University, Tempe, AZ 85287, USA.
| | | | - Tracey A Ruhlman
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA.
| | - Robert K Jansen
- Department of Integrative Biology, University of Texas at Austin, Austin, TX 78712, USA; Centre of Excellence in Bionanoscience Research, Department of Biological Sciences, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
| |
Collapse
|
10
|
The pentatricopeptide repeat protein Rmd9 recognizes the dodecameric element in the 3'-UTRs of yeast mitochondrial mRNAs. Proc Natl Acad Sci U S A 2021; 118:2009329118. [PMID: 33876744 DOI: 10.1073/pnas.2009329118] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stabilization of messenger RNA is an important step in posttranscriptional gene regulation. In the nucleus and cytoplasm of eukaryotic cells it is generally achieved by 5' capping and 3' polyadenylation, whereas additional mechanisms exist in bacteria and organelles. The mitochondrial mRNAs in the yeast Saccharomyces cerevisiae comprise a dodecamer sequence element that confers RNA stability and 3'-end processing via an unknown mechanism. Here, we isolated the protein that binds the dodecamer and identified it as Rmd9, a factor that is known to stabilize yeast mitochondrial RNA. We show that Rmd9 associates with mRNA around dodecamer elements in vivo and that recombinant Rmd9 specifically binds the element in vitro. The crystal structure of Rmd9 bound to its dodecamer target reveals that Rmd9 belongs to the family of pentatricopeptide (PPR) proteins and uses a previously unobserved mode of specific RNA recognition. Rmd9 protects RNA from degradation by the mitochondrial 3'-exoribonuclease complex mtEXO in vitro, indicating that recognition and binding of the dodecamer element by Rmd9 confers stability to yeast mitochondrial mRNAs.
Collapse
|
11
|
Proulex GCR, Meade MJ, Manoylov KM, Cahoon AB. Mitochondrial mRNA Processing in the Chlorophyte Alga Pediastrum duplex and Streptophyte Alga Chara vulgaris Reveals an Evolutionary Branch in Mitochondrial mRNA Processing. PLANTS (BASEL, SWITZERLAND) 2021; 10:576. [PMID: 33803683 PMCID: PMC8003010 DOI: 10.3390/plants10030576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/12/2021] [Accepted: 03/13/2021] [Indexed: 11/17/2022]
Abstract
Mitochondria carry the remnant of an ancestral bacterial chromosome and express those genes with a system separate and distinct from the nucleus. Mitochondrial genes are transcribed as poly-cistronic primary transcripts which are post-transcriptionally processed to create individual translationally competent mRNAs. Algae post-transcriptional processing has only been explored in Chlamydomonas reinhardtii (Class: Chlorophyceae) and the mature mRNAs are different than higher plants, having no 5' UnTranslated Regions (UTRs), much shorter and more variable 3' UTRs and polycytidylated mature mRNAs. In this study, we analyzed transcript termini using circular RT-PCR and PacBio Iso-Seq to survey the 3' and 5' UTRs and termini for two green algae, Pediastrum duplex (Class: Chlorophyceae) and Chara vulgaris (Class: Charophyceae). This enabled the comparison of processing in the chlorophyte and charophyte clades of green algae to determine if the differences in mitochondrial mRNA processing pre-date the invasion of land by embryophytes. We report that the 5' mRNA termini and non-template 3' termini additions in P. duplex resemble those of C. reinhardtii, suggesting a conservation of mRNA processing among the chlorophyceae. We also report that C. vulgaris mRNA UTRs are much longer than chlorophytic examples, lack polycytidylation, and are polyadenylated similar to embryophytes. This demonstrates that some mitochondrial mRNA processing events diverged with the split between chlorophytic and streptophytic algae.
Collapse
Affiliation(s)
- Grayson C. R. Proulex
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Marcus J. Meade
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| | - Kalina M. Manoylov
- Department of Biological and Environmental Sciences, Georgia College and State University, Milledgeville, GA 31061, USA;
| | - A. Bruce Cahoon
- Department of Natural Sciences, The University of Virginia’s College at Wise, 1 College Ave., Wise, VA 24293, USA; (G.C.R.P.); (M.J.M.)
| |
Collapse
|
12
|
Liu J, Zhang C, Jia X, Wang W, Yin H. Comparative analysis of RNA-binding proteomes under Arabidopsis thaliana-Pst DC3000-PAMP interaction by orthogonal organic phase separation. Int J Biol Macromol 2020; 160:47-54. [PMID: 32454107 DOI: 10.1016/j.ijbiomac.2020.05.164] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 05/05/2020] [Accepted: 05/05/2020] [Indexed: 12/22/2022]
Abstract
RNA-binding proteins (RBPs) are pivotal participants in post-transcriptional gene regulation. They interact with RNA directly to perform several post-transcriptional RNA regulatory functions or direct metabolic processes. Despite the essential importance, the understanding of plant RBPs is elementary, which derives mainly from other kingdoms via bioinformatic extrapolation or mRNA-binding proteins captured through UV crosslinked method. Recently, orthogonal organic phase separation (OOPS) method for RBP identification has been used in mammals and Escherichia coli. And plentiful RBPs were enriched without molecular tagging or capture of polyadenylated RNA in an unbiased way. In our study, OOPS was conducted on Arabidopsis and 468 RBPs were discovered including 244 putative RBPs. There were 17 peroxidases in 232 RBPs with enzymatic activities. In addition, Arabidopsis thaliana-Pst DC3000-chitinpentaose interaction system was chosen to explore whether OOPS can be used to dig specific RBPs under special physiological conditions. Eighty-four differential RBPs in this system were found and some of them involved in reactive oxygen species (ROS) metabolic pathway. These results showed OOPS can be applied to plants successfully and would be a useful method to identify RBPomes and specific RBPs.
Collapse
Affiliation(s)
- Junjie Liu
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chunguang Zhang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; School of Biological Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiaochen Jia
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Wenxia Wang
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Heng Yin
- Dalian Engineering Research Center for Carbohydrate Agricultural Preparations, Liaoning Provincial Key Laboratory of Carbohydrates, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
13
|
Bach-Pages M, Homma F, Kourelis J, Kaschani F, Mohammed S, Kaiser M, van der Hoorn RAL, Castello A, Preston GM. Discovering the RNA-Binding Proteome of Plant Leaves with an Improved RNA Interactome Capture Method. Biomolecules 2020; 10:E661. [PMID: 32344669 PMCID: PMC7226388 DOI: 10.3390/biom10040661] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 04/16/2020] [Accepted: 04/20/2020] [Indexed: 12/12/2022] Open
Abstract
RNA-binding proteins (RBPs) play a crucial role in regulating RNA function and fate. However, the full complement of RBPs has only recently begun to be uncovered through proteome-wide approaches such as RNA interactome capture (RIC). RIC has been applied to various cell lines and organisms, including plants, greatly expanding the repertoire of RBPs. However, several technical challenges have limited the efficacy of RIC when applied to plant tissues. Here, we report an improved version of RIC that overcomes the difficulties imposed by leaf tissue. Using this improved RIC method in Arabidopsis leaves, we identified 717 RBPs, generating a deep RNA-binding proteome for leaf tissues. While 75% of these RBPs can be linked to RNA biology, the remaining 25% were previously not known to interact with RNA. Interestingly, we observed that a large number of proteins related to photosynthesis associate with RNA in vivo, including proteins from the four major photosynthetic supercomplexes. As has previously been reported for mammals, a large proportion of leaf RBPs lack known RNA-binding domains, suggesting unconventional modes of RNA binding. We anticipate that this improved RIC method will provide critical insights into RNA metabolism in plants, including how cellular RBPs respond to environmental, physiological and pathological cues.
Collapse
Affiliation(s)
- Marcel Bach-Pages
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Felix Homma
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Jiorgos Kourelis
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Farnusch Kaschani
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Shabaz Mohammed
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Markus Kaiser
- Fakultät für Biologie, Universität Duisburg-Essen, North Rhine-Westphalia, 45117 Essen, Germany; (F.K.); (M.K.)
| | - Renier A. L. van der Hoorn
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| | - Alfredo Castello
- Department of Biochemistry, University of Oxford, South Parks Road, Oxford OX1 3QU, UK;
| | - Gail M. Preston
- Department of Plant Sciences, University of Oxford, South Parks Road, Oxford OX1 3RB, UK; (M.B.-P.); (F.H.); (J.K.); (R.A.L.v.d.H.)
| |
Collapse
|
14
|
Coate JE, Schreyer WM, Kum D, Doyle JJ. Robust Cytonuclear Coordination of Transcription in Nascent Arabidopsis thaliana Autopolyploids. Genes (Basel) 2020; 11:E134. [PMID: 32012851 PMCID: PMC7074348 DOI: 10.3390/genes11020134] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 01/17/2020] [Accepted: 01/24/2020] [Indexed: 12/13/2022] Open
Abstract
Polyploidy is hypothesized to cause dosage imbalances between the nucleus and the other genome-containing organelles (mitochondria and plastids), but the evidence for this is limited. We performed RNA-seq on Arabidopsis thaliana diploids and their derived autopolyploids to quantify the degree of inter-genome coordination of transcriptional responses to nuclear whole genome duplication in two different organs (sepals and rosette leaves). We show that nuclear and organellar genomes exhibit highly coordinated responses in both organs. First, organelle genome copy number increased in response to nuclear whole genome duplication (WGD), at least partially compensating for altered nuclear genome dosage. Second, transcriptional output of the different cellular compartments is tuned to maintain diploid-like levels of relative expression among interacting genes. In particular, plastid genes and nuclear genes whose products are plastid-targeted show coordinated down-regulation, such that their expression levels relative to each other remain constant across ploidy levels. Conversely, mitochondrial genes and nuclear genes with mitochondrial targeting show either constant or coordinated up-regulation of expression relative to other nuclear genes. Thus, cytonuclear coordination is robust to changes in nuclear ploidy level, with diploid-like balance in transcript abundances achieved within three generations after nuclear whole genome duplication.
