1
|
Szymanska M, Blitek A. Diverse effects of prostacyclin on angiogenesis-related processes in the porcine endometrium. Sci Rep 2023; 13:14133. [PMID: 37644083 PMCID: PMC10465533 DOI: 10.1038/s41598-023-41197-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/23/2023] [Indexed: 08/31/2023] Open
Abstract
Angiogenesis is important for endometrial remodeling in mature females. The endometrium synthesizes high amounts of prostacyclin (PGI2) but the role of PGI2 in angiogenesis-related events in this tissue was not fully described. In the present study, porcine endometrial endothelial (pEETH) cells and/or a swine umbilical vein endothelial cell line (G1410 cells) were used to determine the regulation of PGI2 synthesis and PGI2 receptor (PTGIR) expression by cytokines and to evaluate the effect of PGI2 on pro-angiogenic gene expression, intracellular signaling activation, cell proliferation and migration, cell cycle distribution, and capillary-like structure formation. We found that IL1β, IFNγ, and/or TNFα increased PGI2 secretion and PTGIR expression in pEETH cells. Iloprost (a PGI2 analogue) acting through PTGIR enhanced the transcript abundance of KDR, FGFR2, and ANGPT2 and increased proliferation of pEETH cells. This latter was mediated by PI3K and mTOR activation. In support, transfection of G1410 cells with siRNA targeting PGI2 synthase decreased pro-angiogenic gene expression and cell proliferation. Furthermore, iloprost accelerated the gap closure and promoted cell cycle progression. Intriguingly, the formation of capillary-like structures was inhibited but not completely blocked by iloprost. These findings point to a complex pleiotropic role of PGI2 in angiogenesis-related events in the porcine uterus.
Collapse
Affiliation(s)
- Magdalena Szymanska
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland
| | - Agnieszka Blitek
- Institute of Animal Reproduction and Food Research of the Polish Academy of Sciences, Tuwima 10, 10-748, Olsztyn, Poland.
| |
Collapse
|
2
|
Quattromani M, Calzedda R, Monti G. A 5-Month-Old Infant with Cardiorespiratory Arrest Caused by Food Protein-Induced Enterocolitis Syndrome to Cow's Milk Proteins. J Pediatr Intensive Care 2020; 9:287-289. [PMID: 33133746 DOI: 10.1055/s-0040-1705184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Accepted: 01/31/2020] [Indexed: 10/24/2022] Open
Abstract
Food protein-induced enterocolitis syndrome (FPIES) is a nonimmunoglobulin E cell-mediated food allergy, which occurs predominantly in infants and young children. The most commonly incriminated triggers are cow's milk (CM), soy, and grains. Acute FPIES can be potentially life-threatening and culminate in shock requiring fluid resuscitation in at least 15% of the cases. To our knowledge, there have been no reports in literature of cardiorespiratory arrest induced by acute FPIES. We describe the first case of cardiorespiratory arrest occurred after accidental ingestion of a CM-based formula in a 5-month-old infant with previous diagnosis of FPIES to CM.
Collapse
Affiliation(s)
- Martina Quattromani
- Department of Pediatric Allergology, Regina Margherita Children's Hospital, Turin, Italy
| | - Roberta Calzedda
- Department of Pediatric Allergology, Regina Margherita Children's Hospital, Turin, Italy
| | - Giovanna Monti
- Department of Pediatric Allergology, Regina Margherita Children's Hospital, Turin, Italy
| |
Collapse
|
3
|
Gupta A, Kumar D, Puri S, Puri V. Neuroimmune Mechanisms in Signaling of Pain During Acute Kidney Injury (AKI). Front Med (Lausanne) 2020; 7:424. [PMID: 32850914 PMCID: PMC7427621 DOI: 10.3389/fmed.2020.00424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2019] [Accepted: 07/01/2020] [Indexed: 11/18/2022] Open
Abstract
Acute kidney injury (AKI) is a significant global health concern. The primary causes of AKI include ischemia, sepsis and nephrotoxicity. The unraveled interface between nervous system and immune response with specific focus on pain pathways is generating a huge interest in reference to AKI. The nervous system though static executes functions by nerve fibers throughout the body. Neuronal peptides released by nerves effect the immune response to mediate the hemodynamic system critical to the functioning of kidney. Pain is the outcome of cellular cross talk between nervous and immune systems. The widespread release of neuropeptides, neurotransmitters and immune cells contribute to bidirectional neuroimmune cross talks for pain manifestation. Recently, we have reported pain pathway genes that may pave the way to better understand such processes during AKI. An auxiliary understanding of the functions and communications in these systems will lead to novel approaches in pain management and treatment through the pathological state, specifically during acute kidney injury.
