1
|
Basu A, Patel NG, Nicholson ED, Weiss RJ. Spatiotemporal diversity and regulation of glycosaminoglycans in cell homeostasis and human disease. Am J Physiol Cell Physiol 2022; 322:C849-C864. [PMID: 35294848 PMCID: PMC9037703 DOI: 10.1152/ajpcell.00085.2022] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that are ubiquitously expressed on the cell surface and in the extracellular matrix of all animal cells. These complex carbohydrates play important roles in many cellular processes and have been implicated in many disease states, including cancer, inflammation, and genetic disorders. GAGs are among the most complex molecules in biology with enormous information content and extensive structural and functional heterogeneity. GAG biosynthesis is a nontemplate-driven process facilitated by a large group of biosynthetic enzymes that have been extensively characterized over the past few decades. Interestingly, the expression of the enzymes and the consequent structure and function of the polysaccharide chains can vary temporally and spatially during development and under certain pathophysiological conditions, suggesting their assembly is tightly regulated in cells. Due to their many key roles in cell homeostasis and disease, there is much interest in targeting the assembly and function of GAGs as a therapeutic approach. Recent advances in genomics and GAG analytical techniques have pushed the field and generated new perspectives on the regulation of mammalian glycosylation. This review highlights the spatiotemporal diversity of GAGs and the mechanisms guiding their assembly and function in human biology and disease.
Collapse
Affiliation(s)
- Amrita Basu
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia
| | - Neil G. Patel
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Elijah D. Nicholson
- 2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| | - Ryan J. Weiss
- 1Complex Carbohydrate Research Center, University of Georgia, Athens, Georgia,2Department of Biochemistry and Molecular Biology, University of Georgia, Athens, Georgia
| |
Collapse
|
2
|
Wang ST, Neo BH, Betts RJ. Glycosaminoglycans: Sweet as Sugar Targets for Topical Skin Anti-Aging. Clin Cosmet Investig Dermatol 2021; 14:1227-1246. [PMID: 34548803 PMCID: PMC8449875 DOI: 10.2147/ccid.s328671] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 08/19/2021] [Indexed: 12/23/2022]
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides comprised of repeating disaccharide units with pleiotropic biological functions, with the non-sulfated GAG hyaluronic acid (HA), and sulfated GAGs dermatan sulfate, chondroitin sulfate, heparan sulfate, keratan sulfate, and to a lesser extent heparin all being expressed in skin. Their ability to regulate keratinocyte proliferation and differentiation, inflammatory processes and extracellular matrix composition and quality demonstrates their critical role in regulating skin physiology. Similarly, the water-binding properties of GAGs and structural qualities, particularly for HA, are crucial for maintaining proper skin form and hydration. The biological importance of GAGs, as well as extensive evidence that their properties and functions are altered in both chronological and extrinsic skin aging, makes them highly promising targets to improve cosmetic skin quality. Within the present review, we examine the cutaneous biological activity of GAGs alongside the protein complexes they form called proteoglycans and summarize the age-related changes of these molecules in skin. We also examine current topical interventional approaches to modulate GAGs for improved skin quality such as direct exogenous administration of GAGs, with a particular interest in strategies targeted at potentiating GAG levels in skin through either attenuating GAG degradation or increasing GAG production.
Collapse
Affiliation(s)
- Siew Tein Wang
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | - Boon Hoe Neo
- L'Oréal Research & Innovation, L'Oréal Singapore, Singapore
| | | |
Collapse
|
3
|
Lee NY, Kim NR, Kang JW, Kim G, Han MS, Jang JA, Ahn D, Jeong JH, Han MH, Nam EJ. Increased salivary syndecan-1 level is associated with salivary gland function and inflammation in patients with Sjögren's syndrome. Scand J Rheumatol 2021; 51:220-229. [PMID: 34212822 DOI: 10.1080/03009742.2021.1923162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Objectives: Syndecan-1 (SDC-1), a transmembrane heparin sulphate proteoglycan predominantly expressed on epithelial cells, also exists in a soluble form through ectodomain shedding. SDC-1 expression and shedding may be modulated in the inflammatory milieu of primary Sjögren's syndrome (SS). We investigated SDC-1 expression in minor salivary glands (MSGs) and analysed the association between salivary or plasma levels of SDC-1 and clinical parameters in SS.Method: We measured salivary and plasma SDC-1 levels via an enzyme-linked immunosorbent assay and assessed the salivary flow rates (SFRs) in 70 patients with SS and 35 healthy subjects. Disease activity indices, serological markers, salivary gland scintigraphy, and MSG biopsy were evaluated in patients with SS.Results: SDC-1 expression was upregulated on ductal epithelial cells in inflamed salivary glands. Salivary SDC-1 levels in patients significantly exceeded those in healthy subjects [median (interquartile range) 49.0 (20.7-79.1) vs 3.7 (1.7-6.3) ng/mL, p < 0.001] and inversely correlated with SFRs (r = -0.358, p = 0.032) and ejection fractions of the parotid (r = -0.363, p = 0.027) and submandibular (r = -0.485, p = 0.002) glands in salivary gland scintigraphy. Plasma SDC-1 levels were significantly correlated with the EULAR Sjögren's Syndrome Disease Activity Index (r = 0.507, p < 0.001) and EULAR Sjögren's Syndrome Patient Reported Index (r = 0.267, p = 0.033). Focus scores were correlated with salivary SDC-1 levels (r = 0.551, p = 0.004).Conclusion: Salivary and plasma SDC-1 levels may constitute potential biomarkers for salivary gland function and disease activity, respectively, in SS.
