1
|
Pasquetta L, Ferreyra E, Wille-Bille A, Pautassi RM, Ramirez A, Piovano J, Molina JC, Miranda-Morales RS. C57BL/6J offspring mice reared by a single-mother exhibit, compared to mice reared in a biparental parenting structure, distinct neural activation patterns and heightened ethanol-induced anxiolysis. Psychopharmacology (Berl) 2025; 242:1123-1135. [PMID: 38811403 DOI: 10.1007/s00213-024-06627-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 05/24/2024] [Indexed: 05/31/2024]
Abstract
RATIONALE Parenting experiences with caregivers play a key role in neurodevelopment. We recently reported that adolescents reared by a single-mother (SM) display an anxiety-prone phenotype and drink more alcohol, compared to peers derived from a biparental (BP) rearing condition. OBJECTIVES To investigate if SM and BP offspring infant mice exhibit differential sensitivity to ethanol-induced locomotor activity and differential activity patterns in brain areas related to anxiety response. We also analyzed anxiety response and ethanol-induced anxiolysis in SM and BP adolescents. METHODS Mice reared in SM or BP conditions were assessed for (a) ethanol-induced locomotor activity at infancy, (b) central expression of Fos-like proteins (likely represented mostly by FosB, a transcription factor that accumulates after chronic stimuli exposure and serves as a molecular marker of neural plasticity) and cathecolaminergic activity, and (c) anxiety-like behavior and ethanol-induced anxiolysis in adolescence. RESULTS Infant mice were sensitive to the stimulating effects of 2.0 g/kg alcohol, regardless parenting structure. SM mice exhibited, relative to BP mice, a significantly greater number of Fos-like positive cells in the central amygdala and basolateral amygdala nuclei. Ethanol treatment, but not parenting condition, induced greater activation of dopaminergic neurons in ventral tegmental area. SM, but not BP, adolescent mice were sensitive to ethanol-induced anxiolysis. CONCLUSIONS These results highlight the complex relationship between parenting experiences and neurodevelopment. The SM parenting may result in greater neural activation patterns in brain areas associated with anxiety response, potentially contributing to increased basal anxiety and alcohol sensitivity.
Collapse
Affiliation(s)
- Lucila Pasquetta
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Eliana Ferreyra
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Aranza Wille-Bille
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Ricardo Marcos Pautassi
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Abraham Ramirez
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Ciencias Bioquímicas y Farmacéuticas, Universidad Nacional de Rosario, Rosario, 2000, Argentina
| | - Jesica Piovano
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
| | - Juan Carlos Molina
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina
| | - Roberto Sebastián Miranda-Morales
- Instituto de Investigación Médica Mercedes y Martín Ferreyra (INIMEC-CONICET-Universidad Nacional de Córdoba), Friuli 2434, Córdoba, 5016, Argentina.
- Facultad de Psicología, Universidad Nacional de Córdoba, Córdoba, 5000, Argentina.
| |
Collapse
|
2
|
Zúniga-García M, Riesgo-Escovar JR. fos genes in mainly invertebrate model systems: A review of commonalities and some diversities. Cells Dev 2025; 181:203997. [PMID: 39880305 DOI: 10.1016/j.cdev.2025.203997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/17/2025] [Accepted: 01/21/2025] [Indexed: 01/31/2025]
Abstract
fos genes, transcription factors with a common basic region and leucine zipper domains binding to a consensus DNA sequence (TGA{}TCA), are evolutionarily conserved in eukaryotes. Homologs can be found in many different species from yeast to vertebrates. In yeast, the homologous GCN4 gene is required to mediate "emergency" situations like nutrient deprivation and the unfolded protein response. The C. elegans homolog fos-1 is required for reproduction and vulval development, as well as in adult homeostasis. In Drosophila melanogaster, there is also a sole fos homolog: the gene kayak, with five isoforms. The kayak locus has been studied in detail. It was originally described as embryonic lethal with a "dorsal open" phenotype. Since then, kayak has been shown to be required for oocyte maturation and as a source for piRNA; for early dorsoventral specification, macrophage function, dorsal closure, endoderm differentiation, and finally during metamorphosis in wing and eye-antennal development. In mammals there are multiple fos loci, each one with alternative splicing giving rise to multiple isoforms. Overall, mammalian fos genes are required for bone, cartilage and tooth formation, and in some instances for placental angiogenesis and retinal function. We review here mainly what is known about fos function in invertebrate model systems, especially during embryogenesis. We propose that fos genes, evolutionarily conserved transcription factors, evolved early during eukaryotic development, and from its inception as part of an environmental stress response machinery, were co-opted several times during development to regulate processes that may require similar cellular responses.
Collapse
Affiliation(s)
- Manuel Zúniga-García
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico; Posgrado en Ciencias Biológicas, Unidad de Posgrado, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, C.P. 04510, CDMX, Mexico
| | - Juan Rafael Riesgo-Escovar
- Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro, Querétaro, Mexico.
| |
Collapse
|
3
|
Hu Y, Li CY, Lu Q, Kuang Y. Multiplex miRNA reporting platform for real-time profiling of living cells. Cell Chem Biol 2024; 31:150-162.e7. [PMID: 38035883 DOI: 10.1016/j.chembiol.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/15/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Accurately characterizing cell types within complex cell structures provides invaluable information for comprehending the cellular status during biological processes. In this study, we have developed an miRNA-switch cocktail platform capable of reporting and tracking the activities of multiple miRNAs (microRNAs) at the single-cell level, while minimizing disruption to the cell culture. Drawing on the principles of traditional miRNA-sensing mRNA switches, our platform incorporates subcellular tags and employs intelligent engineering to segment three subcellular regions using two fluorescent proteins. These designs enable the quantification of multiple miRNAs within the same cell. Through our experiments, we have demonstrated the platform's ability to track marker miRNA levels during cell differentiation and provide spatial information of heterogeneity on outlier cells exhibiting extreme miRNA levels. Importantly, this platform offers real-time and in situ miRNA reporting, allowing for multidimensional evaluation of cell profile and paving the way for a comprehensive understanding of cellular events during biological processes.
Collapse
Affiliation(s)
- Yaxin Hu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Cheuk Yin Li
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Qiuyu Lu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China
| | - Yi Kuang
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Kowloon, Hong Kong SAR, China.
| |
Collapse
|
4
|
Dye CN, Franceschelli D, Leuner B, Lenz KM. Microglia depletion facilitates the display of maternal behavior and alters activation of the maternal brain network in nulliparous female rats. Neuropsychopharmacology 2023; 48:1869-1877. [PMID: 37330580 PMCID: PMC10584962 DOI: 10.1038/s41386-023-01624-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/17/2023] [Accepted: 05/29/2023] [Indexed: 06/19/2023]
Abstract
The peripartum period is accompanied by peripheral immune alterations to promote a successful pregnancy. We and others have also demonstrated significant neuroimmune changes that emerge during late pregnancy and persist postpartum, most prominently decreased microglia numbers within limbic brain regions. Here we hypothesized that microglial downregulation is important for the onset and display of maternal behavior. To test this, we recapitulated the peripartum neuroimmune profile by depleting microglia in non-mother (i.e., nulliparous) female rats who are typically not maternal but can be induced to behave maternally towards foster pups after repeated exposure, a process called maternal sensitization. BLZ945, a selective colony-stimulating factor 1 receptor (CSF1R) inhibitor, was administered systemically to nulliparous rats, which led to ~75% decrease in microglia number. BLZ- and vehicle-treated females then underwent maternal sensitization and tissue was stained for ∆fosB to examine activation across maternally relevant brain regions. We found BLZ-treated females with microglial depletion met criteria for displaying maternal behavior significantly sooner than vehicle-treated females and displayed increased pup-directed behaviors. Microglia depletion also reduced threat appraisal behavior in an open field test. Notably, nulliparous females with microglial depletion had decreased numbers of ∆fosB+ cells in the medial amygdala and periaqueductal gray, and increased numbers in the prefrontal cortex and somatosensory cortex, compared to vehicle. Our results demonstrate that microglia regulate maternal behavior in adult females, possibly by shifting patterns of activity in the maternal brain network.
Collapse
Affiliation(s)
- Courtney N Dye
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | | | - Benedetta Leuner
- Department of Psychology, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Kathryn M Lenz
- Department of Psychology, The Ohio State University, Columbus, OH, USA.
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA.
- Institute of Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA.
| |
Collapse
|
5
|
Sandri BJ, Ennis-Czerniak K, Kanajam P, Frey WH, Lock EF, Rao RB. Intranasal insulin treatment partially corrects the altered gene expression profile in the hippocampus of developing rats with perinatal iron deficiency. Am J Physiol Regul Integr Comp Physiol 2023; 325:R423-R432. [PMID: 37602386 PMCID: PMC10639019 DOI: 10.1152/ajpregu.00311.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 08/22/2023]
Abstract
Perinatal iron deficiency (FeD) targets the hippocampus and leads to long-term cognitive deficits. Intranasal insulin administration improves cognitive deficits in adult humans with Alzheimer's disease and type 2 diabetes and could provide benefits in FeD-induced hippocampal dysfunction. To objective was to assess the effects of intranasal insulin administration intranasal insulin administration on the hippocampal transcriptome in a developing rat model of perinatal FeD. Perinatal FeD was induced using low-iron diet from gestational day 3 until postnatal day (P) 7, followed by an iron sufficient (FeS) diet through P21. Intranasal insulin was administered at a dose of 0.3 IU twice daily from P8 to P21. Hippocampi were removed on P21 from FeS control, FeD control, FeS insulin, and FeD insulin groups. Total RNA was isolated and profiled using next-generation sequencing. Gene expression profiles were characterized using custom workflows and expression patterns examined using ingenuity pathways analysis (n = 7-9 per group). Select RNAseq results were confirmed via qPCR. Transcriptomic profiling revealed that mitochondrial biogenesis and flux, oxidative phosphorylation, quantity of neurons, CREB signaling in neurons, and RICTOR-based mTOR signaling were disrupted with FeD and positively affected by intranasal insulin treatment with the most benefit observed in the FeD insulin group. Both perinatal FeD and intranasal insulin administration altered gene expression profile in the developing hippocampus. Intranasal insulin treatment reversed the adverse effects of FeD on many molecular pathways and could be explored as an adjunct therapy in perinatal FeD.