Collapse
Affiliation(s)
- Jeremy E. Coate
- Department of Biology, Reed College, Portland, OR 97202, USA; (W.M.S.); (D.K.)
| | - W. Max Schreyer
- Department of Biology, Reed College, Portland, OR 97202, USA; (W.M.S.); (D.K.)
| | - David Kum
- Department of Biology, Reed College, Portland, OR 97202, USA; (W.M.S.); (D.K.)
| | - Jeff J. Doyle
- School of Integrative Plant Science, Cornell University, Ithaca, NY, 14853, USA;
| |
Collapse
|
15
|
Panicum Mosaic Virus and Its Satellites Acquire RNA Modifications Associated with Host-Mediated Antiviral Degradation. mBio 2019; 10:mBio.01900-19. [PMID: 31455653 PMCID: PMC6712398 DOI: 10.1128/mbio.01900-19] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Positive-sense RNA viruses in the Tombusviridae family have genomes lacking a 5' cap structure and prototypical 3' polyadenylation sequence. Instead, these viruses utilize an extensive network of intramolecular RNA-RNA interactions to direct viral replication and gene expression. Here we demonstrate that the genomic RNAs of Panicum mosaic virus (PMV) and its satellites undergo sequence modifications at their 3' ends upon infection of host cells. Changes to the viral and subviral genomes arise de novo within Brachypodium distachyon (herein called Brachypodium) and proso millet, two alternative hosts of PMV, and exist in the infections of a native host, St. Augustinegrass. These modifications are defined by polyadenylation [poly(A)] events and significant truncations of the helper virus 3' untranslated region-a region containing satellite RNA recombination motifs and conserved viral translational enhancer elements. The genomes of PMV and its satellite virus (SPMV) were reconstructed from multiple poly(A)-selected Brachypodium transcriptome data sets. Moreover, the polyadenylated forms of PMV and SPMV RNAs copurify with their respective mature icosahedral virions. The changes to viral and subviral genomes upon infection are discussed in the context of a previously understudied poly(A)-mediated antiviral RNA degradation pathway and the potential impact on virus evolution.IMPORTANCE The genomes of positive-sense RNA viruses have an intrinsic capacity to serve directly as mRNAs upon viral entry into a host cell. These RNAs often lack a 5' cap structure and 3' polyadenylation sequence, requiring unconventional strategies for cap-independent translation and subversion of the cellular RNA degradation machinery. For tombusviruses, critical translational regulatory elements are encoded within the 3' untranslated region of the viral genomes. Here we describe RNA modifications occurring within the genomes of Panicum mosaic virus (PMV), a prototypical tombusvirus, and its satellite agents (i.e., satellite virus and noncoding satellite RNAs), all of which depend on the PMV-encoded RNA polymerase for replication. The atypical RNAs are defined by terminal polyadenylation and truncation events within the 3' untranslated region of the PMV genome. These modifications are reminiscent of host-mediated RNA degradation strategies and likely represent a previously underappreciated defense mechanism against invasive nucleic acids.
Collapse
|
16
|
Toompuu M, Tuomela T, Laine P, Paulin L, Dufour E, Jacobs HT. Polyadenylation and degradation of structurally abnormal mitochondrial tRNAs in human cells. Nucleic Acids Res 2019. [PMID: 29518244 PMCID: PMC6007314 DOI: 10.1093/nar/gky159] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
RNA 3' polyadenylation is known to serve diverse purposes in biology, in particular, regulating mRNA stability and translation. Here we determined that, upon exposure to high levels of the intercalating agent ethidium bromide (EtBr), greater than those required to suppress mitochondrial transcription, mitochondrial tRNAs in human cells became polyadenylated. Relaxation of the inducing stress led to rapid turnover of the polyadenylated tRNAs. The extent, kinetics and duration of tRNA polyadenylation were EtBr dose-dependent, with mitochondrial tRNAs differentially sensitive to the stress. RNA interference and inhibitor studies indicated that ongoing mitochondrial ATP synthesis, plus the mitochondrial poly(A) polymerase and SUV3 helicase were required for tRNA polyadenylation, while polynucleotide phosphorylase counteracted the process and was needed, along with SUV3, for degradation of the polyadenylated tRNAs. Doxycycline treatment inhibited both tRNA polyadenylation and turnover, suggesting a possible involvement of the mitoribosome, although other translational inhibitors had only minor effects. The dysfunctional tRNALeu(UUR) bearing the pathological A3243G mutation was constitutively polyadenylated at a low level, but this was markedly enhanced after doxycycline treatment. We propose that polyadenylation of structurally and functionally abnormal mitochondrial tRNAs entrains their PNPase/SUV3-mediated destruction, and that this pathway could play an important role in mitochondrial diseases associated with tRNA mutations.
Collapse
Affiliation(s)
- Marina Toompuu
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Tea Tuomela
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Pia Laine
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Lars Paulin
- Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| | - Eric Dufour
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland
| | - Howard T Jacobs
- Faculty of Medicine and Life Sciences, BioMediTech Institute and Tampere University Hospital, FI-33014 University of Tampere, Finland.,Institute of Biotechnology, FI-00014 University of Helsinki, Finland
| |
Collapse
|
17
|
Li N, Hu GL, Hua BZ. Complete mitochondrial genomes of Bittacus strigosus and Panorpa debilis and genomic comparisons of Mecoptera. Int J Biol Macromol 2019; 140:672-681. [PMID: 31437496 DOI: 10.1016/j.ijbiomac.2019.08.152] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/17/2019] [Accepted: 08/17/2019] [Indexed: 11/19/2022]
Abstract
Mitochondrial genomes play a significant role in reconstructing phylogenetic relationships and revealing molecular evolution of insects. However, only four mitochondrial genomes were reported in Mecoptera to date. Here, we obtained two new complete mitochondrial genomes of the hangingfly Bittacus strigosus Hagen, 1861 and the scorpionfly Panorpa debilis Westwood, 1846. The results show that the complete mitogenome sequences of B. strigosus and P. debilis are 15,825 and 17,018 bp, respectively, both containing 37 genes and one control region. The mecopteran mitogenomes are highly similar in A + T bias, AT-skew, and GC-skew. Tandem repeats of the control region were discovered in Mecoptera for the first time. The sliding window, genetic distance, and Ka/Ks ratio analyses indicate the purifying selection of 13 protein-coding genes, the lowest evolutionary rate of cox1, and the highest sequence variability of atp8. Considering the sufficiently large size, fast evolution, and high ratio of Ka/Ks, nad4L and nad6 are regarded as potential markers for future phylogenetic analyses, population genetics, and species delimitations in Mecoptera. The phylogenetic relationships were reconstructed for four families of Mecoptera based on all six available mitogenomes using Bayesian inference and maximum likelihood methods. The phylogeny is presented as Boreidae + (Nannochoristidae + (Bittacidae + Panorpidae)).
Collapse
Affiliation(s)
- Ning Li
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Gui-Lin Hu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Bao-Zhen Hua
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
18
|
Pajak A, Laine I, Clemente P, El-Fissi N, Schober FA, Maffezzini C, Calvo-Garrido J, Wibom R, Filograna R, Dhir A, Wedell A, Freyer C, Wredenberg A. Defects of mitochondrial RNA turnover lead to the accumulation of double-stranded RNA in vivo. PLoS Genet 2019; 15:e1008240. [PMID: 31365523 PMCID: PMC6668790 DOI: 10.1371/journal.pgen.1008240] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/11/2019] [Indexed: 12/02/2022] Open
Abstract
The RNA helicase SUV3 and the polynucleotide phosphorylase PNPase are involved in the degradation of mitochondrial mRNAs but their roles in vivo are not fully understood. Additionally, upstream processes, such as transcript maturation, have been linked to some of these factors, suggesting either dual roles or tightly interconnected mechanisms of mitochondrial RNA metabolism. To get a better understanding of the turn-over of mitochondrial RNAs in vivo, we manipulated the mitochondrial mRNA degrading complex in Drosophila melanogaster models and studied the molecular consequences. Additionally, we investigated if and how these factors interact with the mitochondrial poly(A) polymerase, MTPAP, as well as with the mitochondrial mRNA stabilising factor, LRPPRC. Our results demonstrate a tight interdependency of mitochondrial mRNA stability, polyadenylation and the removal of antisense RNA. Furthermore, disruption of degradation, as well as polyadenylation, leads to the accumulation of double-stranded RNAs, and their escape out into the cytoplasm is associated with an altered immune-response in flies. Together our results suggest a highly organised and inter-dependable regulation of mitochondrial RNA metabolism with far reaching consequences on cellular physiology. Although a number of factors have been implemented in the turnover of mitochondrial (mt) DNA-derived transcripts, their exact functions and interplay with one another is not entirely clear. Several of these factors have been proposed to co-ordinately regulate both transcript maturation, as well as degradation, but the order of events during mitochondrial RNA turnover is less well understood. Using a range of different genetically modified Drosophila melanogaster models, we studied the involvement of the RNA helicase SUV3, the polynucleotide phosphorylase PNPase, the leucine-rich pentatricopeptide repeat motif-containing protein LRPPRC, and the mitochondrial RNA poly(A) polymerase MTPAP, in stabilisation, polyadenylation, and degradation of mitochondrial transcripts. Our results show a tight collaborative activity of these factors in vivo and reveal a clear hierarchical order of events leading to mitochondrial mRNA maturation. Furthermore, we demonstrate that the loss of SUV3, PNPase, or MTPAP leads to the accumulation of mitochondrial-derived antisense RNA in the cytoplasm of cells, which is associated with an altered immune-response in flies.