Collapse
Affiliation(s)
- N Y Lee
- Department of Laboratory Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| | - N R Kim
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| | - J W Kang
- Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - G Kim
- Division of Rheumatology, Department of Internal Medicine, Daegu Fatima Hospital, Daegu, Republic of Korea.,Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - M-S Han
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - J A Jang
- Laboratory for Arthritis and Bone Biology, Fatima Research Institute, Daegu Fatima Hospital, Daegu, Republic of Korea
| | - D Ahn
- Department of Otolaryngology-Head and Neck Surgery, Kyungpook National University Hospital, School of Medicine, Daegu, Republic of Korea
| | - J H Jeong
- Department of Nuclear Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| | - M-H Han
- Department of Pathology, Kyungpook National University Hospital, School of Medicine, Daegu, Republic of Korea
| | - E J Nam
- Division of Rheumatology, Department of Internal Medicine, Kyungpook National University Chilgok Hospital, School of Medicine, Daegu, Republic of Korea
| |
Collapse
|
4
|
Koch J, Idzerda NMA, Dam W, Assa S, Franssen CFM, van den Born J. Plasma syndecan-1 in hemodialysis patients associates with survival and lower markers of volume status. Am J Physiol Renal Physiol 2019; 316:F121-F127. [DOI: 10.1152/ajprenal.00252.2018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Syndecan-1, a transmembrane heparan sulfate proteoglycan, associates with renal and cardiovascular functioning. We earlier reported syndecan-1 to be involved in renal tubular regeneration. We now examined plasma values of syndecan-1 in a hemodialysis cohort and its association with volume and inflammatory and endothelial markers in addition to outcome. Eighty-four prevalent hemodialysis patients were evaluated for their plasma syndecan-1 levels by ELISA before the start of hemodialysis, as well as 60, 180, and 240 min after start of dialysis. Patients were divided into sex-stratified tertiles based on predialysis plasma syndecan-1 levels. We studied the association between plasma levels of syndecan-1 and volume, inflammation, and endothelial markers and its association with cardiovascular events and all-cause mortality using Kaplan-Meier curves and Cox regression analyses with adjustments for gender, age, diabetes, and dialysis vintage. Predialysis syndecan-1 levels were twofold higher in men compared with women ( P = 0.0003). Patients in the highest predialysis plasma syndecan-1 tertile had a significantly higher ultrafiltration rate ( P = 0.034) and lower plasma values of BNP ( P = 0.019), pro-ANP ( P = 0.024), and endothelin ( P < 0.0001) compared with the two lower predialysis syndecan-1 tertiles. No significant associations with inflammatory markers were found. Cox regression analysis showed that patients in the highest syndecan-1 tertile had significantly less cardiovascular events and better survival compared with the lowest syndecan-1 tertile ( P = 0.02 and P = 0.005, respectively). In hemodialysis patients, higher plasma syndecan-1 levels were associated with lower concentrations of BNP, pro-ANP, and endothelin and with better patient survival. This may suggest that control of volume status in hemodialysis patients allows an adaptive tissue regenerative response as reflected by higher plasma syndecan-1 levels.
Collapse
Affiliation(s)
- Josephine Koch
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Nienke M. A. Idzerda
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Wendy Dam
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Solmaz Assa
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Cardiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Casper F. M. Franssen
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Jacob van den Born
- Department of Nephrology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| |
Collapse
|
5
|
Xie Q, McGreal R, Harris R, Gao CY, Liu W, Reneker LW, Musil LS, Cvekl A. Regulation of c-Maf and αA-Crystallin in Ocular Lens by Fibroblast Growth Factor Signaling. J Biol Chem 2015; 291:3947-58. [PMID: 26719333 DOI: 10.1074/jbc.m115.705103] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Indexed: 12/20/2022] Open
Abstract
Fibroblast growth factor (FGF) signaling regulates a multitude of cellular processes, including cell proliferation, survival, migration, and differentiation. In the vertebrate lens, FGF signaling regulates fiber cell differentiation characterized by high expression of crystallin proteins. However, a direct link between FGF signaling and crystallin gene transcriptional machinery remains to be established. Previously, we have shown that the bZIP proto-oncogene c-Maf regulates expression of αA-crystallin (Cryaa) through binding to its promoter and distal enhancer, DCR1, both activated by FGF2 in cell culture. Herein, we identified and characterized a novel FGF2-responsive region in the c-Maf promoter (-272/-70, FRE). Both c-Maf and Cryaa regulatory regions contain arrays of AP-1 and Ets-binding sites. Chromatin immunoprecipitation (ChIP) assays established binding of c-Jun (an AP-1 factor) and Etv5/ERM (an Ets factor) to these regions in lens chromatin. Analysis of temporal and spatial expression of c-Jun, phospho-c-Jun, and Etv5/ERM in wild type and ERK1/2 deficient lenses supports their roles as nuclear effectors of FGF signaling in mouse embryonic lens. Collectively, these studies show that FGF signaling up-regulates expression of αA-crystallin both directly and indirectly via up-regulation of c-Maf. These molecular mechanisms are applicable for other crystallins and genes highly expressed in terminally differentiated lens fibers.