Collapse
Affiliation(s)
- Brian J Sandri
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| | - Kathleen Ennis-Czerniak
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - Priya Kanajam
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
| | - William H Frey
- HealthPartners Center for Memory and Aging, HealthPartners Neurosciences, St. Paul, Minnesota, United States
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, Minnesota, United States
| | - Raghavendra B Rao
- Division of Neonatology, Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, United States
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, United States
| |
Collapse
|
6
|
Prasad S, Kumar V, Singh C, Singh A. Crosstalk between phytochemicals and inflammatory signaling pathways. Inflammopharmacology 2023; 31:1117-1147. [PMID: 37022574 DOI: 10.1007/s10787-023-01206-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 03/21/2023] [Indexed: 04/07/2023]
Abstract
Novel bioactive constituents from natural sources are actively being investigated. The phytochemicals in these phenolic compounds are believed to have a variety of beneficial effects on human health. Several phenolic compounds have been found in plants. The antioxidant potential of phenols has been discussed in numerous studies along with their anti-inflammatory effects on pro-inflammatory cytokine, inducible cyclooxygenase-2, and nitric oxide synthase. Through current study, an attempt is made to outline and highlight a wide variety of inflammation-associated signaling pathways that have been modified by several natural compounds. These signaling pathways include nuclear factor-kappa B (NF-кB), activator protein (AP)-1, protein tyrosine kinases (PTKs), mitogen-activated protein kinases (MAPKs), nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factors, tyrosine phosphatidylinositol 3-kinase (PI3K)/AKT, and the ubiquitin-proteasome system. In light of the influence of natural substances on signaling pathways, their impact on the production of inflammatory mediator is highlighted in this review.
Collapse
Affiliation(s)
- Sonima Prasad
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Vishal Kumar
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, School of Pharmacy, H.N.B. Garhwal University, Srinagar, Garhwal, 246174, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, 142001, Punjab, India.
- Affiliated to IK Gujral Punjab Technical University, Jalandhar, Punjab, 144603, India.
| |
Collapse
|
7
|
Alonso CAI, David CD, Toufaily C, Wang Y, Zhou X, Ongaro L, Nudelman G, Nair VD, Ruf-Zamojski F, Boehm U, Sealfon SC, Bernard DJ. Activating Transcription Factor 3 Stimulates Follicle-Stimulating Hormone-β Expression In Vitro But Is Dispensable for Follicle-Stimulating Hormone Production in Murine Gonadotropes In Vivo. Endocrinology 2023; 164:bqad050. [PMID: 36951304 PMCID: PMC10282924 DOI: 10.1210/endocr/bqad050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/07/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023]
Abstract
Follicle-stimulating hormone (FSH), a dimeric glycoprotein produced by pituitary gonadotrope cells, regulates spermatogenesis in males and ovarian follicle growth in females. Hypothalamic gonadotropin-releasing hormone (GnRH) stimulates FSHβ subunit gene (Fshb) transcription, though the underlying mechanisms are poorly understood. To address this gap in knowledge, we examined changes in pituitary gene expression in GnRH-deficient mice (hpg) treated with a regimen of exogenous GnRH that increases pituitary Fshb but not luteinizing hormone β (Lhb) messenger RNA levels. Activating transcription factor 3 (Atf3) was among the most upregulated genes. Activating transcription factor 3 (ATF3) can heterodimerize with members of the activator protein 1 family to regulate gene transcription. Co-expression of ATF3 with JunB stimulated murine Fshb, but not Lhb, promoter-reporter activity in homologous LβT2b cells. ATF3 also synergized with a constitutively active activin type I receptor to increase endogenous Fshb expression in these cells. Nevertheless, FSH production was intact in gonadotrope-specific Atf3 knockout [conditional knockout (cKO)] mice. Ovarian follicle development, ovulation, and litter sizes were equivalent between cKOs and controls. Testis weights and sperm counts did not differ between genotypes. Following gonadectomy, increases in LH secretion were enhanced in cKO animals. Though FSH levels did not differ between genotypes, post-gonadectomy increases in pituitary Fshb and gonadotropin α subunit expression were more pronounced in cKO than control mice. These data indicate that ATF3 can selectively stimulate Fshb expression in vitro but is not required for FSH production in vivo.
Collapse
Affiliation(s)
- Carlos A I Alonso
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Caroline D David
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Chirine Toufaily
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Ying Wang
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Xiang Zhou
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - Luisina Ongaro
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| | - German Nudelman
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Venugopalan D Nair
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Frederique Ruf-Zamojski
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ulrich Boehm
- Department of Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg 66421, Germany
| | - Stuart C Sealfon
- Department of Neurology, Center for Advanced Research on Diagnostic Assay, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Daniel J Bernard
- Department of Pharmacology and Therapeutics, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
8
|
Foster WB, Beach KF, Carson PF, Harris KC, Alonso BL, Costa LT, Simamora RC, Corbin JE, Hoag KF, Mercado SI, Bernhard AG, Leung CH, Nestler EJ, Been LE. Estradiol withdrawal following a hormone simulated pregnancy induces deficits in affective behaviors and increases ∆FosB in D1 and D2 neurons in the nucleus accumbens core in mice. Horm Behav 2023; 149:105312. [PMID: 36645923 PMCID: PMC9974842 DOI: 10.1016/j.yhbeh.2023.105312] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 12/02/2022] [Accepted: 01/09/2023] [Indexed: 01/15/2023]
Abstract
In placental mammals, estradiol levels are chronically elevated during pregnancy, but quickly drop to prepartum levels following birth. This may produce an "estrogen withdrawal" state that has been linked to changes in affective states in humans and rodents during the postpartum period. The neural mechanisms underlying these affective changes, however, are understudied. We used a hormone-simulated pseudopregnancy (HSP), a model of postpartum estrogen withdrawal, in adult female C57BL/6 mice to test the impact of postpartum estradiol withdrawal on several behavioral measures of anxiety and motivation. We found that estradiol withdrawal following HSP increased anxiety-like behavior in the elevated plus maze, but not in the open field or marble burying tests. Although hormone treatment during HSP consistently increased sucrose consumption, sucrose preference was generally not impacted by hormone treatment or subsequent estradiol withdrawal. In the social motivation test, estradiol withdrawal decreased the amount of time spent in proximity to a social stimulus animal. These behavioral changes were accompanied by changes in the expression of ∆FosB, a transcription factor correlated with stable long-term plasticity, in the nucleus accumbens (NAc). Specifically, estrogen-withdrawn females had higher ∆FosB expression in the nucleus accumbens core, but ∆FosB expression did not vary across hormone conditions in the nucleus accumbens shell. Using transgenic reporter mice, we found that this increase in ∆FosB occurred in both D1- and D2-expressing cells in the NAc core. Together, these results suggest that postpartum estrogen withdrawal impacts anxiety and motivation and increases ∆FosB in the NAc core.
Collapse
Affiliation(s)
| | | | - Paige F Carson
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Kagan C Harris
- Haverford College, Department of Psychology, Haverford, PA, USA
| | | | - Leo T Costa
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Roy C Simamora
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Jaclyn E Corbin
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Keegan F Hoag
- Haverford College, Department of Psychology, Haverford, PA, USA
| | | | - Anya G Bernhard
- Haverford College, Department of Psychology, Haverford, PA, USA
| | - Cary H Leung
- Widener College, Department of Biology, Chester, PA, USA
| | - Eric J Nestler
- Icahn School of Medicine at Mount Sinai, Friedman Brain Institute, New York, NY, USA
| | - Laura E Been
- Haverford College, Department of Psychology, Haverford, PA, USA.
| |
Collapse
|
9
|
The Immediate Early Response of Lens Epithelial Cells to Lens Injury. Cells 2022; 11:cells11213456. [PMID: 36359852 PMCID: PMC9654717 DOI: 10.3390/cells11213456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 10/17/2022] [Accepted: 10/21/2022] [Indexed: 11/06/2022] Open
Abstract
Cataracts are treated by lens fiber cell removal followed by intraocular lens (IOL) implantation into the lens capsule. While effective, this procedure leaves behind numerous lens epithelial cells (LECs) which undergo a wound healing response that frequently leads to posterior capsular opacification (PCO). In order to elucidate the acute response of LECs to lens fiber cell removal which models cataract surgery (post cataract surgery, PCS), RNA-seq was conducted on LECs derived from wild type mice at 0 and 6 h PCS. This analysis found that LECs upregulate the expression of numerous proinflammatory cytokines and profibrotic regulators by 6 h PCS suggesting rapid priming of pathways leading to inflammation and fibrosis PCS. LECs also highly upregulate the expression of numerous immediate early transcription factors (IETFs) by 6 h PCS and immunolocalization found elevated levels of these proteins by 3 h PCS, and this was preceded by the phosphorylation of ERK1/2 in injured LECs. Egr1 and FosB were among the highest expressed of these factors and qRT-PCR revealed that they also upregulate in explanted mouse lens epithelia suggesting potential roles in the LEC injury response. Analysis of lenses lacking either Egr1 or FosB revealed that both genes may regulate a portion of the acute LEC injury response, although neither gene was essential for expression of either proinflammatory or fibrotic markers at later times PCS suggesting that IETFs may work in concert to mediate the LEC injury response following cataract surgery.