Collapse
Affiliation(s)
- Aleksandra Pajak
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Isabelle Laine
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Paula Clemente
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Najla El-Fissi
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Florian A. Schober
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Roberta Filograna
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
| | - Ashish Dhir
- Centre for Genomic and Experimental Medicine, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Anna Wedell
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Max Planck Institute Biology of Ageing - Karolinska Institutet Laboratory, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| |
Collapse
|
19
|
Ma L, Liu F, Chiba H, Yuan X. The mitochondrial genomes of three skippers: Insights into the evolution of the family Hesperiidae (Lepidoptera). Genomics 2019; 112:432-441. [PMID: 30898470 DOI: 10.1016/j.ygeno.2019.03.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 03/08/2019] [Accepted: 03/13/2019] [Indexed: 10/27/2022]
Abstract
We sequenced the mitogenomes of Astictopterus jama, Isoteinon lamprospilus and Notocrypta curvifascia to obtain further insight into the mitogenomic architecture evolution and performed phylogenetic reconstruction using 29 Hesperiidae mitogenome sequences. The complete mitogenome sequences of A. jama, I. lamprospilus and N. curvifascia are 15,430, 15,430 and 15,546 bp in size, respectively. All contain 13 protein-coding genes, 2 ribosomal RNA genes, 22 transfer RNA genes, and an A + T-rich region. Nucleotide composition is A + T biased, and the majority of the protein-coding genes exhibit a negative AT-skew, which is reflected in the nucleotide composition, codon, and amino acid usage. The A + T-rich region is comprised of nonrepetitive sequences, including the motif ATAGA followed by a poly-T stretch, a microsatellite-like element next to the ATTTA motif, and a poly-A adjacent to tRNAs. Although most genes evolve under a strong purifying selection, the entire nad gene family (especially nad6) exhibits somewhat relaxed purifying selection, and atp8, evolving under a highly relaxed selection, is an outlier in the family Hesperiidae. Several different approaches relatively consistently indicated that nad6, atp8 and nad4 are comparatively fast-evolving genes in this family, which may have implications for future phylogenetic, population genetics and species diagnostics studies. For phylogenetic analyses of Hesperiidae, we tested a few datasets, and found that the one comprising all 37 genes produced the highest node support, indicating that the inclusion of RNAs improves the phylogenetic signal. Results indicate that subfamilies Euschemoninae, Heteropterinae, and Coeliadinae are monophyletic with strong nodal support, but Pyrginae and Eudaminae are paraphyletic. Finally, we confirm that A. jama and I. lamprospilus are close relatives.
Collapse
Affiliation(s)
- Luyao Ma
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Fangfang Liu
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Hideyuki Chiba
- B.P. Bishop Museum, Honolulu, HI, United States of America
| | - Xiangqun Yuan
- Key Laboratory of Plant Protection Resources and Pest Management, Ministry of Education, College of Plant Protection, Northwest A&F University, Yangling, Shaanxi 712100, China.
| |
Collapse
|
20
|
Brenner WG, Mader M, Müller NA, Hoenicka H, Schroeder H, Zorn I, Fladung M, Kersten B. High Level of Conservation of Mitochondrial RNA Editing Sites Among Four Populus Species. G3 (BETHESDA, MD.) 2019; 9:709-717. [PMID: 30617214 PMCID: PMC6404595 DOI: 10.1534/g3.118.200763] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 12/01/2019] [Indexed: 01/29/2023]
Abstract
RNA editing occurs in the endosymbiont organelles of higher plants as C-to-U conversions of defined nucleotides. The availability of large quantities of RNA sequencing data makes it possible to identify RNA editing sites and to quantify their editing extent. We have investigated RNA editing in 34 protein-coding mitochondrial transcripts of four Populus species, a genus noteworthy for its remarkably small number of RNA editing sites compared to other angiosperms. 27 of these transcripts were subject to RNA editing in at least one species. In total, 355 RNA editing sites were identified with high confidence, their editing extents ranging from 10 to 100%. The most heavily edited transcripts were ccmB with the highest density of RNA editing sites (53.7 sites / kb) and ccmFn with the highest number of sites (39 sites). Most of the editing events are at position 1 or 2 of the codons, usually altering the encoded amino acid, and are highly conserved among the species, also with regard to their editing extent. However, one SNP was found in the newly sequenced and annotated mitochondrial genome of P. alba resulting in the loss of an RNA editing site compared to P. tremula and P. davidiana This SNP causes a C-to-T transition and an amino acid exchange from Ser to Phe, highlighting the widely discussed role of RNA editing in compensating mutations.
Collapse
Affiliation(s)
| | - Malte Mader
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | | | - Hans Hoenicka
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Hilke Schroeder
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Ingo Zorn
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Matthias Fladung
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| | - Birgit Kersten
- Thünen Institute of Forest Genetics, 22927 Grosshansdorf, Germany
| |
Collapse
|
21
|
Dos Santos RF, Quendera AP, Boavida S, Seixas AF, Arraiano CM, Andrade JM. Major 3'-5' Exoribonucleases in the Metabolism of Coding and Non-coding RNA. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2018; 159:101-155. [PMID: 30340785 DOI: 10.1016/bs.pmbts.2018.07.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
3'-5' exoribonucleases are key enzymes in the degradation of superfluous or aberrant RNAs and in the maturation of precursor RNAs into their functional forms. The major bacterial 3'-5' exoribonucleases responsible for both these activities are PNPase, RNase II and RNase R. These enzymes are of ancient nature with widespread distribution. In eukaryotes, PNPase and RNase II/RNase R enzymes can be found in the cytosol and in mitochondria and chloroplasts; RNase II/RNase R-like enzymes are also found in the nucleus. Humans express one PNPase (PNPT1) and three RNase II/RNase R family members (Dis3, Dis3L and Dis3L2). These enzymes take part in a multitude of RNA surveillance mechanisms that are critical for translation accuracy. Although active against a wide range of both coding and non-coding RNAs, the different 3'-5' exoribonucleases exhibit distinct substrate affinities. The latest studies on these RNA degradative enzymes have contributed to the identification of additional homologue proteins, the uncovering of novel RNA degradation pathways, and to a better comprehension of several disease-related processes and response to stress, amongst many other exciting findings. Here, we provide a comprehensive and up-to-date overview on the function, structure, regulation and substrate preference of the key 3'-5' exoribonucleases involved in RNA metabolism.
Collapse
Affiliation(s)
- Ricardo F Dos Santos
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Ana P Quendera
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Sofia Boavida
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - André F Seixas
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - Cecília M Arraiano
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal
| | - José M Andrade
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Oeiras, Portugal.
| |
Collapse
|
22
|
Abstract
In bilaterian animals the 3′ ends of microRNAs (miRNAs) are frequently modified by tailing and trimming. These modifications affect miRNA-mediated gene regulation by modulating miRNA stability. Here, we analyzed data from three nonbilaterian animals: two cnidarians (Nematostella vectensis and Hydra magnipapillata) and one poriferan (Amphimedon queenslandica). Our analysis revealed that nonbilaterian miRNAs frequently undergo modifications like the bilaterian counterparts: the majority are expressed as different length isoforms and frequent modifications of the 3′ end by mono U or mono A tailing are observed. Moreover, as the factors regulating miRNA modifications are largely uncharacterized in nonbilaterian animal phyla, in present study, we investigated the evolution of 3′ terminal uridylyl transferases (TUTases) that are known to involved in miRNA 3′ nontemplated modifications in Bilateria. Phylogenetic analysis on TUTases showed that TUTase1 and TUTase6 are a result of duplication in bilaterians and that TUTase7 and TUTase4 are the result of a vertebrate-specific duplication. We also find an unexpected number of Drosophila-specific gene duplications and domain losses in most of the investigated gene families. Overall, our findings shed new light on the evolutionary history of TUTases in Metazoa, as they reveal that this core set of enzymes already existed in the last common ancestor of all animals and was probably involved in modifying small RNAs in a similar fashion to its present activity in bilaterians.
Collapse
Affiliation(s)
- Vengamanaidu Modepalli
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Yehu Moran
- Department of Ecology, Evolution and Behavior, Alexander Silberman Institute of Life Sciences, Faculty of Science, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
23
|
RNA-stabilization factors in chloroplasts of vascular plants. Essays Biochem 2018; 62:51-64. [PMID: 29453323 PMCID: PMC5897788 DOI: 10.1042/ebc20170061] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 01/02/2018] [Accepted: 01/12/2018] [Indexed: 12/23/2022]
Abstract
In contrast to the cyanobacterial ancestor, chloroplast gene expression is predominantly governed on the post-transcriptional level such as modifications of the RNA sequence, decay rates, exo- and endonucleolytic processing as well as translational events. The concerted function of numerous chloroplast RNA-binding proteins plays a fundamental and often essential role in all these processes but our understanding of their impact in regulation of RNA degradation is only at the beginning. Moreover, metabolic processes and post-translational modifications are thought to affect the function of RNA protectors. These protectors contain a variety of different RNA-recognition motifs, which often appear as multiple repeats. They are required for normal plant growth and development as well as diverse stress responses and acclimation processes. Interestingly, most of the protectors are plant specific which reflects a fast-evolving RNA metabolism in chloroplasts congruent with the diverging RNA targets. Here, we mainly focused on the characteristics of known chloroplast RNA-binding proteins that protect exonuclease-sensitive sites in chloroplasts of vascular plants.