Collapse
Affiliation(s)
- Qing Xie
- From the Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Rebecca McGreal
- From the Departments of Ophthalmology and Visual Sciences and
| | - Raven Harris
- Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Chun Y Gao
- Laboratory of Molecular and Developmental Biology, National Eye Institute, Bethesda, Maryland 20892
| | - Wei Liu
- From the Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461
| | - Lixing W Reneker
- Department of Ophthalmology, Mason Eye Institute, University of Missouri, Columbia, Missouri 65212, and
| | - Linda S Musil
- Department of Biochemistry and Molecular Biology, Oregon Health Science University, Portland, Oregon 97239
| | - Ales Cvekl
- From the Departments of Ophthalmology and Visual Sciences and Genetics, Albert Einstein College of Medicine, Bronx, New York 10461,
| |
Collapse
|
6
|
Adepu S, Rosman CWK, Dam W, van Dijk MCRF, Navis G, van Goor H, Bakker SJL, van den Born J. Incipient renal transplant dysfunction associates with tubular syndecan-1 expression and shedding. Am J Physiol Renal Physiol 2015; 309:F137-45. [DOI: 10.1152/ajprenal.00127.2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2015] [Accepted: 05/08/2015] [Indexed: 01/31/2023] Open
Abstract
Syndecan-1 is a transmembrane heparan sulfate proteoglycan involved in regenerative growth and cellular adhesion. We hypothesized that the induction of tubular syndecan-1 is a repair response to incipient renal damage in apparently stable, uncomplicated renal transplant recipients. We quantified tubular syndecan-1 in unselected renal protocol biopsies taken 1 yr after transplantation. Spearman rank correlation analysis revealed an inverse correlation between tubular syndecan-1 expression and creatinine clearance at the time of biopsy ( r = −0.483, P < 0.03). In a larger panel of protocol and indication biopsies from renal transplant recipients, tubular syndecan-1 correlated with tubular proliferation marker Ki67 ( r = 0.518, P < 0.0001). In a rat renal transplantation model, 2 mo after transplantation, mRNA expression of syndecan-1 and its major sheddase, A disintegrin and metalloproteinase-17, were upregulated (both P < 0.03). Since shed syndecan-1 might end up in the circulation, in a stable cross-sectional human renal transplant population ( n = 510), we measured plasma syndecan-1. By multivariate regression analysis, we showed robust independent associations of plasma syndecan-1 with renal (plasma creatinine and plasma urea) and endothelial function parameters (plasma VEGF-A, all P < 0.01). By various approaches, we were not able to localize syndecan-1 in vessel wall or endothelial cells, which makes shedding of syndecan-1 from the endothelial glycocalyx unlikely. Our data suggest that early damage in transplanted kidneys induces repair mechanisms within the graft, namely, tubular syndecan-1 expression for tubular regeneration and VEGF production for endothelial repair. Elevated plasma syndecan-1 levels in renal transplantation patients might be interpreted as repair/survival factor related to loss of tubular and endothelial function in transplanted kidneys.
Collapse
Affiliation(s)
- Saritha Adepu
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Colin W. K. Rosman
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Wendy Dam
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Marcory C. R. F. van Dijk
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Gerjan Navis
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands
| | - Stephan J. L. Bakker
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| | - Jacob van den Born
- Department of Nephrology, University Medical Center of Groningen, University of Groningen, Groningen, The Netherlands; and
| |
Collapse
|
7
|
Gong SH, Lee H, Pae A, Noh K, Shin YM, Lee JH, Woo YH. Gene expression of MC3T3-E1 osteoblastic cells on titanium and zirconia surface. J Adv Prosthodont 2013; 5:416-22. [PMID: 24353879 PMCID: PMC3865196 DOI: 10.4047/jap.2013.5.4.416] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Revised: 07/10/2013] [Accepted: 07/15/2013] [Indexed: 11/08/2022] Open
Abstract
PURPOSE This study was performed to define attachment and growth behavior of osteoblast-like cells and evaluate the gene expression on zirconia compared to titanium. MATERIALS AND METHODS MC3T3-E1 cells were cultured on (1) titanium and (2) zirconia discs. The tetrazolium-based colorimetric assay (MTT test) was used for examining the attachment of cells. Cellular morphology was examined by scanning electron microscopy (SEM) and alkaline phosphatase (ALP) activity was measured to evaluate the cell differentiation rate. Mann-Whitney test was used to assess the significance level of the differences between the experimental groups. cDNA microarray was used for comparing the 20215 gene expressions on titanium and zirconia. RESULTS From the MTT assay, there was no significant difference between titanium and zirconia (P>.05). From the SEM image, after 4 hours of culture, cells on both discs were triangular or elongated in shape with formation of filopodia. After 24 hours of culture, cells on both discs were more flattened and well spread compared to 4 hours of culture. From the ALP activity assay, the optical density of E1 cells on titanium was slightly higher than that of E1 cells on zirconia but there was no significant difference (P>.05). Most of the genes related to cell adhesion showed similar expression level between titanium and zirconia. CONCLUSION Zirconia showed comparable biological responses of osteoblast-like cells to titanium for a short time during cell culture period. Most of the genes related to cell adhesion and signal showed similar expression level between titanium and zirconia.