Collapse
|
10
|
Kubra K, Gaddu GK, Liongue C, Heidary S, Ward AC, Dhillon AS, Basheer F. Phylogenetic and Expression Analysis of Fos Transcription Factors in Zebrafish. Int J Mol Sci 2022; 23:ijms231710098. [PMID: 36077499 PMCID: PMC9456341 DOI: 10.3390/ijms231710098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022] Open
Abstract
Members of the FOS protein family regulate gene expression responses to a multitude of extracellular signals and are dysregulated in several pathological states. Whilst mouse genetic models have provided key insights into the tissue-specific functions of these proteins in vivo, little is known about their roles during early vertebrate embryonic development. This study examined the potential of using zebrafish as a model for such studies and, more broadly, for investigating the mechanisms regulating the functions of Fos proteins in vivo. Through phylogenetic and sequence analysis, we identified six zebrafish FOS orthologues, fosaa, fosab, fosb, fosl1a, fosl1b, and fosl2, which show high conservation in key regulatory domains and post-translational modification sites compared to their equivalent human proteins. During embryogenesis, zebrafish fos genes exhibit both overlapping and distinct spatiotemporal patterns of expression in specific cell types and tissues. Most fos genes are also expressed in a variety of adult zebrafish tissues. As in humans, we also found that expression of zebrafish FOS orthologs is induced by oncogenic BRAF-ERK signalling in zebrafish melanomas. These findings suggest that zebrafish represent an alternate model to mice for investigating the regulation and functions of Fos proteins in vertebrate embryonic and adult tissues, and cancer.
Collapse
Affiliation(s)
- Khadizatul Kubra
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Gurveer K. Gaddu
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Clifford Liongue
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Somayyeh Heidary
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
| | - Alister C. Ward
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
| | - Amardeep S. Dhillon
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Olivia Newton-John Cancer Research Institute, Melbourne, VIC 3084, Australia
- School of Cancer Medicine, LaTrobe University, Melbourne, VIC 3086, Australia
- Correspondence: (A.S.D.); (F.B.)
| | - Faiza Basheer
- School of Medicine, Deakin University, Geelong, VIC 3216, Australia
- Institute of Mental and Physical Health and Clinical Translation, Deakin University, Geelong, VIC 3216, Australia
- Correspondence: (A.S.D.); (F.B.)
| |
Collapse
|
11
|
Identification of activity-induced Egr3-dependent genes reveals genes associated with DNA damage response and schizophrenia. Transl Psychiatry 2022; 12:320. [PMID: 35941129 PMCID: PMC9360026 DOI: 10.1038/s41398-022-02069-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 07/05/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Bioinformatics and network studies have identified the immediate early gene transcription factor early growth response 3 (EGR3) as a master regulator of genes differentially expressed in the brains of patients with neuropsychiatric illnesses ranging from schizophrenia and bipolar disorder to Alzheimer's disease. However, few studies have identified and validated Egr3-dependent genes in the mammalian brain. We have previously shown that Egr3 is required for stress-responsive behavior, memory, and hippocampal long-term depression in mice. To identify Egr3-dependent genes that may regulate these processes, we conducted an expression microarray on hippocampi from wildtype (WT) and Egr3-/- mice following electroconvulsive seizure (ECS), a stimulus that induces maximal expression of immediate early genes including Egr3. We identified 69 genes that were differentially expressed between WT and Egr3-/- mice one hour following ECS. Bioinformatic analyses showed that many of these are altered in, or associated with, schizophrenia, including Mef2c and Calb2. Enrichr pathway analysis revealed the GADD45 (growth arrest and DNA-damage-inducible) family (Gadd45b, Gadd45g) as a leading group of differentially expressed genes. Together with differentially expressed genes in the AP-1 transcription factor family genes (Fos, Fosb), and the centromere organization protein Cenpa, these results revealed that Egr3 is required for activity-dependent expression of genes involved in the DNA damage response. Our findings show that EGR3 is critical for the expression of genes that are mis-expressed in schizophrenia and reveal a novel requirement for EGR3 in the expression of genes involved in activity-induced DNA damage response.
Collapse
|
12
|
Fuentes I, Morishita Y, Gonzalez-Salinas S, Champagne FA, Uchida S, Shumyatsky GP. Experience-Regulated Neuronal Signaling in Maternal Behavior. Front Mol Neurosci 2022; 15:844295. [PMID: 35401110 PMCID: PMC8987921 DOI: 10.3389/fnmol.2022.844295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Maternal behavior is shaped and challenged by the changing developmental needs of offspring and a broad range of environmental factors, with evidence indicating that the maternal brain exhibits a high degree of plasticity. This plasticity is displayed within cellular and molecular systems, including both intra- and intercellular signaling processes as well as transcriptional profiles. This experience-associated plasticity may have significant overlap with the mechanisms controlling memory processes, in particular those that are activity-dependent. While a significant body of work has identified various molecules and intracellular processes regulating maternal care, the role of activity- and experience-dependent processes remains unclear. We discuss recent progress in studying activity-dependent changes occurring at the synapse, in the nucleus, and during the transport between these two structures in relation to maternal behavior. Several pre- and postsynaptic molecules as well as transcription factors have been found to be critical in these processes. This role reflects the principal importance of the molecular and cellular mechanisms of memory formation to maternal and other behavioral adaptations.
Collapse
Affiliation(s)
- Ileana Fuentes
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
| | | | | | - Frances A. Champagne
- Department of Psychology, University of Texas at Austin, Austin, TX, United States
| | - Shusaku Uchida
- SK Project, Medical Innovation Center, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Gleb P. Shumyatsky
- Department of Genetics, Rutgers University, Piscataway, NJ, United States
- *Correspondence: Gleb P. Shumyatsky
| |
Collapse
|
13
|
Tallafuss A, Stednitz SJ, Voeun M, Levichev A, Larsch J, Eisen J, Washbourne P. Egr1 Is Necessary for Forebrain Dopaminergic Signaling during Social Behavior. eNeuro 2022; 9:ENEURO.0035-22.2022. [PMID: 35346959 PMCID: PMC8994534 DOI: 10.1523/eneuro.0035-22.2022] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/25/2022] Open
Abstract
Finding the link between behaviors and their regulatory molecular pathways is a major obstacle in treating neuropsychiatric disorders. The immediate early gene (IEG) EGR1 is implicated in the etiology of neuropsychiatric disorders, and is linked to gene pathways associated with social behavior. Despite extensive knowledge of EGR1 gene regulation at the molecular level, it remains unclear how EGR1 deficits might affect the social component of these disorders. Here, we examined the social behavior of zebrafish with a mutation in the homologous gene egr1 Mutant fish exhibited reduced social approach and orienting, whereas other sensorimotor behaviors were unaffected. On a molecular level, expression of the dopaminergic biosynthetic enzyme, tyrosine hydroxylase (TH), was strongly decreased in TH-positive neurons of the anterior parvocellular preoptic nucleus. These neurons are connected with basal forebrain (BF) neurons associated with social behavior. Chemogenetic ablation of around 30% of TH-positive neurons in this preoptic region reduced social attraction to a similar extent as the egr1 mutation. These results demonstrate the requirement of Egr1 and dopamine signaling during social interactions, and identify novel circuitry underlying this behavior.
Collapse
Affiliation(s)
| | | | - Mae Voeun
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | | - Johannes Larsch
- Max Planck Institut für Neurobiologie, Martinsried, D-82152, Munich Germany
| | - Judith Eisen
- Institute of Neuroscience, University of Oregon, Eugene, OR 97403
| | | |
Collapse
|
14
|
Harauma A, Nakamura S, Wakinaka N, Mogi K, Moriguchi T. Influence of ω3 fatty acids on maternal behavior and brain oxytocin in the murine perinatal period. Prostaglandins Leukot Essent Fatty Acids 2022; 176:102386. [PMID: 34896909 DOI: 10.1016/j.plefa.2021.102386] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 11/24/2021] [Accepted: 12/01/2021] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Perinatal women often experience mood disorders and postpartum depression due to the physical load and the rapid changes in hormone levels caused by pregnancy, childbirth, and nursing. When the mother's emotions become unstable, their parental behavior (maternal behavior) may decline, the child's attachment may weaken, and the formation of mother-child bonding can become hindered. As a result, the growth of the child may be adversely affected. The objective of this study was to investigate the effect of ω3 fatty acid deficiency in the perinatal period on maternal behavior and the oxytocin concentration and fatty acid composition in brain tissue. MATERIALS AND METHODS Virgin female C57BL/6 J mice fed a ω3 fatty acid-deficient (ω3-Def) or adequate (ω3-Adq) diet were mated for use in this study. To assess maternal behavior, nest shape was evaluated at a fixed time from gestational day (GD) 15 to postpartum day (PD) 13, and a retrieval test was conducted on PD 3. For neurochemical measurement, brains were removed from PD 1-6 dams and hippocampal fatty acids and hypothalamic oxytocin concentrations were assessed. RESULTS Peripartum nest shape scores were similar to those reported previously (Harauma et al., 2016); nests in the ω3-Def group were small and of poor quality whereas those in the ω3-Adq group were large and elaborate. The inferiority of nest shape in the ω3-Def group continued from PD 0-7. In the retrieval test performed on PD 3, dams in the ω3-Def group took longer on several parameters compared with those in the ω3-Adq group, including time to make contact with pups (sniffing time), time to start retrieving the next pup (interval time), and time to retrieve the last pup to the nest (grouping time). Hypothalamic oxytocin concentrations on PD 1-6 were lower in the ω3-Def group than in the ω3-Adq group. DISCUSSION Our data show that ω3 fatty acid deficiency reduces maternal behavior, a state that continued during pup rearing. This was supported by the observed decrease in hypothalamic oxytocin concentration in the ω3-Def group. These results suggest that ω3 fatty acid supplementation during the perinatal period is not only effective in delivering ω3 fatty acids to infants but is also necessary to activate high-quality parental behavior in mothers.