Collapse
Affiliation(s)
- Aprajita Gupta
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh, India
| | - Dev Kumar
- Department of Biochemistry, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Sanjeev Puri
- Department of Biotechnology, University Institute of Engineering and Technology, Panjab University, Chandigarh, India
| | - Veena Puri
- Centre for Systems Biology & Bioinformatics, Panjab University, Chandigarh, India
| |
Collapse
|
4
|
Gonzaga NA, Awata WM, Tanus-Santos JE, Padovan JC, Tirapelli CR. Mechanisms underlying vascular hypocontractility induced by ethanol withdrawal: Role of cyclooxygenase 2-derived prostacyclin. Eur J Pharmacol 2019; 847:103-112. [DOI: 10.1016/j.ejphar.2019.01.055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 01/21/2019] [Accepted: 01/29/2019] [Indexed: 10/27/2022]
|
5
|
Gonzaga NA, do Vale GT, Parente JM, Yokota R, De Martinis BS, Casarini DE, Castro MM, Tirapelli CR. Ethanol withdrawal increases blood pressure and vascular oxidative stress: a role for angiotensin type 1 receptors. ACTA ACUST UNITED AC 2018; 12:561-573. [DOI: 10.1016/j.jash.2018.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 02/28/2018] [Accepted: 03/27/2018] [Indexed: 01/11/2023]
|
6
|
Pulgar VM, Yamaleyeva LM, Varagic J, McGee C, Bader M, Dechend R, Brosnihan KB. Functional changes in the uterine artery precede the hypertensive phenotype in a transgenic model of hypertensive pregnancy. Am J Physiol Endocrinol Metab 2015; 309:E811-7. [PMID: 26394667 PMCID: PMC4628942 DOI: 10.1152/ajpendo.00526.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2014] [Accepted: 09/11/2015] [Indexed: 01/16/2023]
Abstract
The pregnant female human angiotensinogen (hAGN) transgenic rat mated with the male human renin (hREN) transgenic rat is a model of preeclampsia (TgA) with increased blood pressure, proteinuria, and placenta alterations of edema and necrosis at late gestation. We studied vascular responses and the role of COX-derived prostanoids in the uterine artery (UA) at early gestation in this model. TgA UA showed lower stretch response, similar smooth muscle α-actin content, and lower collagen content compared with Sprague-Dawley (SD) UA. Vasodilation to acetylcholine was similar in SD and TgA UA (64 ± 8 vs. 75 ± 6% of relaxation, P > 0.05), with an acetylcholine-induced contraction in TgA UA that was abolished by preincubation with indomethacin (78 ± 6 vs. 83 ± 11%, P > 0.05). No differences in the contraction to phenylephrine were observed (159 ± 11 vs. 134 ± 12 %KMAX, P > 0.05), although in TgA UA this response was greatly affected by preincubation with indomethacin (179 ± 16 vs. 134 ± 9 %KMAX, P < 0.05, pD2 5.92 ± 0.08 vs. 5.85 ± 0.03, P < 0.05). Endothelium-independent vasodilation was lower in TgA UA (92 ± 2 vs. 74 ± 5% preconstricted tone, P < 0.05), and preincubation with indomethacin restored the response to normal values (90 ± 3 vs. 84 ± 3%). Immunostaining showed similar signals for α-actin, COX-2, and eNOS between groups (P > 0.05). Plasma thromboxane levels were similar between groups. In summary, TgA UA displays functional alterations at early gestation before the preeclamptic phenotype is established. Inhibition of COX enzymes normalizes some of the functional defects in the TgA UA. An increased role for COX-derived prostanoids in this model of preeclampsia may contribute to the development of a hypertensive pregnancy.