Collapse
Affiliation(s)
- Soon-Hyun Gong
- Department of Prosthodontics, School of Dentistry, Kyung-Hee University, Seoul, Republic of Korea
| | - Heesu Lee
- Department of Oral Anatomy, Dental School, Gangneung-Wonju National University, Kangnung, Republic of Korea
| | - Ahran Pae
- Department of Prosthodontics, School of Dentistry, Kyung-Hee University, Seoul, Republic of Korea
| | - Kwantae Noh
- Department of Prosthodontics, School of Dentistry, Kyung-Hee University, Seoul, Republic of Korea
| | - Yong-Moon Shin
- Department of Prosthodontics, School of Dentistry, Kyung-Hee University, Seoul, Republic of Korea
| | - Jung-Haeng Lee
- Department of Prosthodontics, School of Dentistry, Kyung-Hee University, Seoul, Republic of Korea
| | - Yi-Hyung Woo
- Department of Prosthodontics, School of Dentistry, Kyung-Hee University, Seoul, Republic of Korea
| |
Collapse
|
8
|
Colak T, Cine N, Bamac B, Kurtas O, Ozbek A, Bicer U, Sunnetci D, Savlı H. Microarray-based gene expression analysis of an animal model for closed head injury. Injury 2012; 43:1264-70. [PMID: 22341557 DOI: 10.1016/j.injury.2012.01.021] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2011] [Revised: 01/18/2012] [Accepted: 01/23/2012] [Indexed: 02/02/2023]
Abstract
OBJECTIVE Traumatic brain injury (TBI) is a major cause of death and disability in both children and the elderly. Mortality from TBI is said account for 1-2% of all deaths. One-third to one-half of all traumatic deaths is due to head injury. Of those who survive, the majority is left with significant disabilities, including 3% who remain in a vegetative state and only approximately 30% who make a good recovery. Microarray studies and other genomic techniques facilitate the discovery of new targets for the treatment of diseases, which aids in drug development, immunotherapeutics and gene therapy. Gene expression profiling or microarray analysis enables the measurement of thousands of genes in a single RNA sample. METHODS In this study, adult Wistar-albino rats underwent TBI using a trauma device. Brain tissues and blood samples were taken for gene expression at 1, 12 and 48 h post-trauma and were then analysed via microarray. Total RNA was isolated using an RNeasy Mini Kit (QIAGEN-Sample & Assay Technologies, Hilden, Germany) and tested using a 2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA). Overall changes in gene expression were evaluated using Agilent Whole Rat Genome 4 × 44 K oligonucleotide arrays and analysed with GeneSpring (GeneSpring 6.1, Silicon Genetics, Redwood City, CA) software. Only genes with a signal-to-noise ratio of above 2 in the experiments were included in the statistical analysis. RESULTS ANOVA (p<0.05) was performed to identify differentially expressed probe sets. Additional filtering (minimum 2-fold change) was applied to extract the most differentially expressed genes based on the study groups (Control vs. 1st hour, Control vs. 12th hour, Control vs. 48th hour). Differentially expressed genes were detected via microarray analysis. A gene interaction-based network investigation of the genes that were identified via traditional microarray data analysis describes a significantly relevant gene network that includes the C1ql2, Cbnl, Sdc1, Bdnf, MMP9, and Cd47 genes, which were differentially expressed compared with the controls. CONCLUSIONS In this study, we will review the current understanding of the genetic susceptibility of TBI with microarrays. Our results highlight the importance of genes that control the response of the brain to injury as well as the suitability of microarrays for identifying specific targets for further study.
Collapse
Affiliation(s)
- T Colak
- Kocaeli University, Faculty of Medicine, Department of Anatomy, Turkey.
| | | | | | | | | | | | | | | |
Collapse
|
9
|
Celie JW, Katta KK, Adepu S, Melenhorst WB, Reijmers RM, Slot EM, Beelen RH, Spaargaren M, Ploeg RJ, Navis G, Homan van der Heide JJ, van Dijk MC, van Goor H, van den Born J. Tubular epithelial syndecan-1 maintains renal function in murine ischemia/reperfusion and human transplantation. Kidney Int 2012; 81:651-61. [DOI: 10.1038/ki.2011.425] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
10
|
Richardson GD, Fantauzzo KA, Bazzi H, Määttä A, Jahoda CAB. Dynamic expression of Syndecan-1 during hair follicle morphogenesis. Gene Expr Patterns 2009; 9:454-60. [PMID: 19427408 DOI: 10.1016/j.gep.2009.04.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2008] [Revised: 04/22/2009] [Accepted: 04/24/2009] [Indexed: 02/03/2023]
Abstract
Syndecan-1 is a cell-surface heparan-sulphate proteoglycan that is involved in growth factor regulation, cell adhesion, proliferation, differentiation, blood coagulation, lipid metabolism, as well as tumour formation. In this study, investigation of discrete LCM captured dermal cells by semi-quantitative RT-PCR revealed Syndecan-1 mRNA transcripts were expressed only in the dermal condensation (DC) within this skin compartment during murine pelage hair follicle (HF) morphogenesis. Further immunofluorescence studies showed that, during early skin development, Syndecan-1 was expressed in the epidermis while being absent from the mesenchyme. As HF morphogenesis began ( approximately E14.5) Syndecan-1 expression was lost from the epithelial compartment of the HF and activated in HF mesenchymal cells. This Syndecan-1 expression profile was consistent between different hair follicle types including primary and secondary pelage, vibrissa, and tail hair follicles. Furthermore we show by using gene targeted mice lacking Syndecan-1 expression that Syndecan-1 is not required for follicle initiation and development.