Collapse
|
24
|
Yu J, An J, Li Y, Boyko CB. The first complete mitochondrial genome of a parasitic isopod supports Epicaridea Latreille, 1825 as a suborder and reveals the less conservative genome of isopods. Syst Parasitol 2018; 95:465-478. [PMID: 29644508 DOI: 10.1007/s11230-018-9792-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2017] [Accepted: 03/14/2018] [Indexed: 11/26/2022]
Abstract
The complete mitochondrial genome sequence of the holoparasitic isopod Gyge ovalis (Shiino, 1939) has been determined. The mitogenome is 14,268 bp in length and contains 34 genes: 13 protein-coding genes, two ribosomal RNA, 19 tRNA and a control region. Three tRNA genes (trnE, trnI and trnS1) are missing. Most of the tRNA genes show secondary structures which derive from the usual cloverleaf pattern except for trnC which is characterised by the loss of the DHU-arm. Compared to the isopod ground pattern and Eurydice pulchra Leach, 1815 (suborder Cymothoida Wägele, 1989), the genome of G. ovalis shows few differences, with changes only around the control region. However, the genome of G. ovalis is very different from that of non-cymothoidan isopods and reveals that the gene order evolution in isopods is less conservative compared to other crustaceans. Phylogenic trees were constructed using maxiumum likelihood and Bayesian inference analyses based on 13 protein-coding genes. The results do not support the placement of G. ovalis with E. pulchra and Bathynomus sp. in the same suborder; rather, G. ovalis appears to have a closer relationship to Ligia oceanica (Linnaeus, 1767), but this result suggests a need for more data and further analysis. Nevertheless, these results cast doubt that Epicaridea Latreille, 1825 can be placed as an infraorder within the suborder Cymothoida, and Epicaridea appears to also deserve subordinal rank. Further development of robust phylogenetic relationships across Isopoda Latreille, 1817 will require more genetic data from a greater diversity of taxa belonging to all isopod suborders.
Collapse
Affiliation(s)
- Jialu Yu
- School of Life Science, Shanxi Normal University, Linfen, 041000, People's Republic of China
| | - Jianmei An
- School of Life Science, Shanxi Normal University, Linfen, 041000, People's Republic of China.
| | - Yue Li
- School of Life Science, Shanxi Normal University, Linfen, 041000, People's Republic of China
| | - Christopher B Boyko
- Division of Invertebrate Zoology, American Museum of Natural History, Central Park West at 79th Street, New York, NY, 10024, USA
| |
Collapse
|
25
|
Gallaher SD, Fitz-Gibbon ST, Strenkert D, Purvine SO, Pellegrini M, Merchant SS. High-throughput sequencing of the chloroplast and mitochondrion of Chlamydomonas reinhardtii to generate improved de novo assemblies, analyze expression patterns and transcript speciation, and evaluate diversity among laboratory strains and wild isolates. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2018; 93:545-565. [PMID: 29172250 PMCID: PMC5775909 DOI: 10.1111/tpj.13788] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Revised: 11/10/2017] [Accepted: 11/20/2017] [Indexed: 05/18/2023]
Abstract
Chlamydomonas reinhardtii is a unicellular chlorophyte alga that is widely studied as a reference organism for understanding photosynthesis, sensory and motile cilia, and for development of an algal-based platform for producing biofuels and bio-products. Its highly repetitive, ~205-kbp circular chloroplast genome and ~15.8-kbp linear mitochondrial genome were sequenced prior to the advent of high-throughput sequencing technologies. Here, high coverage shotgun sequencing was used to assemble both organellar genomes de novo. These new genomes correct dozens of errors in the prior genome sequences and annotations. Genome sequencing coverage indicates that each cell contains on average 83 copies of the chloroplast genome and 130 copies of the mitochondrial genome. Using protocols and analyses optimized for organellar transcripts, RNA-Seq was used to quantify their relative abundances across 12 different growth conditions. Forty-six percent of total cellular mRNA is attributable to high expression from a few dozen chloroplast genes. RNA-Seq data were used to guide gene annotation, to demonstrate polycistronic gene expression, and to quantify splicing of psaA and psbA introns. In contrast to a conclusion from a recent study, we found that chloroplast transcripts are not edited. Unexpectedly, cytosine-rich polynucleotide tails were observed at the 3'-end of all mitochondrial transcripts. A comparative genomics analysis of eight laboratory strains and 11 wild isolates of C. reinhardtii identified 2658 variants in the organellar genomes, which is 1/10th as much genetic diversity as is found in the nucleus.
Collapse
Affiliation(s)
- Sean D. Gallaher
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
- Corresponding author:
| | - Sorel T. Fitz-Gibbon
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Daniela Strenkert
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| | - Samuel O. Purvine
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, WA 99352
| | - Matteo Pellegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, CA 90095
| | - Sabeeha S. Merchant
- Department of Chemistry and Biochemistry, University of California, Los Angeles, CA 90095
| |
Collapse
|
26
|
Han W, Pan S, López-Méndez B, Montoya G, She Q. Allosteric regulation of Csx1, a type IIIB-associated CARF domain ribonuclease by RNAs carrying a tetraadenylate tail. Nucleic Acids Res 2017; 45:10740-10750. [PMID: 28977519 PMCID: PMC5737841 DOI: 10.1093/nar/gkx726] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Accepted: 08/08/2017] [Indexed: 12/26/2022] Open
Abstract
CRISPR–Cas systems protect prokaryotes against invading viruses and plasmids. The system is associated with a large number of Cas accessory proteins among which many contain a CARF (CRISPR-associated Rossmann fold) domain implicated in ligand binding and a HEPN (higher eukaryotes and prokaryotes nucleotide-binding) nuclease domain. Here, such a dual domain protein, i.e. the Sulfolobus islandicus Csx1 (SisCsx1) was characterized. The enzyme exhibited metal-independent single-strand specific ribonuclease activity. In fact, SisCsx1 showed a basal RNase activity in the absence of ligand; upon the binding of an RNA ligand carrying four continuous adenosines at the 3′-end (3′-tetra-rA), the activated SisCsx1 degraded RNA substrate with a much higher turnover rate. Amino acid substitution mutants of SisCsx1 were obtained, and characterization of these mutant proteins showed that the CARF domain of the enzyme is responsible for binding to 3′-tetra-rA and the ligand binding strongly activates RNA cleavage by the HEPN domain. Since RNA polyadenylation is an important step in RNA decay in prokaryotes, and poly(A) RNAs can activate CARF domain proteins, the poly(A) RNA may function as an important signal in the cellular responses to viral infection and environmental stimuli, leading to degradation of both viral and host transcripts and eventually to cell dormancy or cell death.
Collapse
Affiliation(s)
- Wenyuan Han
- Archaea Center, Department of Biology, University of Copenhagen, Ole Maal?es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark
| | - Saifu Pan
- State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| | - Blanca López-Méndez
- Protein Structure & Function Programme, Protein Production and Characterization Platform, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Guillermo Montoya
- Macromolecular Crystallography Group, Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Blegdamsvej 3B, DK-2200 Copenhagen, Denmark
| | - Qunxin She
- Archaea Center, Department of Biology, University of Copenhagen, Ole Maal⊘es Vej 5, Copenhagen Biocenter, DK-2200 Copenhagen N, Denmark.,State Key Laboratory of Agricultural Microbiology and College of Life Science and Technology, Huazhong Agricultural University, 430070 Wuhan, China
| |
Collapse
|
27
|
Zou H, Jakovlić I, Chen R, Zhang D, Zhang J, Li WX, Wang GT. The complete mitochondrial genome of parasitic nematode Camallanus cotti: extreme discontinuity in the rate of mitogenomic architecture evolution within the Chromadorea class. BMC Genomics 2017; 18:840. [PMID: 29096600 PMCID: PMC5669012 DOI: 10.1186/s12864-017-4237-x] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 10/24/2017] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Complete mitochondrial genomes are much better suited for the taxonomic identification and phylogenetic studies of nematodes than morphology or traditionally-used molecular markers, but they remain unavailable for the entire Camallanidae family (Chromadorea). As the only published mitogenome in the Camallanina suborder (Dracunculoidea superfamily) exhibited a unique gene order, the other objective of this research was to study the evolution of mitochondrial architecture in the Spirurida order. Thus, we sequenced the complete mitogenome of the Camallanus cotti fish parasite and conducted structural and phylogenomic comparative analyses with all available Spirurida mitogenomes. RESULTS The mitogenome is exceptionally large (17,901 bp) among the Chromadorea and, with 46 (pseudo-) genes, exhibits a unique architecture among nematodes. Six protein-coding genes (PCGs) and six tRNAs are duplicated. An additional (seventh) tRNA (Trp) was probably duplicated by the remolding of tRNA-Ser2 (missing). Two pairs of these duplicated PCGs might be functional; three were incomplete and one contained stop codons. Apart from Ala and Asp, all other duplicated tRNAs are conserved and probably functional. Only 19 unique tRNAs were found. Phylogenomic analysis included Gnathostomatidae (Spirurina) in the Camallanina suborder. CONCLUSIONS Within the Nematoda, comparable PCG duplications were observed only in the enoplean Mermithidae family, but those result from mitochondrial recombination, whereas characteristics of the studied mitogenome suggest that likely rearrangement mechanisms are either a series of duplications, transpositions and random loss events, or duplication, fragmentation and subsequent reassembly of the mitogenome. We put forward a hypothesis that the evolution of mitogenomic architecture is extremely discontinuous, and that once a long period of stasis in gene order and content has been punctuated by a rearrangement event, such a destabilised mitogenome is much more likely to undergo subsequent rearrangement events, resulting in an exponentially accelerated evolutionary rate of mitogenomic rearrangements. Implications of this model are particularly important for the application of gene order similarity as an additive source of phylogenetic information. Chromadorean nematodes, and particularly Camallanina clade (with C. cotti as an example of extremely accelerated rate of rearrangements), might be a good model to further study this discontinuity in the dynamics of mitogenomic evolution.