Collapse
Affiliation(s)
- Victor M Pulgar
- Hypertension and Vascular Research Center and Department of Obstetrics and Gynecology, Wake Forest School of Medicine, Winston-Salem, North Carolina; Biomedical Research and Infrastructure Center, Winston-Salem State University, Winston-Salem, North Carolina;
| | | | | | | | - Michael Bader
- Max Delbrück Center for Molecular Medicine, Berlin-Buch, Germany; Experimental and Clinical Research Center, Charité University Hospital Berlin, and HELIOS-Clinic, Berlin, Germany; and Federal University of Minas Gerais, Belo Horizonte, Brazil
| | - Ralf Dechend
- Experimental and Clinical Research Center, Charité University Hospital Berlin, and HELIOS-Clinic, Berlin, Germany; and
| | | |
Collapse
|
7
|
Reslan OM, Khalil RA. Molecular and vascular targets in the pathogenesis and management of the hypertension associated with preeclampsia. Cardiovasc Hematol Agents Med Chem 2011; 8:204-26. [PMID: 20923405 DOI: 10.2174/187152510792481234] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Accepted: 08/14/2010] [Indexed: 02/05/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes and vasodilation of the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. Preeclampsia (PE) is one of the foremost complications of pregnancy and a major cause of maternal and fetal mortality. The pathophysiological mechanisms of PE have been elusive, but some parts of the puzzle have begun to unravel. Genetic factors such as leptin gene polymorphism, environmental and dietary factors such as Ca(2+) and vitamin D deficiency, and co-morbidities such as obesity and diabetes may increase the susceptibility of pregnant women to develop PE. An altered maternal immune response may also play a role in the development of PE. Although the pathophysiology of PE is unclear, most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduced uteroplacental perfusion pressure (RUPP) and placental ischemia/hypoxia. Placental ischemia induces the release of biologically active factors such as growth factor inhibitors, anti-angiogenic factors, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and antibodies to vascular angiotensin II (AngII) receptor. These bioactive factors could cause vascular endotheliosis and consequent increase in vascular resistance and blood pressure, as well as glomerular endotheliosis with consequent proteinuria. The PE-associated vascular endotheliosis could be manifested as decreased vasodilator mediators such as nitric oxide, prostacyclin and hyperpolarizing factor and increased vasoconstrictor mediators such as endothelin-1, AngII and thromboxane A₂. PE could also involve enhanced mechanisms of vascular smooth muscle contraction including intracellular Ca(2+), and Ca(2+) sensitization pathways such as protein kinase C and Rho-kinase. PE-associated changes in the extracellular matrix composition and matrix metalloproteinases activity also promote vascular remodeling and further vasoconstriction in the uterine and systemic circulation. Some of these biologically active factors and vascular mediators have been proposed as biomarkers for early prediction or diagnosis of PE, and as potential targets for prevention or treatment of the disease.