Collapse
Affiliation(s)
- Gavin D Richardson
- School of Biological and Biomedical Sciences, Durham University, Durham DH1 3LE, UK.
| | | | | | | | | |
Collapse
|
11
|
Lopes CC, Dietrich CP, Nader HB. Specific structural features of syndecans and heparan sulfate chains are needed for cell signaling. Braz J Med Biol Res 2006; 39:157-67. [PMID: 16470302 DOI: 10.1590/s0100-879x2006000200001] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The syndecans, heparan sulfate proteoglycans, are abundant molecules associated with the cell surface and extracellular matrix and consist of a protein core to which heparan sulfate chains are covalently attached. Each of the syndecan core proteins has a short cytoplasmic domain that binds cytosolic regulatory factors. The syndecans also contain highly conserved transmembrane domains and extracellular domains for which important activities are becoming known. These protein domains locate the syndecan on cell surface sites during development and tumor formation where they interact with other receptors to regulate signaling and cytoskeletal organization. The functions of cell surface heparan sulfate proteoglycan have been centered on the role of heparan sulfate chains, located on the outer side of the cell surface, in the binding of a wide array of ligands, including extracellular matrix proteins and soluble growth factors. More recently, the core proteins of the syndecan family transmembrane proteoglycans have also been shown to be involved in cell signaling through interaction with integrins and tyrosine kinase receptors.
Collapse
Affiliation(s)
- C C Lopes
- Departamento de Bioquímica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, SP, Brazil.
| | | | | |
Collapse
|
12
|
Kambham N, Kong C, Longacre TA, Natkunam Y. Utility of syndecan-1 (CD138) expression in the diagnosis of undifferentiated malignant neoplasms: a tissue microarray study of 1,754 cases. Appl Immunohistochem Mol Morphol 2006; 13:304-10. [PMID: 16280658 DOI: 10.1097/01.pai.0000159773.50905.7b] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Syndecan-1, a heparan sulfate-rich membrane glycoprotein, is expressed in plasma cells and is considered a reliable marker of plasmacytic differentiation. However, it has not been widely tested in non-hematolymphoid tissues, and thus its utility in the setting of an undifferentiated malignant neoplasm has not been evaluated. The authors conducted an extensive study of CD138 staining in over 1,700 normal, benign, and malignant non-hematolymphoid tissues, using five tissue microarrays. Immunohistochemical staining was performed with two commercially available CD138 monoclonal antibodies directed against syndecan-1 (Serotec, Oxford, UK, and DAKO, Carpenteria, CA). In addition to the specific membrane staining, many normal tissues and epithelial tumors showed strong cytoplasmic immunoreactivity. A small subset of mesenchymal neoplasms also showed membrane and cytoplasmic immunoreactivity. In squamous cell carcinoma of the head and neck, renal cell carcinoma, and prostate adenocarcinoma, the intensity of CD138 staining inversely correlated with the histologic grade of the carcinoma. However, statistically significant staining differences and their correlation with histologic grades differed depending on whether the Serotec or the DAKO antibody was used. These results indicate that CD138 immunoreactivity is widespread in normal and neoplastic epithelial tissues, as well as a variety of undifferentiated epithelial and mesenchymal processes. The authors conclude that the expression of syndecan-1, although relatively specific to plasma cells within the hematolymphoid system, should be interpreted with extreme caution in the setting of an undifferentiated neoplasm. Furthermore, the two commercially available monoclonal CD138 antibodies tested in this study showed significant differences in their immunoreactivity in different tumor types.
Collapse
Affiliation(s)
- Neeraja Kambham
- Department of Pathology, Stanford University School of Medicine, CA 94305, USA.
| | | | | | | |
Collapse
|
13
|
Presta M, Dell'Era P, Mitola S, Moroni E, Ronca R, Rusnati M. Fibroblast growth factor/fibroblast growth factor receptor system in angiogenesis. Cytokine Growth Factor Rev 2005; 16:159-78. [PMID: 15863032 DOI: 10.1016/j.cytogfr.2005.01.004] [Citation(s) in RCA: 957] [Impact Index Per Article: 47.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Fibroblast growth factors (FGFs) are a family of heparin-binding growth factors. FGFs exert their pro-angiogenic activity by interacting with various endothelial cell surface receptors, including tyrosine kinase receptors, heparan-sulfate proteoglycans, and integrins. Their activity is modulated by a variety of free and extracellular matrix-associated molecules. Also, the cross-talk among FGFs, vascular endothelial growth factors (VEGFs), and inflammatory cytokines/chemokines may play a role in the modulation of blood vessel growth in different pathological conditions, including cancer. Indeed, several experimental evidences point to a role for FGFs in tumor growth and angiogenesis. This review will focus on the relevance of the FGF/FGF receptor system in adult angiogenesis and its contribution to tumor vascularization.