Collapse
Affiliation(s)
- Hong Zou
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Ivan Jakovlić
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Rong Chen
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Dong Zhang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049 People’s Republic of China
| | - Jin Zhang
- Bio-Transduction Lab, Wuhan Institute of Biotechnology, Wuhan, 430075 People’s Republic of China
| | - Wen-Xiang Li
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| | - Gui-Tang Wang
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, and State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072 People’s Republic of China
| |
Collapse
|
28
|
Dalla Rosa I, Zhang H, Khiati S, Wu X, Pommier Y. Transcription profiling suggests that mitochondrial topoisomerase IB acts as a topological barrier and regulator of mitochondrial DNA transcription. J Biol Chem 2017; 292:20162-20172. [PMID: 29021209 DOI: 10.1074/jbc.m117.815241] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 10/01/2017] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial DNA (mtDNA) is essential for cell viability because it encodes subunits of the respiratory chain complexes. Mitochondrial topoisomerase IB (TOP1MT) facilitates mtDNA replication by removing DNA topological tensions produced during mtDNA transcription, but it appears to be dispensable. To test whether cells lacking TOP1MT have aberrant mtDNA transcription, we performed mitochondrial transcriptome profiling. To that end, we designed and implemented a customized tiling array, which enabled genome-wide, strand-specific, and simultaneous detection of all mitochondrial transcripts. Our technique revealed that Top1mt KO mouse cells process the mitochondrial transcripts normally but that protein-coding mitochondrial transcripts are elevated. Moreover, we found discrete long noncoding RNAs produced by H-strand transcription and encompassing the noncoding regulatory region of mtDNA in human and murine cells and tissues. Of note, these noncoding RNAs were strongly up-regulated in the absence of TOP1MT. In contrast, 7S DNA, produced by mtDNA replication, was reduced in the Top1mt KO cells. We propose that the long noncoding RNA species in the D-loop region are generated by the extension of H-strand transcripts beyond their canonical stop site and that TOP1MT acts as a topological barrier and regulator for mtDNA transcription and D-loop formation.
Collapse
Affiliation(s)
- Ilaria Dalla Rosa
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Hongliang Zhang
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Salim Khiati
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892
| | - Xiaolin Wu
- Laboratory of Molecular Technology, NCI-Frederick, National Institutes of Health, Frederick, Maryland 21702
| | - Yves Pommier
- Laboratory of Molecular Pharmacology, Developmental Therapeutics Branch, Center for Cancer Research, NCI, National Institutes of Health, Bethesda, Maryland 20892.
| |
Collapse
|
29
|
Polyadenylation and degradation of RNA in the mitochondria. Biochem Soc Trans 2017; 44:1475-1482. [PMID: 27911729 DOI: 10.1042/bst20160126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 06/24/2016] [Accepted: 06/28/2016] [Indexed: 12/20/2022]
Abstract
Mitochondria have their own gene expression machinery and the relative abundance of RNA products in these organelles in animals is mostly dictated by their rate of degradation. The molecular mechanisms regulating the differential accumulation of the transcripts in this organelle remain largely elusive. Here, we summarize the present knowledge of how RNA is degraded in human mitochondria and describe the coexistence of stable poly(A) tails and the nonabundant tails, which have been suggested to play a role in the RNA degradation process.
Collapse
|
30
|
Wen HB, Cao ZM, Hua D, Xu P, Ma XY, Jin W, Yuan XH, Gu RB. The Complete Maternally and Paternally Inherited Mitochondrial Genomes of a Freshwater Mussel Potamilus alatus (Bivalvia: Unionidae). PLoS One 2017; 12:e0169749. [PMID: 28068380 PMCID: PMC5222514 DOI: 10.1371/journal.pone.0169749] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 12/21/2016] [Indexed: 11/18/2022] Open
Abstract
Doubly uniparental inheritance (DUI) of mitochondrial DNA, found only in some bivalve families and characterized by the existence of gender-associated mtDNA lineages that are inherited through males (M-type) or females (F-type), is one of the very few exceptions to the general rule of strict maternal mtDNA inheritance in animals. M-type sequences are often undetected and hence still underrepresented in the GenBank, which hinders the progress of the understanding of the DUI phenomenon. We have sequenced and analyzed the complete M and F mitogenomes of a freshwater mussel, Potamilus alatus. The M-type was 493 bp longer (M = 16 560, F = 16 067 bp). Gene contents, order and the distribution of genes between L and H strands were typical for unionid mussels. Candidates for the two ORFan genes (forf and morf) were found in respective mitogenomes. Both mitogenomes had a very similar A+T bias: F = 61% and M = 62.2%. The M mitogenome-specific cox2 extension (144 bp) is much shorter than in other sequenced unionid mitogenomes (531-576 bp), which might be characteristic for the Potamilus genus. The overall topology of the phylogenetic tree is in very good agreement with the currently accepted phylogenetic relationships within the Unionidae: both studied sequences were placed within the Ambleminae subfamily clusters in the corresponding M and F clades.
Collapse
Affiliation(s)
- Hai B Wen
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Zhe M Cao
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Dan Hua
- Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Pao Xu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Xue Y Ma
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Wu Jin
- Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Xin H Yuan
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| | - Ruo B Gu
- Wuxi Fishery College, Nanjing Agriculture University, Jiangsu, China.,Key Laboratory of Genetic Breeding and Aquaculture Biology of Freshwater Fishes-Ministry of Agriculture, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China.,Sino-US Cooperative Laboratory for Germplasm Conservation and Utilization of Freshwater Mollusks, Freshwater Fisheries Research Center, Chinese Academy of Fishery Sciences, Jiangsu, China
| |
Collapse
|
31
|
Monogonont Rotifer, Brachionus calyciflorus, Possesses Exceptionally Large, Fragmented Mitogenome. PLoS One 2016; 11:e0168263. [PMID: 27959933 PMCID: PMC5154566 DOI: 10.1371/journal.pone.0168263] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Accepted: 11/28/2016] [Indexed: 11/23/2022] Open
Abstract
In contrast to the highly conserved mitogenomic structure and organisation in most animals (including rotifers), the two previously sequenced monogonont rotifer mitogenomes were fragmented into two chromosomes similar in size, each of which possessed one major non-coding region (mNCR) of about 4–5 Kbp. To further explore this phenomenon, we have sequenced and analysed the mitogenome of one of the most studied monogonont rotifers, Brachionus calyciflorus. It is also composed of two circular chromosomes, but the chromosome-I is extremely large (27 535 bp; 3 mNCRs), whereas the chromosome-II is relatively small (9 833 bp; 1 mNCR). With the total size of 37 368 bp, it is one of the largest metazoan mitogenomes ever reported. In comparison to other monogononts, gene distribution between the two chromosomes and gene order are different and the number of mNCRs is doubled. Atp8 was not found (common in rotifers), and Cytb was present in two copies (the first report in rotifers). A high number (99) of SNPs indicates fast evolution of the Cytb-1 copy. The four mNCRs (5.3–5.5 Kb) were relatively similar. Publication of this sequence shall contribute to the understanding of the evolutionary history of the unique mitogenomic organisation in this group of rotifers.
Collapse
|
32
|
Cribbet MR, Logan RW, Edwards MD, Hanlon E, Bien Peek C, Stubblefield JJ, Vasudevan S, Ritchey F, Frank E. Circadian rhythms and metabolism: from the brain to the gut and back again. Ann N Y Acad Sci 2016; 1385:21-40. [PMID: 27589593 PMCID: PMC5428740 DOI: 10.1111/nyas.13188] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/05/2016] [Indexed: 12/21/2022]
Abstract
This paper focuses on the relationship between the circadian system and glucose metabolism. Research across the translational spectrum confirms the importance of the circadian system for glucose metabolism and offers promising clues as to when and why these systems go awry. In particular, basic research has started to clarify the molecular and genetic mechanisms through which the circadian system regulates metabolism. The study of human behavior, especially in the context of psychiatric disorders, such as bipolar disorder and major depression, forces us to see how inextricably linked mental health and metabolic health are. We also emphasize the remarkable opportunities for advancing circadian science through big data and advanced analytics. Advances in circadian research have translated into environmental and pharmacological interventions with tremendous therapeutic potential.