Collapse
Affiliation(s)
- Ossama M Reslan
- Vascular Surgery Research Laboratory, Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, MA 02115, USA
| | | |
Collapse
|
8
|
Actions of thalidomide in producing vascular relaxations. Eur J Pharmacol 2010; 644:113-9. [DOI: 10.1016/j.ejphar.2010.06.035] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2009] [Revised: 05/26/2010] [Accepted: 06/21/2010] [Indexed: 11/20/2022]
|
9
|
Sheppard SJ, Khalil RA. Risk factors and mediators of the vascular dysfunction associated with hypertension in pregnancy. Cardiovasc Hematol Disord Drug Targets 2010; 10:33-52. [PMID: 20041838 DOI: 10.2174/187152910790780096] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2009] [Accepted: 12/24/2009] [Indexed: 01/24/2023]
Abstract
Normal pregnancy is associated with significant hemodynamic changes and vasodilation in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. Hypertension in pregnancy (HTN-Preg) and preeclampsia (PE) are major complications and life-threatening conditions to both the mother and fetus. PE is precipitated by various genetic, dietary and environmental factors. Although the initiating events of PE are unclear, inadequate invasion of cytotrophoblasts into the uterine artery is thought to reduce uteroplacental perfusion pressure and lead to placental ischemia/hypoxia. Placental hypoxia induces the release of biologically active factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and antibodies to vascular angiotensin II receptor. These bioactive factors affect the production/activity of various vascular mediators in the endothelium, smooth muscle and extracellular matrix, leading to severe vasoconstriction and HTN. As an endothelial cell disorder, PE is associated with decreased vasodilator mediators such as nitric oxide, prostacyclin and hyperpolarizing factor and increased vasoconstrictor mediators such as endothelin, angiotensin II and thromboxane A(2). PE also involves enhanced mechanisms of vascular smooth muscle contraction including intracellular free Ca(2+) concentration ([Ca(2+)](i)), and [Ca(2+)](i) sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Changes in extracellular matrix composition and matrix metalloproteases activity also promote vascular remodeling and further vasoconstriction in the uterine and systemic circulation. Characterization of the predisposing risk factors, the biologically active factors, and the vascular mediators associated with PE holds the promise for early detection, and should help design specific genetic and pharmacological tools for the management of the vascular dysfunction associated with HTN-Preg.
Collapse
Affiliation(s)
- Stephanie J Sheppard
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital, and Harvard Medical School, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
10
|
Tanbe AF, Khalil RA. Circulating and Vascular Bioactive Factors during Hypertension in Pregnancy. CURRENT BIOACTIVE COMPOUNDS 2010; 6:60-75. [PMID: 20419111 PMCID: PMC2856945 DOI: 10.2174/157340710790711737] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Normal pregnancy is associated with significant vascular remodeling in the uterine and systemic circulation in order to meet the metabolic demands of the mother and developing fetus. The pregnancy-associated vascular changes are largely due to alterations in the amount/activity of vascular mediators released from the endothelium, vascular smooth muscle and extracellular matrix. The endothelium releases vasodilator substances such as nitric oxide, prostacyclin and hyperpolarizing factor as well as vasoconstrictor factors such as endothelin, angiotensin II and thromboxane A(2). Vascular smooth muscle contraction is mediated by intracellular free Ca(2+) concentration ([Ca(2+)](i)), and [Ca(2+)](i) sensitization pathways such as protein kinase C, Rho-kinase and mitogen-activated protein kinase. Extracellular matrix and vascular remodeling are regulated by matrix metalloproteases. Hypertension in pregnancy and preeclampsia are major complications and life threatening conditions to both the mother and fetus, precipitated by various genetic, dietary and environmental factors. The initiating mechanism of preeclampsia and hypertension in pregnancy is unclear; however, most studies have implicated inadequate invasion of cytotrophoblasts into the uterine artery, leading to reduction in the uteroplacental perfusion pressure and placental ischemia/hypoxia. This placental hypoxic state is thought to induce the release of several circulating bioactive factors such as growth factor inhibitors, anti-angiogenic proteins, inflammatory cytokines, reactive oxygen species, hypoxia-inducible factors, and vascular receptor antibodies. Increases in the plasma levels and vascular content of these factors during pregnancy could cause an imbalance in the vascular mediators released from the endothelium, smooth muscle and extracellular matrix, and lead to severe vasoconstriction and hypertension. This review will discuss the interactions between the various circulating bioactive factors and the vascular mediators released during hypertension in pregnancy, and provide an insight into the current and future approaches in the management of preeclampsia.