Collapse
Affiliation(s)
- Marco Presta
- Unit of General Pathology and Immunology, Department of Biomedical Sciences and Biotechnology, School of Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy.
| | | | | | | | | | | |
Collapse
|
14
|
Ihanamäki T, Pelliniemi LJ, Vuorio E. Collagens and collagen-related matrix components in the human and mouse eye. Prog Retin Eye Res 2004; 23:403-34. [PMID: 15219875 DOI: 10.1016/j.preteyeres.2004.04.002] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The three-dimensional structure of the eye plays an important role in providing a correct optical environment for vision. Much of this function is dependent on the unique structural features of ocular connective tissue, especially of the collagen types and their supramolecular structures. For example, the organization of collagen fibrils is largely responsible for transparency and refraction of cornea, lens and vitreous body, and collagens present in the sclera are largely responsible for the structural strength of the eye. Phylogenetically, most of the collagens are highly conserved between different species, which suggests that collagens also share similar functions in mice and men. Despite considerable differences between the mouse and the human eye, particularly in the proportion of the different tissue components, the difficulty of performing systematic histologic and molecular studies on the human eye has made mouse an appealing alternative to studies addressing the role of individual genes and their mutations in ocular diseases. From a genetic standpoint, the mouse has major advantages over other experimental animals as its genome is better known than that of other species and it can be manipulated by the modern techniques of genetic engineering. Furthermore, it is easy, quick and relatively cheap to produce large quantities of mice for systematic studies. Thus, transgenic techniques have made it possible to study consequences of specific mutations in genes coding for structural components of ocular connective tissues in mice. As these changes in mice have been shown to resemble those in human diseases, mouse models are likely to provide efficient tools for pathogenetic studies on human disorders affecting the extracellular matrix. This review is aimed to clarify the role of collagenous components in the mouse and human eye with a closer look at the new findings of the collagens in the cartilage and the eye, the so-called "cartilage collagens".
Collapse
Affiliation(s)
- Tapio Ihanamäki
- Department of Ophthalmology, Helsinki University Central Hospital, PO Box 220, FIN-00029 HUS Helsinki, Finland.
| | | | | |
Collapse
|
15
|
Davies EJ, Blackhall FH, Shanks JH, David G, McGown AT, Swindell R, Slade RJ, Martin-Hirsch P, Gallagher JT, Jayson GC. Distribution and Clinical Significance of Heparan Sulfate Proteoglycans in Ovarian Cancer. Clin Cancer Res 2004; 10:5178-86. [PMID: 15297422 DOI: 10.1158/1078-0432.ccr-03-0103] [Citation(s) in RCA: 108] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Heparan sulfate proteoglycans have been implicated in cancer cell growth, invasion, metastasis, and angiogenesis. This study was designed to compare their expression in normal ovary and ovarian tumors and then to examine their prognostic significance in ovarian cancer. EXPERIMENTAL DESIGN The expression of syndecan-1, -2, -3, and -4, glypican-1, and perlecan was assessed by immunohistochemistry in 147 biopsies that included normal ovary and benign, borderline, and malignant ovarian tumors. Clinical data, including tumor stage, performance status, treatment, and survival, were collected. Univariate and multivariate analyses were performed to evaluate prognostic significance. RESULTS The expression patterns of syndecan-1 and perlecan were altered in ovarian tumors compared with normal ovary. Syndecan-1 was not detected in normal ovary but was present in the epithelial and stromal cells of benign and borderline tumors and in ovarian adenocarcinomas. Perlecan expression was decreased in basement membranes that were disrupted by cancer cells but maintained in the basement membranes of blood vessels. Syndecan-2, -3, and -4, and glypican-1 were expressed in normal ovary and benign and malignant ovarian tumors. Stromal expression of syndecan-1 and glypican-1 were poor prognostic factors for survival in univariate analysis. CONCLUSION We report for the first time distinct patterns of expression of cell surface and extracellular matrix heparan sulfate proteoglycans in normal ovary compared with ovarian tumors. These data reinforce the role of the tumor stroma in ovarian adenocarcinoma and suggest that stromal induction of syndecan-1 contributes to the pathogenesis of this malignancy.
Collapse
Affiliation(s)
- E June Davies
- Cancer Research UK and University of Manchester Department of Medical Oncology, Paterson Institute for Cancer Research, Manchester, England
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Abstract
Cell surface heparan sulfate (HS) influences a multitude of molecules, cell types, and processes relevant to inflammation. HS binds to cell surface and matrix proteins, cytokines, and chemokines. These interactions modulate inflammatory cell maturation and activation, leukocyte rolling, and tight adhesion to endothelium, as well as extravasation and chemotaxis. The syndecan family of transmembrane proteoglycans is the major source of cell surface HS on all cell types. Recent in vitro and in vivo data suggest the involvement of syndecans in the modulation of leukocyte-endothelial interactions and extravasation, the formation of chemokine and kininogen gradients, participation in chemokine and growth factor signaling, as well as repair processes. Thus, the complex role of HS in inflammation is reflected by multiple functions of its physiological carriers, the syndecans. Individual and common functions of the four mammalian syndecan family members can be distinguished. Recently generated transgenic and knockout mouse models will facilitate analysis of the individual processes that each syndecan is involved in.