Collapse
Affiliation(s)
- Akiko Harauma
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Shunichi Nakamura
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Natsuko Wakinaka
- Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Kazutaka Mogi
- Laboratory of Companion Animal Research, Department of Animal Science and Biotechnology, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan
| | - Toru Moriguchi
- Laboratory for Functional Lipid Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan; Laboratory of Food and Nutritional Science, Department of Food and Life Science, School of Life and Environmental Science, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 252-5201, Japan.
| |
Collapse
|
15
|
Cullen SM, Hassan N, Smith-Raska M. Effects of non-inherited ancestral genotypes on offspring phenotypes. Biol Reprod 2021; 105:747-760. [PMID: 34159361 DOI: 10.1093/biolre/ioab120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 11/13/2022] Open
Abstract
It is well established that environmental exposures can modify the profile of heritable factors in an individual's germ cells, ultimately affecting the inheritance of phenotypes in descendants. Similar to exposures, an ancestor's genotype can also affect the inheritance of phenotypes across generations, sometimes in offspring who do not inherit the genetic aberration. This can occur via a variety of prenatal, in utero, or postnatal mechanisms. In this review, we discuss the evidence for this process in mammals, with a focus on examples that are potentially mediated through the germline, while also considering alternate routes of inheritance. Non-inherited ancestral genotypes may influence descendant's disease risk to a much greater extent than currently appreciated, and focused evaluation of this phenomenon may reveal novel mechanisms of inheritance.
Collapse
Affiliation(s)
- Sean M Cullen
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1252D, New York, NY 10021
| | - Nora Hassan
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1252D, New York, NY 10021
| | - Matthew Smith-Raska
- Division of Newborn Medicine, Department of Pediatrics, Weill Cornell Medicine, 413 East 69th Street, Room 1252D, New York, NY 10021
| |
Collapse
|
16
|
Suto JI, Kojima M. Low pup survival rate is associated with maternal Naq3 genotype and hypothalamic Vps8 expression levels in mice. Congenit Anom (Kyoto) 2021; 61:97-100. [PMID: 33289187 DOI: 10.1111/cga.12406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 11/25/2020] [Accepted: 12/01/2020] [Indexed: 11/29/2022]
Abstract
Pups born from females of the inbred mouse strain RR/Sgn tend to have low survival rates during rearing. We have previously identified Naq3, a quantitative trait locus underlying this low pup survival rate. In the present study, we confirmed the effect of Naq3 in congenic mice and investigated whether Vps8 is a candidate gene for Naq3. The survival rate of pups on the twelfth postpartum day was significantly decreased for mothers homozygous for the Naq3 allele. Hypothalamic expression of Vps8 was induced by nurturing in wild-type mice, and was significantly lower in Naq3 congenic mice than in wild-type mice. Thus, Vps8 is suggested to be involved in maternal nurturing, and therefore, as a plausible candidate gene for Naq3.
Collapse
Affiliation(s)
- Jun-Ichi Suto
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| | - Misaki Kojima
- Institute of Livestock and Grassland Science, National Agriculture and Food Research Organization (NARO), Tsukuba, Ibaraki, Japan
| |
Collapse
|
17
|
A Scientometric Approach to Review the Role of the Medial Preoptic Area (MPOA) in Parental Behavior. Brain Sci 2021; 11:brainsci11030393. [PMID: 33804634 PMCID: PMC8003755 DOI: 10.3390/brainsci11030393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 12/15/2022] Open
Abstract
Research investigating the neural substrates underpinning parental behaviour has recently gained momentum. Particularly, the hypothalamic medial preoptic area (MPOA) has been identified as a crucial region for parenting. The current study conducted a scientometric analysis of publications from 1 January 1972 to 19 January 2021 using CiteSpace software to determine trends in the scientific literature exploring the relationship between MPOA and parental behaviour. In total, 677 scientific papers were analysed, producing a network of 1509 nodes and 5498 links. Four major clusters were identified: “C-Fos Expression”, “Lactating Rat”, “Medial Preoptic Area Interaction” and “Parental Behavior”. Their content suggests an initial trend in which the properties of the MPOA in response to parental behavior were studied, followed by a growing attention towards the presence of a brain network, including the reward circuits, regulating such behavior. Furthermore, while attention was initially directed uniquely to maternal behavior, it has recently been extended to the understanding of paternal behaviors as well. Finally, although the majority of the studies were conducted on rodents, recent publications broaden the implications of previous documents to human parental behavior, giving insight into the mechanisms underlying postpartum depression. Potential directions in future works were also discussed.
Collapse
|
18
|
Lonstein JS, Charlier TD, Pawluski JL, Aigueperse N, Meurisse M, Lévy F, Lumineau S. Fos expression in the medial preoptic area and nucleus accumbens of female Japanese quail (Coturnix japonica) after maternal induction and interaction with chicks. Physiol Behav 2021; 234:113357. [PMID: 33582165 DOI: 10.1016/j.physbeh.2021.113357] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 11/29/2022]
Abstract
The neural system underlying maternal caregiving has often been studied using laboratory rodents and a few other mammalian species. This research shows that the medial preoptic area (mPOA) integrates sensory cues from the young that, along with hormonal and other environmental signals, control maternal acceptance of neonates. The mPOA then activates the mesolimbic system to drive maternal motivation and caregiving activities. How components of this neural system respond to maternal experience and exposure to young in non-mammals has rarely been examined. To gain more insight into this question, virgin female Japanese quail (Coturnix japonica) were induced to be maternal through four days of continuous exposure to chicks (Maternal), or were not exposed to chicks (Non-Maternal). Chicks were removed overnight from the Maternal group and half the females from each group were then exposed to chicks for 90 minutes (Exposed), or not exposed to chicks (Non-Exposed), before euthanasia. The number of Fos-immunoreactive (Fos-ir) cells was examined as a marker of neuronal activation. As expected, repeated exposure to chicks induced caregiving behavior in the Maternal females, which persisted after the overnight separation, suggesting the formation of a maternal memory. In contrast, Non-Maternal females were aggressive and rejected the chicks when exposed to them. Exposed females, whether or not they were given prior experience with chicks (i.e., regardless if they accepted or rejected chicks during the exposure before euthanasia), had more Fos-ir cells in the mPOA compared to Non-Exposed females. In the nucleus accumbens (NAC), the number of Fos-ir cells was high in all Maternal females whether or not they were Exposed to chicks again before euthanasia. In the lateral bed nucleus of the stria terminalis, a site involved in general stress responding, groups did not differ in the number of Fos-ir cells. These data indicate a conserved role for the mPOA and NAC in maternal caregiving across vertebrates, with the mPOA acutely responding to the salience rather than valence of offspring cues, and the NAC showing longer-term changes in activity after a positive maternal experience even without a recent exposure to young.
Collapse
Affiliation(s)
- Joseph S Lonstein
- Department of Psychology & Neuroscience Program, Michigan State University, East Lansing, MI, 48824, United States.
| | - Thierry D Charlier
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France
| | - Jodi L Pawluski
- Univ Rennes, Inserm, EHESP, Irset (Institut de Recherche en Santé, Environnement et Travail), UMR_S 1085, Rennes, France
| | - Nadege Aigueperse
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| | - Maryse Meurisse
- Unité de Physiologie de la Reproduction et des Comportemenst (PRC), INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Frédéric Lévy
- Unité de Physiologie de la Reproduction et des Comportemenst (PRC), INRAE, CNRS, IFCE, Université de Tours, Nouzilly, France
| | - Sophie Lumineau
- Univ Rennes, Normandie Univ, CNRS, EthoS (Éthologie animale et humaine) - UMR 6552, F-35000 Rennes, France
| |
Collapse
|
19
|
Grabrucker S, Pagano J, Schweizer J, Urrutia-Ruiz C, Schön M, Thome K, Ehret G, Grabrucker AM, Zhang R, Hengerer B, Bockmann J, Verpelli C, Sala C, Boeckers TM. Activation of the medial preoptic area (MPOA) ameliorates loss of maternal behavior in a Shank2 mouse model for autism. EMBO J 2021; 40:e104267. [PMID: 33491217 PMCID: PMC7917557 DOI: 10.15252/embj.2019104267] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2019] [Revised: 12/09/2020] [Accepted: 12/16/2020] [Indexed: 11/20/2022] Open
Abstract
Impairments in social relationships and awareness are features observed in autism spectrum disorders (ASDs). However, the underlying mechanisms remain poorly understood. Shank2 is a high‐confidence ASD candidate gene and localizes primarily to postsynaptic densities (PSDs) of excitatory synapses in the central nervous system (CNS). We show here that loss of Shank2 in mice leads to a lack of social attachment and bonding behavior towards pubs independent of hormonal, cognitive, or sensitive deficits. Shank2−/− mice display functional changes in nuclei of the social attachment circuit that were most prominent in the medial preoptic area (MPOA) of the hypothalamus. Selective enhancement of MPOA activity by DREADD technology re‐established social bonding behavior in Shank2−/− mice, providing evidence that the identified circuit might be crucial for explaining how social deficits in ASD can arise.