Collapse
Affiliation(s)
- Alain F Tanbe
- Division of Vascular and Endovascular Surgery, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts 02115
| | | |
Collapse
|
11
|
Shirhan M, Moochhala SM, Kerwin SYL, Ng KC, Lu J. Influence of selective nitric oxide synthetase inhibitor for treatment of refractory haemorrhagic shock. Resuscitation 2004; 61:221-9. [PMID: 15135199 DOI: 10.1016/j.resuscitation.2004.01.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2003] [Revised: 12/29/2003] [Accepted: 01/07/2004] [Indexed: 10/26/2022]
Abstract
OBJECTIVE Haemorrhagic shock (HS) is implicated in the induction of inducible nitric oxide synthase that leads to increased production of nitric oxide (NO). We investigated the influence of aminoguanidine (AG), a selective iNOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), a non-selective inhibitor and S-Nitroso-N-acetylpenicillamine (SNAP), a NO donor, each of which was given with (+) or without (-) angiotensin II (ANGII), a vasoconstrictor, on the survival rate of HS decompensatory phased (HSDP) rats. MATERIALS AND METHODS HSDP was achieved via a constant pressure method. Organs were harvested and analyzed from rats sacrificed 72 h after HSDP or upon death. Plasma collected from HSDP rats were used to measure nitrate/nitrite, GOT and creatinine levels. RESULTS AG+ANGII-treated rats had significantly higher survival rates compared to the other treatment groups, 72 h following HSDP. A marked increase in MABP level was observed in AG+ANGII-treated rats when compared to other treatment groups. Histological examinations also showed a reduction of organ damage in AG+ANGII-treated rats compared to other treatment groups. Nitrate/nitrite level, glutamic oxalacetic transaminase (GOT) level and creatinine level were also significantly improved in AG+ANGII-treated rats compared to the other groups. CONCLUSIONS A greater beneficial effect was achieved with treatment by the AG+ANGII combination. Our experiments showed that the inhibition of excessive NO formation that occurred during HSDP, had augmented the vascular responsiveness effect of ANGII following protracted HS.
Collapse
Affiliation(s)
- Md Shirhan
- Department of Pharmacology, National University of Singapore, Singapore, Singapore
| | | | | | | | | |
Collapse
|
12
|
Drenjancevic-Peric I, Lombard JH. Introgression of chromosome 13 in Dahl salt-sensitive genetic background restores cerebral vascular relaxation. Am J Physiol Heart Circ Physiol 2004; 287:H957-62. [PMID: 15031125 DOI: 10.1152/ajpheart.01087.2003] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To evaluate the potential role of impaired renin-angiotensin system (RAS) function in contributing to reduced vascular relaxation in Dahl salt-sensitive (S) rats, responses to ACh (10(-6) mol/l) and hypoxia (Po(2) reduction to 40-45 mmHg) were determined in isolated middle cerebral arteries of Dahl S rats, Brown Norway (BN) rats, and consomic rats having chromosome 13 (containing the renin gene) or chromosome 16 of the BN rat substituted into the Dahl S genetic background (SS-13(BN) and SS-16(BN), respectively). Arteries of BN rats on a low-salt (LS) diet (0.4% NaCl) dilated in response to ACh and hypoxia, whereas dilation in response to these stimuli was absent in Dahl S rats on LS diet. Vasodilation to ACh and hypoxia was restored in SS-13(BN) rats on an LS diet but not in SS-16(BN) rats. High-salt diet (4% NaCl), to suppress ANG II, eliminated vasodilation to hypoxia and ACh in BN and in SS-13(BN) rats. Treatment of SS-13(BN) rats with the AT(1) receptor antagonist losartan also eliminated the restored vasodilation in response to ACh and hypoxia. These studies suggest that restoration of normal RAS regulation in SS-13(BN) consomic rats restores vascular relaxation mechanisms that are impaired in Dahl S rats.