Collapse
Affiliation(s)
- Matthew R Cribbet
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ryan W Logan
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mathew D Edwards
- Division of Neurobiology, Medical Research Council Laboratory of Molecular Biology, Cambridge, United Kingdom
| | - Erin Hanlon
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Clara Bien Peek
- Department of Medicine, Division of Endocrinology, Metabolism and Molecular Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois
| | - Jeremy J Stubblefield
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas
| | | | - Fiona Ritchey
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Ellen Frank
- Western Psychiatric Institute and Clinic, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| |
Collapse
|
33
|
Bratic A, Clemente P, Calvo-Garrido J, Maffezzini C, Felser A, Wibom R, Wedell A, Freyer C, Wredenberg A. Mitochondrial Polyadenylation Is a One-Step Process Required for mRNA Integrity and tRNA Maturation. PLoS Genet 2016; 12:e1006028. [PMID: 27176048 PMCID: PMC4866704 DOI: 10.1371/journal.pgen.1006028] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 04/14/2016] [Indexed: 12/20/2022] Open
Abstract
Polyadenylation has well characterised roles in RNA turnover and translation in a variety of biological systems. While polyadenylation on mitochondrial transcripts has been suggested to be a two-step process required to complete translational stop codons, its involvement in mitochondrial RNA turnover is less well understood. We studied knockdown and knockout models of the mitochondrial poly(A) polymerase (MTPAP) in Drosophila melanogaster and demonstrate that polyadenylation of mitochondrial mRNAs is exclusively performed by MTPAP. Further, our results show that mitochondrial polyadenylation does not regulate mRNA stability but protects the 3' terminal integrity, and that despite a lack of functioning 3' ends, these trimmed transcripts are translated, suggesting that polyadenylation is not required for mitochondrial translation. Additionally, loss of MTPAP leads to reduced steady-state levels and disturbed maturation of tRNACys, indicating that polyadenylation in mitochondria might be important for the stability and maturation of specific tRNAs. The polyadenylation of cellular RNAs is a well-studied signal for gene expression, with a defined function in either RNA turnover or translation, in the majority of systems. In mammalian mitochondria the role of polyadenylation is less clear, and can to date only be attributed to completing the translational stop signal on several mitochondrial transcripts. Previous work though demonstrated that mitochondrial polyadenylation requires a certain length and shortening of the poly(A) tail signal has detrimental effects on mitochondrial function. In this study we deleted the mitochondrial polymerase responsible for polyadenylation in the fly, Drosophila melanogaster, and demonstrate that the mitochondrial poly(A) tail is essential for preserving the 3’ ends of mitochondrial transcripts, with no other enzyme capable of completing stop signals. Our study also shows that polyadenylation does not regulate transcript stability nor is it required for translation, but might be involved in the maturation of certain mitochondrial tRNAs. We therefore conclude that besides completing translational stop signals, mitochondrial polyadenylation protects the 3’ termini from degradation.
Collapse
Affiliation(s)
- Ana Bratic
- Department of Mitochondrial Biology, Max Planck Institute for Biology of Ageing, Cologne, Germany
| | - Paula Clemente
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Javier Calvo-Garrido
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Camilla Maffezzini
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Andrea Felser
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Rolf Wibom
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Anna Wedell
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Christoph Freyer
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| | - Anna Wredenberg
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
- Centre for Inherited Metabolic Diseases, Karolinska University Hospital, Stockholm, Sweden
- * E-mail: (CF); (AW)
| |
Collapse
|
34
|
Widespread 3'-end uridylation in eukaryotic RNA viruses. Sci Rep 2016; 6:25454. [PMID: 27151171 PMCID: PMC4858684 DOI: 10.1038/srep25454] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Accepted: 04/15/2016] [Indexed: 01/08/2023] Open
Abstract
RNA 3′ uridylation occurs pervasively in eukaryotes, but is poorly characterized in viruses. In this study, we demonstrate that a broad array of RNA viruses, including mycoviruses, plant viruses and animal viruses, possess a novel population of RNA species bearing nontemplated oligo(U) or (U)-rich tails, suggesting widespread 3′ uridylation in eukaryotic viruses. Given the biological relevance of 3′ uridylation to eukaryotic RNA degradation, we propose a conserved but as-yet-unknown mechanism in virus-host interaction.
Collapse
|
35
|
Gazestani VH, Hampton M, Abrahante JE, Salavati R, Zimmer SL. circTAIL-seq, a targeted method for deep analysis of RNA 3' tails, reveals transcript-specific differences by multiple metrics. RNA (NEW YORK, N.Y.) 2016; 22:477-86. [PMID: 26759453 PMCID: PMC4748824 DOI: 10.1261/rna.054494.115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Accepted: 12/09/2015] [Indexed: 05/28/2023]
Abstract
Post-transcriptionally added RNA 3' nucleotide extensions, or tails, impose numerous regulatory effects on RNAs, including effects on RNA turnover and translation. However, efficient methods for in-depth tail profiling of a transcript of interest are still lacking, hindering available knowledge particularly of tail populations that are highly heterogeneous. Here, we developed a targeted approach, termed circTAIL-seq, to quantify both major and subtle differences of heterogeneous tail populations. As proof-of-principle, we show that circTAIL-seq quantifies the differences in tail qualities between two selected Trypanosoma brucei mitochondrial transcripts. The results demonstrate the power of the developed method in identification, discrimination, and quantification of different tail states that the population of one transcript can possess. We further show that circTAIL-seq can detect the tail characteristics for variants of transcripts that are not easily detectable by conventional approaches, such as degradation intermediates. Our findings are not only well supported by previous knowledge, but they also expand this knowledge and provide experimental evidence for previous hypotheses. In the future, this approach can be used to determine changes in tail qualities in response to environmental or internal stimuli, or upon silencing of genes of interest in mRNA-processing pathways. In summary, circTAIL-seq is an effective tool for comparing nonencoded RNA tails, especially when the tails are extremely variable or transcript of interest is low abundance.
Collapse
Affiliation(s)
- Vahid H Gazestani
- Institute of Parasitology, McGill University, Québec H9X 3V9, Canada
| | - Marshall Hampton
- Department of Mathematics, University of Minnesota Duluth, Duluth, Minnesota 55812, USA
| | - Juan E Abrahante
- University of Minnesota Informatics Institute, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Reza Salavati
- Institute of Parasitology, McGill University, Québec H9X 3V9, Canada
| | - Sara L Zimmer
- Department of Biomedical Sciences, University of Minnesota Medical School, Duluth, Minnesota 55812, USA
| |
Collapse
|
36
|
Levy S, Allerston CK, Liveanu V, Habib MR, Gileadi O, Schuster G. Identification of LACTB2, a metallo-β-lactamase protein, as a human mitochondrial endoribonuclease. Nucleic Acids Res 2016; 44:1813-32. [PMID: 26826708 PMCID: PMC4770246 DOI: 10.1093/nar/gkw050] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 01/19/2016] [Indexed: 11/23/2022] Open
Abstract
Post-transcriptional control of mitochondrial gene expression, including the
processing and generation of mature transcripts as well as their degradation, is a
key regulatory step in gene expression in human mitochondria. Consequently,
identification of the proteins responsible for RNA processing and degradation in this
organelle is of great importance. The metallo-β-lactamase (MBL) is a candidate
protein family that includes ribo- and deoxyribonucleases. In this study, we
discovered a function for LACTB2, an orphan MBL protein found in mammalian
mitochondria. Solving its crystal structure revealed almost perfect alignment of the
MBL domain with CPSF73, as well as to other ribonucleases of the MBL superfamily.
Recombinant human LACTB2 displayed robust endoribonuclease activity on ssRNA with a
preference for cleavage after purine-pyrimidine sequences. Mutational analysis
identified an extended RNA-binding site. Knockdown of LACTB2 in cultured cells caused
a moderate but significant accumulation of many mitochondrial transcripts, and its
overexpression led to the opposite effect. Furthermore, manipulation of LACTB2
expression resulted in cellular morphological deformation and cell death. Together,
this study discovered that LACTB2 is an endoribonuclease that is involved in the
turnover of mitochondrial RNA, and is essential for mitochondrial function in human
cells.
Collapse
Affiliation(s)
- Shiri Levy
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Charles K Allerston
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Varda Liveanu
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Mouna R Habib
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| | - Opher Gileadi
- Structural Genomics Consortium, Nuffield Department of Medicine, University of Oxford, Oxford OX3 7DQ, UK
| | - Gadi Schuster
- Faculty of Biology, Technion- Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
37
|
Bell SA, Shen C, Brown A, Hunt AG. Experimental Genome-Wide Determination of RNA Polyadenylation in Chlamydomonas reinhardtii. PLoS One 2016; 11:e0146107. [PMID: 26730730 PMCID: PMC4701671 DOI: 10.1371/journal.pone.0146107] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/14/2015] [Indexed: 11/20/2022] Open
Abstract
The polyadenylation of RNA is a near-universal feature of RNA metabolism in eukaryotes. This process has been studied in the model alga Chlamydomonas reinhardtii using low-throughput (gene-by-gene) and high-throughput (transcriptome sequencing) approaches that recovered poly(A)-containing sequence tags which revealed interesting features of this critical process in Chlamydomonas. In this study, RNA polyadenylation has been studied using the so-called Poly(A) Tag Sequencing (PAT-Seq) approach. Specifically, PAT-Seq was used to study poly(A) site choice in cultures grown in four different media types—Tris-Phosphate (TP), Tris-Phosphate-Acetate (TAP), High-Salt (HS), and High-Salt-Acetate (HAS). The results indicate that: 1. As reported before, the motif UGUAA is the primary, and perhaps sole, cis-element that guides mRNA polyadenylation in the nucleus; 2. The scope of alternative polyadenylation events with the potential to change the coding sequences of mRNAs is limited; 3. Changes in poly(A) site choice in cultures grown in the different media types are very few in number and do not affect protein-coding potential; 4. Organellar polyadenylation is considerable and affects primarily ribosomal RNAs in the chloroplast and mitochondria; and 5. Organellar RNA polyadenylation is a dynamic process that is affected by the different media types used for cell growth.