Collapse
Affiliation(s)
- Stefanie Grabrucker
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,Department of Biological Sciences, University of Limerick, Limerick, Ireland
| | - Jessica Pagano
- CNR Neuroscience Institute, Milan, Italy.,Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
| | - Johanna Schweizer
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Michael Schön
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Kevin Thome
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | - Günter Ehret
- Institute of Neurobiology, Ulm University, Ulm, Germany
| | - Andreas M Grabrucker
- Department of Biological Sciences, University of Limerick, Limerick, Ireland.,Bernal Institute, University of Limerick, Limerick, Ireland.,Health Research Institute, University of Limerick, Limerick, Ireland
| | - Rong Zhang
- Neuroscience Research Institute, Peking University, Beijing, China.,Key Laboratory for Neuroscience, Ministry of Education/National Health and Family Planning Commission, Peking University, Beijing, China.,Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | | | - Jürgen Bockmann
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany
| | | | - Carlo Sala
- CNR Neuroscience Institute, Milan, Italy
| | - Tobias M Boeckers
- Institute for Anatomy and Cell Biology, Ulm University, Ulm, Germany.,DZNE, Ulm Site, Ulm, Germany
| |
Collapse
|
20
|
Kuroda KO, Shiraishi Y, Shinozuka K. Evolutionary-adaptive and nonadaptive causes of infant attack/desertion in mammals: Toward a systematic classification of child maltreatment. Psychiatry Clin Neurosci 2020; 74:516-526. [PMID: 32592505 DOI: 10.1111/pcn.13096] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 06/08/2020] [Accepted: 06/22/2020] [Indexed: 12/20/2022]
Abstract
Behaviors comparable to human child maltreatment are observed widely among mammals, in which parental care is mandatory for offspring survival. This article first reviews the recent findings on the neurobiological mechanisms for nurturing (infant caregiving) behaviors in mammals. Then the major causes of attack/desertion toward infants (conspecific young) in nonhuman mammals are classified into five categories. Three of the categories are 'adaptive' in terms of reproductive fitness: (i) attack/desertion toward non-offspring; (ii) attack/desertion toward biological offspring with low reproductive value; and (iii) attack/desertion toward biological offspring under unfavorable environments. The other two are nonadaptive failures of nurturing motivation, induced by: (iv) caregivers' inexperience; or (v) dysfunction in caregivers' brain mechanisms required for nurturing behavior. The proposed framework covering both adaptive and nonadaptive factors comprehensively classifies the varieties of mammalian infant maltreatment cases and will support the future development of tailored preventive measures for each human case. Also included are remarks that are relevant to interpretation of available animal data to humans: (1) any kind of child abuse/neglect is not justified in modern human societies, even if it is widely observed and regarded as adaptive in nonhuman animals from the viewpoint of evolutionary biology; (2) group-level characteristics cannot be generalized to individuals; and (3) risk factors are neither deterministic nor irreversible.
Collapse
Affiliation(s)
- Kumi O Kuroda
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Yuko Shiraishi
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| | - Kazutaka Shinozuka
- Laboratory for Affiliative Social Behavior, RIKEN Center for Brain Science, Wako, Japan
| |
Collapse
|
21
|
Cocaine-induced inheritable epigenetic marks may be altered by changing early postnatal fostering. Neuroreport 2020; 30:1157-1165. [PMID: 31568187 DOI: 10.1097/wnr.0000000000001332] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Here, we explored the hypothesis that parental cocaine exposure could alter epigenetic machinery in their drug-naive offspring while early postnatal fostering may further modify the accompanied neurochemical and functional components. Variant drug-naive pups were produced from cocaine-exposed or unexposed C57BL/6 female mice that were matched with their male counterparts for mating. Within 3 days of birth, half of the pups were cross-fostered and nurtured by non-biological lactating dams. The pups were initially examined for locomotor activity and memory performance and subsequently for changes in DNA methylation in promoter regions of cAMP response element modulator (Crem) and Fosb in the prefrontal cortex at 48 days postnatum. The impact of postnatal fostering on these parameters was also investigated. Our results showed that cocaine exposure significantly decreased both Crem and Fosb methylation in the prefrontal cortex of progenitor mice, while similar patterns of methylation were replicated in the brains of drug-naive non-fostered offspring mice but reversed by postnatal fostering. Furthermore, offspring raised by cocaine-exposed dams were impaired in discriminative learning and exhibited memory decline, whereas locomotor activity remains unaltered in all groups of mice. Our data provide some evidence that indirect exposure to cocaine may cause marked epigenetic changes within the cortical networks of drug-naive descendants and that mediation by Crem/Fosb signalling in this brain region may be beneficial, while early postnatal fostering may further engineer molecular switching that may predispose the individual to future risky behaviours as well as accumulative potential to developing cognitive impairment later in life.
Collapse
|
22
|
Hagiwara A, Sugiyama N, Ohtsuka T. Impaired experience-dependent maternal care in presynaptic active zone protein CAST-deficient dams. Sci Rep 2020; 10:5238. [PMID: 32251313 PMCID: PMC7090055 DOI: 10.1038/s41598-020-62072-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 03/09/2020] [Indexed: 11/24/2022] Open
Abstract
Although sociological studies affirm the importance of parental care in the survival of offspring, maltreatment—including child neglect—remains prevalent in many countries. While child neglect is well known to affect child development, the causes of maternal neglect are poorly understood. Here, we found that female mice with a deletion mutation of CAST (a presynaptic release-machinery protein) showed significantly reduced weaning rate when primiparous and a recovered rate when multiparous. Indeed, when nurturing, primiparous and nulliparous CAST knock out (KO) mice exhibited less crouching time than control mice and moved greater distances. Contrary to expectations, plasma oxytocin (OXT) was not significantly reduced in CAST KO mice even though terminals of magnocellular neurons in the posterior pituitary expressed CAST. We further found that compared with control mice, CAST KO mice drank significantly less water when nurturing and had a greater preference for sucrose during pregnancy. We suggest that deficiency in presynaptic release-machinery protein impairs the facilitation of some maternal behaviours, which can be compensated for by experience and learning.
Collapse
Affiliation(s)
- Akari Hagiwara
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Naoko Sugiyama
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan
| | - Toshihisa Ohtsuka
- Department of Biochemistry, Faculty of Medicine, University of Yamanashi, Yamanashi, Japan.
| |
Collapse
|
23
|
The Role of Olfactory Genes in the Expression of Rodent Paternal Care Behavior. Genes (Basel) 2020; 11:genes11030292. [PMID: 32164379 PMCID: PMC7140856 DOI: 10.3390/genes11030292] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 03/03/2020] [Accepted: 03/05/2020] [Indexed: 12/16/2022] Open
Abstract
Olfaction is the dominant sensory modality in rodents, and is crucial for regulating social behaviors, including parental care. Paternal care is rare in rodents, but can have significant consequences for offspring fitness, suggesting a need to understand the factors that regulate its expression. Pup-related odor cues are critical for the onset and maintenance of paternal care. Here, I consider the role of olfaction in the expression of paternal care in rodents. The medial preoptic area shares neural projections with the olfactory and accessory olfactory bulbs, which are responsible for the interpretation of olfactory cues detected by the main olfactory and vomeronasal systems. The olfactory, trace amine, membrane-spanning 4-pass A, vomeronasal 1, vomeronasal 2 and formyl peptide receptors are all involved in olfactory detection. I highlight the roles that 10 olfactory genes play in the expression of direct paternal care behaviors, acknowledging that this list is not exhaustive. Many of these genes modulate parental aggression towards intruders, and facilitate the recognition and discrimination of pups in general. Much of our understanding comes from studies on non-naturally paternal laboratory rodents. Future studies should explore what role these genes play in the regulation and expression of paternal care in naturally biparental species.
Collapse
|
24
|
Bartsch VB, Lord JS, Diering GH, Zylka MJ. Mania- and anxiety-like behavior and impaired maternal care in female diacylglycerol kinase eta and iota double knockout mice. GENES, BRAIN, AND BEHAVIOR 2020; 19:e12570. [PMID: 30985063 PMCID: PMC6800745 DOI: 10.1111/gbb.12570] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 02/18/2019] [Accepted: 03/24/2019] [Indexed: 01/28/2023]
Abstract
Genome-wide association studies linked diacylglycerol kinase eta and iota to mood disorders, including bipolar disorder and schizophrenia, and both genes are expressed throughout the brain. Here, we generated and behaviorally characterized female mice lacking Dgkh alone, Dgki alone, and double Dgkh/Dgki-knockout (dKO) mice. We found that fewer than 30% of newborn pups raised by dKO females survived to weaning, while over 85% of pups survived to weaning when raised by wild-type (WT) females. Poor survival under the care of dKO mothers was unrelated to pup genotype. Moreover, pups from dKO dams survived when fostered by WT dams, suggesting the poor survival rate of dKO-raised litters was related to impaired maternal care by dKO dams. Nest building was similar between WT and dKO dams; however, some dKO females failed to retrieve any pups in a retrieval assay. Pups raised by dKO dams had smaller or absent milk spots and reduced weight, indicative of impaired nursing. Unlike WT females, postpartum dKO females showed erratic, panicked responses to cage disturbances. Virgin dKO females showed behavioral signs of anxiety and mania, which were not seen in mice lacking either Dgkh or Dgki alone. Our research indicates that combined deletion of Dgkh and Dgki impairs maternal behavior in the early postpartum period, and suggests female dKO mice model symptoms of mania and anxiety.
Collapse
Affiliation(s)
- Victoria B Bartsch
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Julia S Lord
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Graham H Diering
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Mark J Zylka
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| |
Collapse
|
25
|
Kawakami N, Kobayashi K, Nishimura A, Ohmori I. Poor mother-offspring relationships in rats with <i>Cacna1a</i> mutation. Exp Anim 2020; 69:153-160. [PMID: 31723085 PMCID: PMC7220709 DOI: 10.1538/expanim.19-0086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
Homozygous Groggy dams, which carry a Cacna1a missense mutation, often
show no interest in their offspring, leading to frequent offspring deaths due to lack of
nurturing. The present study aimed to clarify whether the Cacna1a
mutation contributes to impaired attachment behaviors between dam and offspring. The open
field test showed that homozygous female rats exhibited markedly short travel distance,
whereas no difference was found between the motor activity of heterozygous females and
that of wild types (WT). A series of behavioral tests was performed to compare the
mother–offspring relationship between WT and heterozygous rats. Performance in the pup
retrieval test was significantly less successful in heterozygous than WT dams. During the
experiment, heterozygous dams spent significantly less time licking and crouching than WT
dams. The offspring dam-seeking behavior test revealed that heterozygous pups’
vocalizations were significantly less frequent and shorter than those of WT pups. Although
no significant difference was found between WT and heterozygous offspring in the olfactory
sense test, using a piece of chocolate, heterozygous pups took significantly longer to
reach a sample of the dam’s bedding. Taken together, these findings suggest that the
Cacna1a mutation impairs both the dam’s maternal behavior and the
offspring’s attachment behavior toward the dam.