Collapse
|
17
|
Worapamorn W, Tam SP, Li H, Haase HR, Bartold PM. Cytokine regulation of syndecan-1 and -2 gene expression in human periodontal fibroblasts and osteoblasts. J Periodontal Res 2002; 37:273-8. [PMID: 12200971 DOI: 10.1034/j.1600-0765.2002.01610.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Cell-surface proteoglycans participate in several biological functions including interactions with a variety of growth factors and cytokines. Regulation of syndecan-1 and -2 gene expression was investigated in human periodontal ligament fibroblasts (PDLF), osteoblasts (OB) and gingival fibroblasts (GF), in response to platelet-derived growth factor (PDGF-BB), transforming growth factor (TGF-beta 1), and interleukin (IL-1 beta) by Northern blot analyses. We also compared the effect of PDGF-BB and TGF-beta 1, separately and in combination, in the prolonged presence of IL-1 beta on the expression of both syndecan genes. The results demonstrated that the three cell lines regulated the expression of syndecan-1 and -2 in response to growth factors and cytokines in different manners. These cell lines increased syndecan-1 mRNA levels in response to either PDGF-BB or TGF-beta 1 and decreased levels in response to IL-1 beta. The effect of IL-1 beta on syndecan-1 mRNA synthesis was partially reversed after adding PDGF-BB and TGF-beta 1, separately or in combination, in the presence of IL-1 beta. In contrast, syndecan-2 mRNA level was markedly upregulated in response to either TGF-beta 1 or IL-1 beta in OB when compared with the other two cell lines. However, the stimulatory effect of TGF-beta 1 on syndecan-2 mRNA production in OB was abolished in the prolonged presence of IL-1 beta. These findings lend support to the notion that syndecan-1 and syndecan-2 have distinct functions which correlate with their source and functions within the periodontium.
Collapse
Affiliation(s)
- W Worapamorn
- School of Dentistry, Department of Physiology and Pharmacology, The University of Queensland, Brisbane, QLD, Australia
| | | | | | | | | |
Collapse
|
18
|
Brucato S, Bocquet J, Villers C. Cell surface heparan sulfate proteoglycans: target and partners of the basic fibroblast growth factor in rat Sertoli cells. EUROPEAN JOURNAL OF BIOCHEMISTRY 2002; 269:502-11. [PMID: 11856308 DOI: 10.1046/j.0014-2956.2001.02672.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Basic fibroblast growth factor (bFGF) regulates diversified biological functions in rat Sertoli cells. This report demonstrates that bFGF inhibits steroidogenesis in developing rat Sertoli cells. Follicle stimulating hormone (FSH)-stimulated estradiol production was reduced by bFGF. Moreover, the amount of cytochrome P450 aromatase, responsible for the irreversible transformation of androgens into estrogens, is decreased by bFGF at the transcriptional level. The bFGF inhibitory effect was also observed in the presence of dibutyryl-cAMP, cholera toxin or RO-20-1724, all inducing high levels of cAMP, the second messenger of FSH. Heparan sulfate proteoglycans (HSPGs) were shown to be required as cofactors for bFGF signaling. Indeed, sodium chlorate, described to drastically decrease proteoglycan sulfation, abolishes the bFGF downregulation of FSH-stimulated estradiol synthesis previously observed. Glypican-1, syndecan-1 and -4, potential bFGF coreceptors, are mainly regulated at the transcriptional level. This report shows that the bFGF regulation of their expression specifically depends on the nature of HSPG and of the Sertoli cell developmental stage. In conclusion, HSPG are partners and the target of bFGF in rat Sertoli cells.
Collapse
Affiliation(s)
- Sylvie Brucato
- Laboratoire de Biochimie, IRBA, Université de Caen, France.
| | | | | |
Collapse
|
19
|
Anttonen A, Heikkilä P, Kajanti M, Jalkanen M, Joensuu H. High syndecan-1 expression is associated with favourable outcome in squamous cell lung carcinoma treated with radical surgery. Lung Cancer 2001; 32:297-305. [PMID: 11390011 DOI: 10.1016/s0169-5002(00)00230-0] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Expression of syndecan-1 is down-regulated in many cellular transformation models. We studied the clinical significance of syndecan-1 expression in 116 squamous cell lung carcinomas treated with radical surgery. Paraffin-embedded tissue samples were immunostained with two antibodies against human syndecan-1 (B-B4 and 104-9). Syndecan-1 expression was higher in well differentiated cancers than in moderately or poorly differentiated cancers with either antibody (P=0.001 for B-B4, and P<0.0001 for 104-9), but no significant association was found with the primary tumour size (T-stage) or the clinical stage. When the median expression (10% of cancer cells positive in B-B4 staining) was used as the cut-off value, cancers with high expression were associated with more favourable survival than those with low expression (the 2-year survival rate corrected for intercurrent deaths 84% vs 61%, P=0.026). However, syndecan-1 expression was not an independent prognostic factor in a multivariate survival analysis. We conclude that syndecan-1 expression decreases in parallel with histological dedifferentiation in squamous cell carcinoma of the lung, and that low syndecan-1 expression is associated with unfavourable outcome.
Collapse
Affiliation(s)
- A Anttonen
- Department of Oncology, Helsinki University Central Hospital, FIN-00029 HUS, Helsinki, Finland
| | | | | | | | | |
Collapse
|
20
|
Yarwood SJ, Woodgett JR. Extracellular matrix composition determines the transcriptional response to epidermal growth factor receptor activation. Proc Natl Acad Sci U S A 2001; 98:4472-7. [PMID: 11287658 PMCID: PMC31859 DOI: 10.1073/pnas.081069098] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
The transcriptional response to epidermal growth factor (EGF) was examined in a cultured cell model of adhesion. Gene expression was monitored in human embryonic kidney cells (HEK293) after attachment of cells to the extracellular matrix (ECM) proteins, laminin, and fibronectin, by using complementary DNA microarrays printed with 1,718 individual human genes. Cluster analysis revealed that the influence of EGF on gene expression, either positive or negative, was largely independent of ECM composition. However, clusters of EGF-regulated genes were identified that were diagnostic of the type of ECM proteins to which cells were attached. In these clusters, attachment of cells to a laminin or fibronectin substrata specifically modified the direction of gene expression changes in response to EGF stimulation. For example, in HEK293 cells attached to fibronectin, EGF stimulated an increase in the expression of some genes; however, genes in the same group were nonresponsive or even suppressed in cells attached to laminin. Many of the genes regulated by EGF and ECM proteins in this manner are involved in ECM and cytoskeletal architecture, protein synthesis, and cell cycle control, indicating that cell responses to EGF stimulation can be dramatically affected by ECM composition.