Collapse
Affiliation(s)
- Stephen A. Bell
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
| | - Chi Shen
- Division of Computer Science, Kentucky State University, Frankfort, Kentucky, United States of America
| | - Alishea Brown
- Division of Computer Science, Kentucky State University, Frankfort, Kentucky, United States of America
| | - Arthur G. Hunt
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
38
|
Doublet V, Ubrig E, Alioua A, Bouchon D, Marcadé I, Maréchal-Drouard L. Large gene overlaps and tRNA processing in the compact mitochondrial genome of the crustacean Armadillidium vulgare. RNA Biol 2015; 12:1159-68. [PMID: 26361137 DOI: 10.1080/15476286.2015.1090078] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
A faithful expression of the mitochondrial DNA is crucial for cell survival. Animal mitochondrial DNA (mtDNA) presents a highly compact gene organization. The typical 16.5 kbp animal mtDNA encodes 13 proteins, 2 rRNAs and 22 tRNAs. In the backyard pillbug Armadillidium vulgare, the rather small 13.9 kbp mtDNA encodes the same set of proteins and rRNAs as compared to animal kingdom mtDNA, but seems to harbor an incomplete set of tRNA genes. Here, we first confirm the expression of 13 tRNA genes in this mtDNA. Then we show the extensive repair of a truncated tRNA, the expression of tRNA involved in large gene overlaps and of tRNA genes partially or fully integrated within protein-coding genes in either direct or opposite orientation. Under selective pressure, overlaps between genes have been likely favored for strong genome size reduction. Our study underlines the existence of unknown biochemical mechanisms for the complete gene expression of A. vulgare mtDNA, and of co-evolutionary processes to keep overlapping genes functional in a compacted mitochondrial genome.
Collapse
Affiliation(s)
- Vincent Doublet
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Elodie Ubrig
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Abdelmalek Alioua
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| | - Didier Bouchon
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Isabelle Marcadé
- a Equipe Ecologie Evolution Symbiose; Laboratoire Ecologie et Biologie des Interactions , UMR CNRS 7267, Poitiers , France
| | - Laurence Maréchal-Drouard
- b Institut de biologie moléculaire des plantes; associated with the University of Strasbourg , Strasbourg , France
| |
Collapse
|
39
|
Tourasse NJ, Shtaida N, Khozin-Goldberg I, Boussiba S, Vallon O. The complete mitochondrial genome sequence of the green microalga Lobosphaera (Parietochloris) incisa reveals a new type of palindromic repetitive repeat. BMC Genomics 2015; 16:580. [PMID: 26238519 PMCID: PMC4524435 DOI: 10.1186/s12864-015-1792-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Accepted: 07/22/2015] [Indexed: 11/10/2022] Open
Abstract
Background Lobosphaera incisa, formerly known as Myrmecia incisa and then Parietochloris incisa, is an oleaginous unicellular green alga belonging to the class Trebouxiophyceae (Chlorophyta). It is the richest known plant source of arachidonic acid, an ω-6 poly-unsaturated fatty acid valued by the pharmaceutical and baby-food industries. It is therefore an organism of high biotechnological interest, and we recently reported the sequence of its chloroplast genome. Results We now report the complete sequence of the mitochondrial genome of L. incisa from high-throughput Illumina short-read sequencing. The circular chromosome of 69,997 bp is predicted to encode a total of 64 genes, some harboring specific self-splicing group I and group II introns. Overall, the gene content is highly similar to that of the mitochondrial genomes of other Trebouxiophyceae, with 34 protein-coding, 3 rRNA, and 27 tRNA genes. Genes are distributed in two clusters located on different DNA strands, a bipartite arrangement that suggests expression from two divergent promoters yielding polycistronic primary transcripts. The L. incisa mitochondrial genome contains families of intergenic dispersed DNA repeat sequences that are not shared with other known mitochondrial genomes of Trebouxiophyceae. The most peculiar feature of the genome is a repetitive palindromic repeat, the LIMP (L. Incisa Mitochondrial Palindrome), found 19 times in the genome. It is formed by repetitions of an AACCA pentanucleotide, followed by an invariant 7-nt loop and a complementary repeat of the TGGTT motif. Analysis of the genome sequencing reads indicates that the LIMP can be a substrate for large-scale genomic rearrangements. We speculate that LIMPs can act as origins of replication. Deep sequencing of the L. incisa transcriptome also suggests that the LIMPs with long stems are sites of transcript processing. The genome also contains five copies of a related palindromic repeat, the HyLIMP, with a 10-nt motif related to that of the LIMP. Conclusions The mitochondrial genome of L. incisa encodes a unique type of repetitive palindromic repeat sequence, the LIMP, which can mediate genome rearrangements and play a role in mitochondrial gene expression. Experimental studies are needed to confirm and further characterize the functional role(s) of the LIMP.
Collapse
Affiliation(s)
- Nicolas J Tourasse
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 - Université Pierre et Marie Curie, Paris, France. .,Institut de Biologie Physico-Chimique, FRC CNRS 550, Université Pierre et Marie Curie, Paris, France. .,ARNA Laboratory, INSERM UMR 869, Université Bordeaux 2, Bordeaux, France.
| | - Nastassia Shtaida
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Inna Khozin-Goldberg
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Sammy Boussiba
- Microalgal Biotechnology Laboratory, French Associates Institute for Agriculture and Biotechnology of Drylands, J. Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, 84990, Israel
| | - Olivier Vallon
- Institut de Biologie Physico-Chimique, UMR CNRS 7141 - Université Pierre et Marie Curie, Paris, France
| |
Collapse
|
40
|
Chevalier F, Ghulam MM, Rondet D, Pfannschmidt T, Merendino L, Lerbs-Mache S. Characterization of the psbH precursor RNAs reveals a precise endoribonuclease cleavage site in the psbT/psbH intergenic region that is dependent on psbN gene expression. PLANT MOLECULAR BIOLOGY 2015; 88:357-67. [PMID: 26012647 DOI: 10.1007/s11103-015-0325-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 04/23/2015] [Indexed: 05/15/2023]
Abstract
The plastid psbB operon harbours 5 genes, psbB, psbT, psbH, petB and petD. A sixth gene, the psbN gene, is located on the opposite DNA strand in the psbT/psbH intergenic region. Its transcription produces antisense RNA to a large part of the psbB pentacistronic mRNA. We have investigated whether transcription of the psbN gene, i.e. production of antisense RNA, influences psbT/psbH intergenic processing. Results reveal the existence of four different psbH precursor RNAs. Three of them result from processing and one is produced by transcription initiation. One of the processed RNAs is probably created by site-specific RNA cleavage. This RNA is absent in plants where the psbN gene is not transcribed suggesting that cleavage at this site is dependent on the formation of sense/antisense double-stranded RNA. In order to characterize the nuclease that might be responsible for double-stranded RNA cleavage, we analysed csp41a and csp41b knock-out mutants and the corresponding double mutant. Both CSP41 proteins are known to interact physically and CSP41a had been shown to cleave within 3'-untranslated region stem-loop structures, which contain double-stranded RNA, in vitro. We demonstrate that the psbH RNA, that is absent in plants where the psbN gene is not transcribed, is also strongly diminished in all csp41 plants. Altogether, results reveal a site-specific endoribonuclease cleavage event that seems to depend on antisense RNA and might implicate endoribonuclease activity of CSP41a.
Collapse
Affiliation(s)
- Fabien Chevalier
- Laboratoire Physiologie Cellulaire Végétale, UMR 5168, CNRS, Grenoble, France
| | | | | | | | | | | |
Collapse
|
41
|
Li W, Zhang Y, Zhang C, Pei X, Wang Z, Jia S. Presence of poly(A) and poly(A)-rich tails in a positive-strand RNA virus known to lack 3׳ poly(A) tails. Virology 2014; 454-455:1-10. [PMID: 24725926 DOI: 10.1016/j.virol.2014.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Revised: 12/08/2013] [Accepted: 02/01/2014] [Indexed: 01/08/2023]
Abstract
Here we show that Tobacco mosaic virus (TMV), a positive-strand RNA virus known to end with 3׳ tRNA-like structures, does possess a small fraction of gRNA bearing polyadenylate tails. Particularly, many tails are at sites corresponding to the 3׳ end of near full length gRNA, and are composed of poly(A)-rich sequences containing the other nucleotides in addition to adenosine, resembling the degradation-stimulating poly(A) tails observed in all biological kingdoms. Further investigations demonstrate that these polyadenylated RNA species are not enriched in chloroplasts. Silencing of cpPNPase, a chloroplast-localized polynucleotide polymerase known to not only polymerize the poly(A)-rich tails but act as a 3׳ to 5׳ exoribonuclease, does not change the profile of polyadenylate tails associated with TMV RNA. Nevertheless, because similar tails were also detected in other phylogenetically distinct positive-strand RNA viruses lacking poly(A) tails, such kind of polyadenylation may reflect a common but as-yet-unknown interface between hosts and viruses.
Collapse
Affiliation(s)
- Weimin Li
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China.
| | - Yongqiang Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Chao Zhang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xinwu Pei
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Zhixing Wang
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Shirong Jia
- Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
42
|
A poly(A)-specific ribonuclease directly regulates the poly(A) status of mitochondrial mRNA in Arabidopsis. Nat Commun 2014; 4:2247. [PMID: 23912222 DOI: 10.1038/ncomms3247] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 07/05/2013] [Indexed: 01/17/2023] Open
Abstract
Coordination of gene expression in the organelles and the nucleus is important for eukaryotic cell function. Transcriptional and post-transcriptional gene regulation in mitochondria remains incompletely understood in most eukaryotes, including plants. Here we show that poly(A)-specific ribonuclease, which influences the poly(A) status of cytoplasmic mRNA in many eukaryotes, directly regulates the poly(A) tract of mitochondrial mRNA in conjunction with a bacterial-type poly(A) polymerase, AGS1, in Arabidopsis. An Arabidopsis poly(A)-specific ribonuclease-deficient mutant, ahg2-1, accumulates polyadenylated mitochondrial mRNA and shows defects in mitochondrial protein complex levels. Mutations of AGS1 suppress the ahg2-1 phenotype. Mitochondrial localizations of AHG2 and AGS1 are required for their functions in the regulation of the poly(A) tract of mitochondrial mRNA. Our findings suggest that AHG2 and AGS1 constitute a regulatory system that controls mitochondrial mRNA poly(A) status in Arabidopsis.