Collapse
Affiliation(s)
- Nozomi Kawakami
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Kiyoka Kobayashi
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Ayumu Nishimura
- Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
| | - Iori Ohmori
- Department of Physiology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
- Graduate School of Education, Okayama University, 5-1 Shikatacho 2-chome, Kita-ku, Okayama 700-8558, Japan
- Department of Child Neurology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 1-1 Tsushimanaka 3-chome, Kita-ku, Okayama 700-8558, Japan
| |
Collapse
|
26
|
Reshetnikov VV, Kovner AV, Lepeshko AA, Pavlov KS, Grinkevich LN, Bondar NP. Stress early in life leads to cognitive impairments, reduced numbers of CA3 neurons and altered maternal behavior in adult female mice. GENES BRAIN AND BEHAVIOR 2018; 19:e12541. [DOI: 10.1111/gbb.12541] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 02/02/2023]
Affiliation(s)
- Vasiliy V. Reshetnikov
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
| | - Anna V. Kovner
- Laboratory of Molecular Mechanisms of Pathological ProcessesInstitute of Cytology and Genetics, SB RAS Novosibirsk Russia
| | - Arina A. Lepeshko
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| | - Konstantin S. Pavlov
- Laboratory of Experimental Models of Emotional PathologiesInstitute of Physiology and Basic Medicine Novosibirsk Russia
| | - Larisa N. Grinkevich
- Laboratory of Regulation of Functions of Brain NeuronsPavlov Institute of Physiology, RAS St. Petersburg Russia
| | - Natalya P. Bondar
- Laboratory of Gene Expression RegulationInstitute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences (SB RAS) Novosibirsk Russia
- Novosibirsk National Research State University Novosibirsk Russia
| |
Collapse
|
27
|
P2X7 Receptors Mediate CO-Induced Alterations in Gene Expression in Cultured Cortical Astrocytes—Transcriptomic Study. Mol Neurobiol 2018; 56:3159-3174. [DOI: 10.1007/s12035-018-1302-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Accepted: 08/06/2018] [Indexed: 01/31/2023]
|
28
|
Alfonso-Gonzalez C, Riesgo-Escovar JR. Fos metamorphoses: Lessons from mutants in model organisms. Mech Dev 2018; 154:73-81. [PMID: 29753813 DOI: 10.1016/j.mod.2018.05.006] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 05/10/2018] [Indexed: 12/14/2022]
Abstract
The Fos oncogene gene family is evolutionarily conserved throughout Eukarya. Fos proteins characteristically have a leucine zipper and a basic region with a helix-turn-helix motif that binds DNA. In vertebrates, there are several Fos homologs. They can homo- or hetero-dimerize via the leucine zipper domain. Fos homologs coupled with other transcription factors, like Jun oncoproteins, constitute the Activator Protein 1 (AP-1) complex. From its original inception as an oncogene, the subsequent finding that they act as transcription factors binding DNA sequences known as TRE, to the realization that they are activated in many different scenarios, and to loss-of-function analysis, the Fos proteins have traversed a multifarious path in development and physiology. They are instrumental in 'immediate early genes' responses, and activated by a seemingly myriad assemblage of different stimuli. Yet, the majority of these studies were basically gain-of-function studies, since it was thought that Fos genes would be cell lethal. Loss-of-function mutations in vertebrates were recovered later, and were not cell lethal. In fact, c-fos null mutations are viable with developmental defects (osteopetrosis and myeloid lineage abnormalities). It was then hypothesized that vertebrate genomes exhibit partial redundancy, explaining the 'mild' phenotypes, and complicating assessment of complete loss-of-function phenotypes. Due to its promiscuous activation, fos genes (especially c-fos) are now commonly used as markers for cellular responses to stimuli. fos homologs high sequence conservation (including Drosophila) is advantageous as it allows critical assessment of fos genes functions in this genetic model. Drosophila melanogaster contains only one fos homolog, the gene kayak. kayak mutations are lethal, and allow study of all the processes where fos is required. The kayak locus encodes several different isoforms, and is a pleiotropic gene variously required for development involving cell shape changes. In general, fos genes seem to primarily activate programs involved in cellular architectural rearrangements and cell shape changes.
Collapse
Affiliation(s)
- Carlos Alfonso-Gonzalez
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico; Maestría en Bioquímica y Biología Molecular, Facultad de Química, Universidad Autónoma de Querétaro, Querétaro, Mexico
| | - Juan Rafael Riesgo-Escovar
- Developmental Neurobiology and Neurophysiology Department, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus UNAM Juriquilla, Querétaro c.p.76230, Mexico.
| |
Collapse
|
29
|
De Sanctis C, Bellenchi GC, Viggiano D. A meta-analytic approach to genes that are associated with impaired and elevated spatial memory performance. Psychiatry Res 2018; 261:508-516. [PMID: 29395873 DOI: 10.1016/j.psychres.2018.01.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 01/15/2018] [Accepted: 01/15/2018] [Indexed: 12/11/2022]
Abstract
Spatial memory deficits are a common hallmark of psychiatric conditions, possibly due to a genetic predisposition. Thus, unravelling the relationship between genes and memory might suggest novel therapeutic targets and pathogenetic pathways. Genetic deletions are known to lead to memory deficits (post-deletion "forgetfulness" genes, PDF), or, in few instances to improve spatial memory (post-deletion "hypermnesic" genes, PDH). To assess this topic, we performed a meta-analytic approach on memory behavior in knock-out mice. We screened 300 studies from PubMed and retrieved 87 genes tested for possible effects on spatial memory. This database was crossed with the Allen Brain Atlas (brain distribution) and the Enrichr (gene function) databases. The results show that PDF genes have higher expression level in several ventral brain structures, particularly the encephalic trunk and in the hypothalamus. Moreover, part of these genes are implicated in synaptic functions. Conversely, the PDH genes are associated to G-protein coupled receptors downstream signalling. Some candidate drugs were also found to interfere with some of the PDH genes, further suggesting that this approach might help in identifying drugs to improve memory performance in psychiatric conditions.
Collapse
Affiliation(s)
- Claudia De Sanctis
- IRCCS Neuromed, Pozzilli, IS 86077, Italy; Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy
| | | | - Davide Viggiano
- Department of Medicine and Health Sciences, University of Molise, Via De Sanctis, Campobasso 86100, Italy.
| |
Collapse
|
30
|
Eagle AL, Gajewski PA, Robison AJ. Role of hippocampal activity-induced transcription in memory consolidation. Rev Neurosci 2018; 27:559-73. [PMID: 27180338 DOI: 10.1515/revneuro-2016-0010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2016] [Accepted: 03/26/2016] [Indexed: 01/15/2023]
Abstract
Experience-dependent changes in the strength of connections between neurons in the hippocampus (HPC) are critical for normal learning and memory consolidation, and disruption of this process drives a variety of neurological and psychiatric diseases. Proper HPC function relies upon discrete changes in gene expression driven by transcription factors (TFs) induced by neuronal activity. Here, we describe the induction and function of many of the most well-studied HPC TFs, including cyclic-AMP response element binding protein, serum-response factor, AP-1, and others, and describe their role in the learning process. We also discuss the known target genes of many of these TFs and the purported mechanisms by which they regulate long-term changes in HPC synaptic strength. Moreover, we propose that future research in this field will depend upon unbiased identification of additional gene targets for these activity-dependent TFs and subsequent meta-analyses that identify common genes or pathways regulated by multiple TFs in the HPC during learning or disease.
Collapse
|
31
|
Jonas E, Rydhmer L. Effect of candidate genes for maternal ability on piglet survival and growth. Livest Sci 2018. [DOI: 10.1016/j.livsci.2017.11.018] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
32
|
Pereira M. Structural and Functional Plasticity in the Maternal Brain Circuitry. New Dir Child Adolesc Dev 2017; 2016:23-46. [PMID: 27589496 DOI: 10.1002/cad.20163] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Parenting recruits a distributed network of brain structures (and neuromodulators) that coordinates caregiving responses attuned to the young's affect, needs, and developmental stage. Many of these structures and connections undergo significant structural and functional plasticity, mediated by the interplay between maternal hormones and social experience while the reciprocal relationship between the mother and her infant forms and develops. These alterations account for the remarkable behavioral plasticity of mothers. This review will examine the molecular and neurobiological modulation and plasticity through which parenting develops and adjusts in new mothers, primarily discussing recent findings in nonhuman animals. A better understanding of how parenting impacts the brain at the molecular, cellular, systems/network, and behavioral levels is likely to significantly contribute to novel strategies for treating postpartum neuropsychiatric disorders in new mothers, and critical for both the mother's physiological and mental health and the development and well-being of her young.
Collapse
|
33
|
Abstract
Social interactions are essential for animals to reproduce, defend their territory, and raise their young. The conserved nature of social behaviors across animal species suggests that the neural pathways underlying the motivation for, and the execution of, specific social responses are also maintained. Modern tools of neuroscience have offered new opportunities for dissecting the molecular and neural mechanisms controlling specific social responses. We will review here recent insights into the neural circuits underlying a particularly fascinating and important form of social interaction, that of parental care. We will discuss how these findings open new avenues to deconstruct infant-directed behavioral control in males and females, and to help understand the neural basis of parenting in a variety of animal species, including humans. Please also see the video abstract here.