Collapse
Affiliation(s)
- S J Yarwood
- Ontario Cancer Institute/Princess Margaret Hospital, Toronto, ON, Canada M5G 2M9.
| | | |
Collapse
|
21
|
Worapamorn W, Haase HR, Li H, Bartold PM. Growth factors and cytokines modulate gene expression of cell-surface proteoglycans in human periodontal ligament cells. J Cell Physiol 2001; 186:448-56. [PMID: 11169984 DOI: 10.1002/1097-4652(2001)9999:9999<000::aid-jcp1047>3.0.co;2-v] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cell-surface proteoglycans have been known to be involved in many functions including interactions with components of the extracellular microenvironment, and act as co-receptors which bind and modify the action of various growth factors and cytokines. The purpose of this study was to determine the regulation by growth factors and cytokines on cell-surface proteoglycan gene expression in cultured human periodontal ligament (PDL) cells. Subconfluent, quiescent PDL cells were treated with various concentrations of serum, bFGF, PDGF-BB, TGF-beta1, IL-beta1, and IFN-gamma. RT-PCR technique was used, complemented with Northern blot for syndecan-1, to examine the effects of these agents on the mRNA expression of five cell-surface proteoglycans (syndecan-1, syndecan-2, syndecan-4, glypican and betaglycan). Syndecan-1 mRNA levels increased in response to serum, bFGF and PDGF-BB, but decreased in response to TGF-beta1, IL-1beta and IFN-gamma. In contrast, syndecan-2 mRNA levels were upregulated by TGF-beta1 and IL-1beta stimulation, but remained unchanged with the other agents. Betaglycan gene expression decreased in response to serum, but was upregulated by TGF-beta1 and unchanged by the other stimulants. Additionally, syndecan-4 and glypican were not significantly altered in response to the regulator molecules studied, with the exception that glypican is decreased in response to IFN-gamma. These data demonstrate that the gene expression of the five cell-surface proteoglycans studied is differentially regulated in PDL cells lending support to the notion of distinct functions for these cell-surface proteoglycans.
Collapse
Affiliation(s)
- W Worapamorn
- Connective Tissue Research Laboratory, School of Dentistry, The University of Queensland, Turbot Street, Brisbane, Qld 4000, Australia
| | | | | | | |
Collapse
|
22
|
Conejo JR, Kleeff J, Koliopanos A, Matsuda K, Zhu ZW, Goecke H, Bicheng N, Zimmermann A, Korc M, Friess H, Büchler MW. Syndecan-1 expression is up-regulated in pancreatic but not in other gastrointestinal cancers. Int J Cancer 2000; 88:12-20. [PMID: 10962434 DOI: 10.1002/1097-0215(20001001)88:1<12::aid-ijc3>3.0.co;2-t] [Citation(s) in RCA: 108] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
Syndecan-1 belongs to the syndecan family of cell surface transmembrane heparan-sulfate proteoglycans, which participate in cell proliferation, cell migration and cell-matrix interactions. Decreased expression of syndecan-1 has been observed in some gastrointestinal malignancies, and it is thought that high levels of syndecan-1 correlate with the maintenance of epithelial morphology and inhibition of invasiveness. In our study, we characterized the expression of syndecan-1 in normal, chronic pancreatitis and primary and metastatic human pancreatic cancer tissues, in cultured pancreatic cancer cell lines and in esophageal, gastric, colon, and liver cancers. Pancreatic cancer cell lines expressed syndecan-1 mRNA and protein at variable levels. In addition, these cells also released syndecan-1 into the culture medium. Pancreatic cancer tissues markedly over-expressed syndecan-1 mRNA in comparison with both chronic pancreatitis (2.4-fold increase, p < 0.01) and normal pancreatic samples (10.6-fold increase, p < 0.01). There was no difference in syndecan-1 mRNA expression between early and advanced tumors. By in situ hybridization and immunohistochemistry, syndecan-1 expression was evident at relatively low levels in the ductal cells and less frequently in acinar cells of the normal pancreas. In chronic pancreatitis, syndecan-1 was present at low to moderate levels in areas with atrophic acinar cells and ductular complexes. In contrast, in pancreatic cancer tissues, syndecan-1 was present at moderate to high levels in the majority of the cancer cells within the tumor mass and also in metastatic lesions of pancreatic tumors. Syndecan-1 mRNA levels in other gastrointestinal malignancies (esophageal, gastric, colon and liver cancers) were not significantly different from the levels observed in the corresponding normal samples. Together, our findings suggest that syndecan-1 expression by pancreatic cancer cells may be of importance in the pathobiology of this disorder and that its role in pancreatic cancer seems to be different from that in other gastrointestinal malignancies.
Collapse
Affiliation(s)
- J R Conejo
- Department of Visceral and Transplantation Surgery, University of Bern, Inselspital, Bern, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|