Collapse
|
43
|
A small portion of plastid transcripts is polyadenylated in the flagellate Euglena gracilis. FEBS Lett 2014; 588:783-8. [PMID: 24492004 DOI: 10.1016/j.febslet.2014.01.034] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Revised: 01/08/2014] [Accepted: 01/09/2014] [Indexed: 12/21/2022]
Abstract
Euglena gracilis possesses secondary plastids of green algal origin. In this study, E. gracilis expressed sequence tags (ESTs) derived from polyA-selected mRNA were searched and several ESTs corresponding to plastid genes were found. PCR experiments failed to detect SL sequence at the 5'-end of any of these transcripts, suggesting plastid origin of these polyadenylated molecules. Quantitative PCR experiments confirmed that polyadenylation of transcripts occurs in the Euglena plastids. Such transcripts have been previously observed in primary plastids of plants and algae as low-abundance intermediates of transcript degradation. Our results suggest that a similar mechanism exists in secondary plastids.
Collapse
|
44
|
Abstract
Overall translational machinery in plastids is similar to that of E. coli. Initiation is the crucial step for translation and this step in plastids is somewhat different from that of E. coli. Unlike the Shine-Dalgarno sequence in E. coli, cis-elements for translation initiation are not well conserved in plastid mRNAs. Specific trans-acting factors are generally required for translation initiation and its regulation in plastids. During translation elongation, ribosomes pause sometimes on photosynthesis-related mRNAs due probably to proper insertion of nascent polypeptides into membrane complexes. Codon usage of plastid mRNAs is different from that of E. coli and mammalian cells. Plastid mRNAs do not have the so-called rare codons. Translation efficiencies of several synonymous codons are not always correlated with codon usage in plastid mRNAs.
Collapse
|
45
|
Rorbach J, Bobrowicz A, Pearce S, Minczuk M. Polyadenylation in bacteria and organelles. Methods Mol Biol 2014; 1125:211-27. [PMID: 24590792 DOI: 10.1007/978-1-62703-971-0_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Polyadenylation is a posttranscriptional modification present throughout all the kingdoms of life with important roles in regulation of RNA stability, translation, and quality control. Functions of polyadenylation in prokaryotic and organellar RNA metabolism are still not fully characterized, and poly(A) tails appear to play contrasting roles in different systems. Here we present a general overview of the polyadenylation process and the factors involved in its regulation, with an emphasis on the diverse functions of 3' end modification in the control of gene expression in different biological systems.
Collapse
Affiliation(s)
- Joanna Rorbach
- Mitochondrial Genetics Group, MRC Mitochondrial Biology Unit, Wellcome Trust/MRC Building, Hills Road, Cambridge, CB2 0XY, UK,
| | | | | | | |
Collapse
|
46
|
Munoz-Tello P, Gabus C, Thore S. A critical switch in the enzymatic properties of the Cid1 protein deciphered from its product-bound crystal structure. Nucleic Acids Res 2013; 42:3372-80. [PMID: 24322298 PMCID: PMC3950679 DOI: 10.1093/nar/gkt1278] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The addition of uridine nucleotide by the poly(U) polymerase (PUP) enzymes has a demonstrated impact on various classes of RNAs such as microRNAs (miRNAs), histone-encoding RNAs and messenger RNAs. Cid1 protein is a member of the PUP family. We solved the crystal structure of Cid1 in complex with non-hydrolyzable UMPNPP and a short dinucleotide compound ApU. These structures revealed new residues involved in substrate/product stabilization. In particular, one of the three catalytic aspartate residues explains the RNA dependence of its PUP activity. Moreover, other residues such as residue N165 or the β-trapdoor are shown to be critical for Cid1 activity. We finally suggest that the length and sequence of Cid1 substrate RNA influence the balance between Cid1's processive and distributive activities. We propose that particular processes regulated by PUPs require the enzymes to switch between the two types of activity as shown for the miRNA biogenesis where PUPs can either promote DICER cleavage via short U-tail or trigger miRNA degradation by adding longer poly(U) tail. The enzymatic properties of these enzymes may be critical for determining their particular function in vivo.
Collapse
Affiliation(s)
- Paola Munoz-Tello
- Department of Molecular Biology, University of Geneva, Geneva, 1211, Switzerland
| | | | | |
Collapse
|
47
|
Reis FP, Pobre V, Silva IJ, Malecki M, Arraiano CM. The RNase II/RNB family of exoribonucleases: putting the 'Dis' in disease. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:607-15. [PMID: 23776156 DOI: 10.1002/wrna.1180] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Revised: 05/03/2013] [Accepted: 05/14/2013] [Indexed: 12/21/2022]
Abstract
Important findings over the last years have shed new light onto the mechanistic details of RNA degradation by members of the RNase II/RNB family of exoribonucleases. Members of this family have been shown to be involved in growth, normal chloroplast biogenesis, mitotic control and cancer. Recently, different publications have linked human orthologs (Dis3 and Dis3L2) to important human diseases. This article describes the structural and biochemical characteristics of members of this family of enzymes, and the physiological implications that relate them with disease.
Collapse
Affiliation(s)
- Filipa P Reis
- Instituto de Tecnologia Química e Biológica-ITQB, Universidade Nova de Lisboa, Oeiras, Portugal
| | | | | | | | | |
Collapse
|
48
|
Germain A, Hotto AM, Barkan A, Stern DB. RNA processing and decay in plastids. WILEY INTERDISCIPLINARY REVIEWS-RNA 2013; 4:295-316. [PMID: 23536311 DOI: 10.1002/wrna.1161] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Plastids were derived through endosymbiosis from a cyanobacterial ancestor, whose uptake was followed by massive gene transfer to the nucleus, resulting in the compact size and modest coding capacity of the extant plastid genome. Plastid gene expression is essential for plant development, but depends on nucleus-encoded proteins recruited from cyanobacterial or host-cell origins. The plastid genome is heavily transcribed from numerous promoters, giving posttranscriptional events a critical role in determining the quantity and sizes of accumulating RNA species. The major events reviewed here are RNA editing, which restores protein conservation or creates correct open reading frames by converting C residues to U, RNA splicing, which occurs both in cis and trans, and RNA cleavage, which relies on a variety of exoribonucleases and endoribonucleases. Because the RNases have little sequence specificity, they are collectively able to remove extraneous RNAs whose ends are not protected by RNA secondary structures or sequence-specific RNA-binding proteins (RBPs). Other plastid RBPs, largely members of the helical-repeat superfamily, confer specificity to editing and splicing reactions. The enzymes that catalyze RNA processing are also the main actors in RNA decay, implying that these antagonistic roles are optimally balanced. We place the actions of RBPs and RNases in the context of a recent proteomic analysis that identifies components of the plastid nucleoid, a protein-DNA complex with multiple roles in gene expression. These results suggest that sublocalization and/or concentration gradients of plastid proteins could underpin the regulation of RNA maturation and degradation.
Collapse
|
49
|
Régnier P, Hajnsdorf E. The interplay of Hfq, poly(A) polymerase I and exoribonucleases at the 3' ends of RNAs resulting from Rho-independent termination: A tentative model. RNA Biol 2013; 10:602-9. [PMID: 23392248 DOI: 10.4161/rna.23664] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Discovered in eukaryotes as a modification essential for mRNA function, polyadenylation was then identified as a means used by all cells to destabilize RNA. In Escherichia coli, most accessible 3' RNA extremities are believed to be potential targets of poly(A) polymerase I. However, some RNAs might be preferentially adenylated. After a short statement of the current knowledge of poly(A) metabolism, we discuss how Hfq could affect recognition and polyadenylation of RNA terminated by Rho-independent terminators. Comparison of RNA terminus leads to the proposal that RNAs harboring 3' terminal features required for Hfq binding are not polyadenylated, whereas those lacking these structural elements can gain the oligo(A) tails that initiate exonucleolytic degradation. We also speculate that Hfq stimulates the synthesis of longer tails that could be used as Hfq-binding sites involved in non-characterized functions of Hfq-dependent sRNAs.
Collapse
Affiliation(s)
- Philippe Régnier
- University Paris Diderot, Sorbonne Paris Cité, Institut de Biologie Physico-Chimique, Paris, France.
| | | |
Collapse
|
50
|
Mohanty BK, Kushner SR. Deregulation of poly(A) polymerase I in Escherichia coli inhibits protein synthesis and leads to cell death. Nucleic Acids Res 2013; 41:1757-66. [PMID: 23241393 PMCID: PMC3561954 DOI: 10.1093/nar/gks1280] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2012] [Revised: 11/07/2012] [Accepted: 11/08/2012] [Indexed: 11/13/2022] Open
Abstract
Polyadenylation plays important roles in RNA metabolism in both prokaryotes and eukaryotes. Surprisingly, deregulation of polyadenylation by poly(A) polymerase I (PAP I) in Escherichia coli leads to toxicity and cell death. We show here that mature tRNAs, which are normally not substrates for PAP I in wild-type cells, are rapidly polyadenylated as PAP I levels increase, leading to dramatic reductions in the fraction of aminoacylated tRNAs, cessation of protein synthesis and cell death. The toxicity associated with PAP I is exacerbated by the absence of either RNase T and/or RNase PH, the two major 3' → 5' exonucleases involved in the final step of tRNA 3'-end maturation, confirming their role in the regulation of tRNA polyadenylation. Furthermore, our data demonstrate that regulation of PAP I is critical not for preventing the decay of mRNAs, but rather for maintaining normal levels of functional tRNAs and protein synthesis in E. coli, a function for polyadenylation that has not been observed previously in any organism.
Collapse
Affiliation(s)
| | - Sidney R. Kushner
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|