Collapse
Affiliation(s)
- Johannes Kohl
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
- Sainsbury Wellcome Centre for Neural Circuits and Behaviour, London, UK
| | - Anita E. Autry
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| | - Catherine Dulac
- Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Center for Brain Science, Harvard University, Cambridge, MA, USA
| |
Collapse
|
34
|
Crisà A, Ferrè F, Chillemi G, Moioli B. RNA-Sequencing for profiling goat milk transcriptome in colostrum and mature milk. BMC Vet Res 2016; 12:264. [PMID: 27884183 PMCID: PMC5123407 DOI: 10.1186/s12917-016-0881-7] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2016] [Accepted: 11/07/2016] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND In this work we aimed at sequencing and assembling the goat milk transcriptome corresponding at colostrum and 120 days of lactation. To reconstruct transcripts we used both the genome as reference, and a de novo assembly approach. Additionally, we aimed at identifying the differentially expressed genes (DEGs) between the two lactation stages and at analyzing the expression of genes involved in oligosaccharides metabolism. RESULTS A total of 44,635 different transcripts, organized in 33,757 tentative genes, were obtained using the goat genome as reference. A significant sequence similarity match was found for 40,353 transcripts (90%) against the NCBI NT and for 35,701 (80%) against the NR databases. 68% and 69% of the de novo assembled transcripts, in colostrum and 120 days of lactation samples respectively, have a significant match with the merged transcriptome obtained using Cufflinks/Cuffmerge. CSN2, PAEP, CSN1S2, CSN3, LALBA, TPT1, FTH1, M-SAA3, SPP1, GLYCAM1, EEF1A1, CTSD, FASN, RPS29, CSN1S1, KRT19 and CHEK1 were found between the top fifteen highly expressed genes. 418 loci were differentially expressed between lactation stages, among which 207 and 122 were significantly up- and down-regulated in colostrum, respectively. Functional annotation and pathway enrichment analysis showed that in goat colostrum somatic cells predominate biological processes involved in glycolysis, carbohydrate metabolism, defense response, cytokine activity, regulation of cell proliferation and cell death, vasculature development, while in mature milk, biological process associated with positive regulation of lymphocyte activation and anatomical structure morphogenesis are enriched. The analysis of 144 different oligosaccharide metabolism-related genes showed that most of these (64%) were more expressed in colostrum than in mature milk, with eight expressed at very high levels (SLCA3, GMSD, NME2, SLC2A1, B4GALT1, B3GNT2, NANS, HEXB). CONCLUSIONS To our knowledge, this is the first study comparing goat transcriptome of two lactation stages: colostrum and 120 days. Our findings suggest putative differences of expression between stages and can be envisioned as a base for further research in the topic. Moreover because a higher expression of genes involved in immune defense response, carbohydrate metabolism and related to oligosaccharide metabolism was identified in colostrum we here corroborate the potential of goat milk as a natural source of lactose-derived oligosaccharides and for the development of functional foods.
Collapse
Affiliation(s)
- Alessandra Crisà
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) - Animal production research centre, Via Salaria 31, 00015, Monterotondo, Rome, Italy.
| | - Fabrizio Ferrè
- Department of Pharmacy and Biotechnology (FaBiT), University of Bologna Alma Mater, Via Belmeloro 6, 40126, Bologna, Italy
| | - Giovanni Chillemi
- Applications and Innovation Department, CINECA, SCAI SuperComputing, Via dei Tizii 6, 00185, Rome, Italy
| | - Bianca Moioli
- Consiglio per la ricerca in agricoltura e l'analisi dell'economia agraria (CREA) - Animal production research centre, Via Salaria 31, 00015, Monterotondo, Rome, Italy
| |
Collapse
|
35
|
Do Laboratory Mouse Females that Lose Their Litters Behave Differently around Parturition? PLoS One 2016; 11:e0161238. [PMID: 27575720 PMCID: PMC5005013 DOI: 10.1371/journal.pone.0161238] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 08/02/2016] [Indexed: 11/23/2022] Open
Abstract
Efficiency in laboratory mouse breeding is hampered by poor reproductive performance, including the loss of entire litters shortly after birth. However, the underlying mechanisms are not yet fully understood and establishing the cause of death in laboratory mouse pups can be complicated. Newborn mouse pups are generally hidden in nests, dead pups are often eaten by the female, and the widespread practice of leaving periparturient females undisturbed complicates inspection, which may delay the discovery of pup loss. In order to efficiently prevent problems with litter loss, it is important to find key factors for survival. We investigated differences in periparturient behavior between female laboratory mice whose pups survived until weaning and females whose entire litters were lost. Video recordings of 82 primiparous females of the C57BL/6 strain or knockouts with C57BL/6 background were used. The mice were observed from 24 h before until 24 h after parturition and female behaviors coded using a pre-established ethogram. The relationship between behavior and survival was analyzed using logistic models, where litter survival was regressed on the proportion of 30-s observations with at least one occurrence of the behavior. We found that females with surviving litters performed more nest building behavior during the last 24 h before parturition (p = 0.004) and spent less time outside the nest during the entire observation period (p = 0.001). Increased litter survival was also associated with more passive maternal behaviors and the female ignoring still pups less. Females that lost their litters performed more parturition-related behaviors, suggesting prolonged labor. The results indicate that maternal behavior plays a significant role in laboratory mouse pup survival. Complications at parturition also contribute to litter mortality.
Collapse
|
36
|
Gammie SC. Current Models and Future Directions for Understanding the Neural Circuitries of Maternal Behaviors in Rodents. ACTA ACUST UNITED AC 2016; 4:119-35. [PMID: 16251728 DOI: 10.1177/1534582305281086] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Maternal behaviors in rodents include a number of subcomponents, such as nursing, nest building, licking and grooming of pups, pup retrieval, and maternal aggression. Because each behavior involves a unique motor pattern, a unique ensemble neural circuitry must underlie each behavior. To what extent there is overlap in terms of brain regions and specific neurons for each circuit is being actively investigated. This review will first examine overlapping and separate components of pup retrieval and maternal aggression circuitries while examining a central role for medial preoptic area (MPA) in both behaviors. With an emphasis on experimental approaches, the review will then highlight recent findings and propose future directions for understanding maternal behavior regulation. Finally, examples for why studying the neural basis of maternal behaviors can bring insights to other areas of neuroscience, such as feeding, addiction, and anxiety and aggression regulation will be provided.
Collapse
|
37
|
Maestripieri D, Carroll KA. Risk Factors for Infant Abuse and Neglect in Group-Living Rhesus Monkeys. Psychol Sci 2016. [DOI: 10.1111/1467-9280.00027] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study investigated maternal abuse and neglect of offspring in a large population of rhesus monkeys over a period of 29 years. Abuse and neglect did not occur together and were associated with different risk factors. Infant abuse was concentrated in 8 of 57 families and among closely related females. Abuse was also repeated with successive offspring. In contrast, infant neglect was not affected by genealogical factors, was not repeated with successive offspring, and was displayed mostly by primiparous mothers. These results suggest that abuse and neglect may be different phenomena and that infant abuse in group-living monkeys could represent a good animal model for investigating the mechanisms underlying the intergenerational transmission of child maltreatment.
Collapse
Affiliation(s)
- Dario Maestripieri
- Department of Psychology and Yerkes Regional Primate Research Center, Emory University
| | | |
Collapse
|
38
|
Stolzenberg DS, Champagne FA. Hormonal and non-hormonal bases of maternal behavior: The role of experience and epigenetic mechanisms. Horm Behav 2016; 77:204-10. [PMID: 26172856 DOI: 10.1016/j.yhbeh.2015.07.005] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Revised: 07/06/2015] [Accepted: 07/07/2015] [Indexed: 11/24/2022]
Abstract
This article is part of a Special Issue "Parental Care". Though hormonal changes occurring throughout pregnancy and at the time of parturition have been demonstrated to prime the maternal brain and trigger the onset of mother-infant interactions, extended experience with neonates can induce similar behavioral interactions. Sensitization, a phenomenon in which rodents engage in parental responses to young following constant cohabitation with donor pups, was elegantly demonstrated by Rosenblatt (1967) to occur in females and males, independent of hormonal status. Study of the non-hormonal basis of maternal behavior has contributed significantly to our understanding of hormonal influences on the maternal brain and the cellular and molecular mechanisms that mediate maternal behavior. Here, we highlight our current understanding regarding both hormone-induced and experience-induced maternal responsivity and the mechanisms that may serve as a common pathway through which increases in maternal behavior are achieved. In particular, we describe the epigenetic changes that contribute to chromatin remodeling and how these molecular mechanisms may influence the neural substrates of the maternal brain. We also consider how individual differences in these systems emerge during development in response to maternal care. This research has broad implications for our understanding of the parental brain and the role of experience in the induction of neurobiological and behavior changes.
Collapse
|
39
|
Olazábal DE, Alsina-Llanes M. Are age and sex differences in brain oxytocin receptors related to maternal and infanticidal behavior in naïve mice? Horm Behav 2016; 77:132-40. [PMID: 25910577 DOI: 10.1016/j.yhbeh.2015.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 04/04/2015] [Accepted: 04/15/2015] [Indexed: 12/31/2022]
Abstract
This article is part of a Special Issue "Parental Care". There is significant variability in the behavioral responses displayed by naïve young and adult mice when first exposed to pups. This variability has been associated with differences in the expression of oxytocin receptors (OXTRs) in the brain in several species. Experiment I investigated the behavioral responses of juvenile, adolescent, and adult CB57BL/6 males and females when first exposed to pups. We found an age increase in maternal females (11% of juveniles, 20% of adolescents, and 50% of young adults), and infanticidal males (0% of juveniles, 30% of adolescents, 44.5% of young adults, and 100% of older adults). Experiment II investigated OXTR density in the brain of juvenile and adult mice. Our results revealed an age decline in the density of OXTR in several brain regions, including the lateral septum, cingulated and posterior paraventricular thalamic nucleus in both males and females. Adult females had higher OXTR density in the ventromedial nucleus/postero-ventral hypothalamus (VMH) and the accessory olfactory bulb (AOB), but lower density in the ventral region of the lateral septum (LSv) than juveniles. Males had lower OXTR density in the anterior olfactory area (AOA) compared to juveniles. No age or sex differences were found in the medial preoptic area, and amygdaloid nuclei, among other brain regions. This study suggests that 1) maturation of parental and infanticidal behavioral responses is not reached until adulthood; 2) the pattern of development of OXTR in the mouse brain is unique, region specific, and differs from that observed in other rodents; 3) either up or down regulation of OXTR in a few brain regions (VMH/AOB/LSv/AOA) might contribute to age or sex differences in parental or infanticidal behavior.