Collapse
|
13
|
Ait-Yahia D, Madani S, Savelli JL, Prost J, Bouchenak M, Belleville J. Dietary fish protein lowers blood pressure and alters tissue polyunsaturated fatty acid composition in spontaneously hypertensive rats. Nutrition 2003; 19:342-6. [PMID: 12679169 DOI: 10.1016/s0899-9007(02)00858-4] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
OBJECTIVE To investigate the effect of two types of dietary protein on blood pressure, liver fatty acid desaturation and composition, and urine 6-keto-prostaglandin-F (PGF(1alpha)) level, the metabolite of prostacyclin. METHODS 5-wk-old spontaneously hypertensive rats were fed 20% casein or purified fish protein. The fat source was 5% ISIO oil, which contains 47.9% (omega-6) and 1.7% (omega-3) total polyunsaturated fatty acids. After 2 mo on the diet, systolic blood pressure was reduced with fish protein compared with casein (189.8 +/- 10.5 versus 220.7 +/- 8.7). RESULTS Excretion of 6-keto-PGF(1alpha) in urine was negatively correlated with blood pressure. Liver cholesterol and phospholipid concentrations were 1.71- and 1.27-fold lower with fish protein than with casein, respectively. The fish protein diet lowered the 20:4(omega-6) proportion and the ratio of 20:4(omega-6) to 18:2(omega-6) in liver microsomal lipids and phospholipids, which was due to the reduced microsomal Delta6(omega-6) desaturation activity. Dietary protein source did not affect omega-3 fatty acid composition, and this was associated with a similar activation of Delta6(omega-3) desaturation in liver microsomes. CONCLUSIONS The present data indicated a significant blood pressure-lowering effect caused by fish protein, rather than by casein, that modified the fatty acid composition of liver phospholipids and liver microsomal total lipids.
Collapse
Affiliation(s)
- Dalila Ait-Yahia
- Laboratoire de Nutrition Clinique et Métabolique, Faculté des Sciences, Université d'Oran, Es Sénia, Algeria
| | | | | | | | | | | |
Collapse
|
14
|
Felder RB, Francis J, Zhang ZH, Wei SG, Weiss RM, Johnson AK. Heart failure and the brain: new perspectives. Am J Physiol Regul Integr Comp Physiol 2003; 284:R259-76. [PMID: 12529279 DOI: 10.1152/ajpregu.00317.2002] [Citation(s) in RCA: 90] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Despite recent therapeutic advances, the prognosis for patients with heart failure remains dismal. Unchecked neurohumoral excitation is a critical element in the progressive clinical deterioration associated with the heart failure syndrome, and its peripheral manifestations have become the principal targets for intervention. The link between peripheral systems activated in heart failure and the central nervous system as a source of neurohumoral drive has therefore come under close scrutiny. In this context, the forebrain and particularly the paraventricular nucleus of the hypothalamus have emerged as sites that sense humoral signals generated peripherally in response to the stresses of heart failure and contribute to the altered volume regulation and augmented sympathetic drive that characterize the heart failure syndrome. This brief review summarizes recent studies from our laboratory supporting the concept that the forebrain plays a critical role in the pathogenesis of ischemia-induced heart failure and suggesting that the forebrain contribution must be considered in designing therapeutic strategies. Forebrain signaling by neuroactive products of the renin-angiotensin system and the immune system are emphasized.
Collapse
Affiliation(s)
- Robert B Felder
- Department of Internal Medicine, University of Iowa, Iowa City, Iowa 52242, USA.
| | | | | | | | | | | |
Collapse
|