Collapse
Affiliation(s)
- Daniel E Olazábal
- Departamento de Fisiología, Facultad de Medicina, UdelaR, Montevideo, Uruguay.
| | | |
Collapse
|
40
|
An Examination of Dynamic Gene Expression Changes in the Mouse Brain During Pregnancy and the Postpartum Period. G3-GENES GENOMES GENETICS 2015; 6:221-33. [PMID: 26596646 PMCID: PMC4704721 DOI: 10.1534/g3.115.020982] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The developmental transition to motherhood requires gene expression changes that alter the brain to drive the female to perform maternal behaviors. We broadly examined the global transcriptional response in the mouse maternal brain, by examining four brain regions: hypothalamus, hippocampus, neocortex, and cerebellum, in virgin females, two pregnancy time points, and three postpartum time points. We find that overall there are hundreds of differentially expressed genes, but each brain region and time point shows a unique molecular signature, with only 49 genes differentially expressed in all four regions. Interestingly, a set of “early-response genes” is repressed in all brain regions during pregnancy and postpartum stages. Several genes previously implicated in underlying postpartum depression change expression. This study serves as an atlas of gene expression changes in the maternal brain, with the results demonstrating that pregnancy, parturition, and postpartum maternal experience substantially impact diverse brain regions.
Collapse
|
41
|
Reproductive experiential regulation of cognitive and emotional resilience. Neurosci Biobehav Rev 2015; 58:92-106. [DOI: 10.1016/j.neubiorev.2015.05.015] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2014] [Revised: 04/16/2015] [Accepted: 05/21/2015] [Indexed: 11/17/2022]
|
42
|
Xie C, Jonak CR, Kauffman AS, Coss D. Gonadotropin and kisspeptin gene expression, but not GnRH, are impaired in cFOS deficient mice. Mol Cell Endocrinol 2015; 411:223-31. [PMID: 25958044 PMCID: PMC4764054 DOI: 10.1016/j.mce.2015.04.033] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 04/28/2015] [Accepted: 04/30/2015] [Indexed: 11/20/2022]
Abstract
cFOS is a pleiotropic transcription factor, which binds to the AP1 site in the promoter of target genes. In the pituitary gonadotropes, cFOS mediates induction of FSHβ and GnRH receptor genes. Herein, we analyzed reproductive function in the cFOS-deficient mice to determine its role in vivo. In the pituitary cFOS is necessary for gonadotropin subunit expression, while TSHβ is unaffected. Additionally, cFOS null animals have the same sex-steroid levels, although gametogenesis is impeded. In the brain, cFOS is not necessary for GnRH neuronal migration, axon targeting, cell number, or mRNA levels. Conversely, cFOS nulls, particularly females, have decreased Kiss1 neuron numbers and lower Kiss1 mRNA levels. Collectively, our novel findings suggest that cFOS plays a cell-specific role at multiple levels of the hypothalamic-pituitary-gonadal axis, affecting gonadotropes but not thyrotropes in the pituitary, and kisspeptin neurons but not GnRH neurons in the hypothalamus, thereby contributing to the overall control of reproduction.
Collapse
Affiliation(s)
- Changchuan Xie
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA; Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, CA 92093-0674, USA
| | - Carrie R Jonak
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA
| | - Alexander S Kauffman
- Department of Reproductive Medicine, Center for Reproductive Science and Medicine, University of California, San Diego, CA 92093-0674, USA
| | - Djurdjica Coss
- Division of Biomedical Sciences, School of Medicine, University of California, Riverside, CA 92521, USA.
| |
Collapse
|
43
|
Olazábal DE. Comparative analysis of oxytocin receptor density in the nucleus accumbens: an adaptation for female and male alloparental care? ACTA ACUST UNITED AC 2015; 108:213-20. [PMID: 25446893 DOI: 10.1016/j.jphysparis.2014.10.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 07/22/2014] [Accepted: 10/06/2014] [Indexed: 12/25/2022]
Abstract
Parental behavior is commonly displayed by progenitors. However, other individuals, genetically related (e.g. siblings, aunts, uncles) or not with the newborns, also display parental behavior (commonly called alloparental, or adoptive behavior). I hypothesize that species that live in family or social groups where other non-reproductive members (males and females) take care of infants, have brain adaptations to promote or facilitate that behavioral response. The present work revises the evidence supporting the hypothesis that high density of oxytocin receptors (OXTR) in the nucleus accumbens (NA) is one of those adaptations. All species known to have high NA OXTR show not only female, but also male alloparental care. Therefore, I predict that high NA OXTR could be present in all species in which juvenile and adult male alloparental behavior have been observed. Strategies to test this and other alternative working hypothesis and its predictions are presented.
Collapse
|
44
|
Cacioppo JT, Amaral DG, Blanchard JJ, Cameron JL, Carter CS, Crews D, Fiske S, Heatherton T, Johnson MK, Kozak MJ, Levenson RW, Lord C, Miller EK, Ochsner K, Raichle ME, Shea MT, Taylor SE, Young LJ, Quinn KJ. Social Neuroscience: Progress and Implications for Mental Health. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2015; 2:99-123. [PMID: 26151956 DOI: 10.1111/j.1745-6916.2007.00032.x] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Social neuroscience is a new, interdisciplinary field devoted to understanding how biological systems implement social processes and behavior. Social neuroscience capitalizes on biological concepts and methods to inform and refine theories of social behavior, and it uses social and behavioral constructs and data to inform and refine theories of neural organization and function. We focus here on the progress and potential of social neuroscience in the area of mental health. Research in social neuroscience has grown dramatically in recent years. Among the most active areas of research we found are brain-imaging studies in normal children and adults; animal models of social behavior; studies of stroke patients; imaging studies of psychiatric patients; and research on social determinants of peripheral neural, neuroendocrine, and immunological processes. We also found that these areas of research are proceeding along largely independent trajectories. Our goals in this article are to review the development of this field, examine some currently promising approaches, identify obstacles and opportunities for future advances and integration, and consider how this research can inform work on the diagnosis and treatment of mental disorders.
Collapse
|
45
|
McHenry JA, Rubinow DR, Stuber GD. Maternally responsive neurons in the bed nucleus of the stria terminalis and medial preoptic area: Putative circuits for regulating anxiety and reward. Front Neuroendocrinol 2015; 38:65-72. [PMID: 25910426 PMCID: PMC4853820 DOI: 10.1016/j.yfrne.2015.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 03/09/2015] [Accepted: 04/13/2015] [Indexed: 12/21/2022]
Abstract
Postpartum neuropsychiatric disorders are a major source of morbidity and mortality and affect at least 10% of childbearing women. Affective dysregulation within this context has been identified in association with changes in reproductive steroids. Steroids promote maternal actions and modulate affect, but can also destabilize mood in some but not all women. Potential brain regions that mediate these effects include the medial preoptic area (mPOA) and ventral bed nucleus of the stria terminalis (vBNST). Herein, we review the regulation of neural activity in the mPOA/vBNST by environmental and hormonal concomitants in puerperal females. Such activity may influence maternal anxiety and motivation and have significant implications for postpartum affective disorders. Future directions for research are also explored, including physiological circuit-level approaches to gain insight into the functional connectivity of hormone-responsive maternal circuits that modulate affect.
Collapse
Affiliation(s)
- Jenna A McHenry
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Postdoctoral Training Program in Reproductive Mood Disorders, Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - David R Rubinow
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States
| | - Garret D Stuber
- Department of Psychiatry, University of North Carolina at Chapel Hill, United States; Department of Cell Biology and Physiology, University of North Carolina at Chapel Hill, United States; Neuroscience Center, University of North Carolina at Chapel Hill, United States.
| |
Collapse
|
46
|
Aceto J, Nourizadeh-Lillabadi R, Marée R, Dardenne N, Jeanray N, Wehenkel L, Aleström P, van Loon JJWA, Muller M. Zebrafish Bone and General Physiology Are Differently Affected by Hormones or Changes in Gravity. PLoS One 2015; 10:e0126928. [PMID: 26061167 PMCID: PMC4465622 DOI: 10.1371/journal.pone.0126928] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 04/09/2015] [Indexed: 11/18/2022] Open
Abstract
Teleost fish such as zebrafish (Danio rerio) are increasingly used for physiological, genetic and developmental studies. Our understanding of the physiological consequences of altered gravity in an entire organism is still incomplete. We used altered gravity and drug treatment experiments to evaluate their effects specifically on bone formation and more generally on whole genome gene expression. By combining morphometric tools with an objective scoring system for the state of development for each element in the head skeleton and specific gene expression analysis, we confirmed and characterized in detail the decrease or increase of bone formation caused by a 5 day treatment (from 5dpf to 10 dpf) of, respectively parathyroid hormone (PTH) or vitamin D3 (VitD3). Microarray transcriptome analysis after 24 hours treatment reveals a general effect on physiology upon VitD3 treatment, while PTH causes more specifically developmental effects. Hypergravity (3g from 5dpf to 9 dpf) exposure results in a significantly larger head and a significant increase in bone formation for a subset of the cranial bones. Gene expression analysis after 24 hrs at 3g revealed differential expression of genes involved in the development and function of the skeletal, muscular, nervous, endocrine and cardiovascular systems. Finally, we propose a novel type of experimental approach, the "Reduced Gravity Paradigm", by keeping the developing larvae at 3g hypergravity for the first 5 days before returning them to 1g for one additional day. 5 days exposure to 3g during these early stages also caused increased bone formation, while gene expression analysis revealed a central network of regulatory genes (hes5, sox10, lgals3bp, egr1, edn1, fos, fosb, klf2, gadd45ba and socs3a) whose expression was consistently affected by the transition from hyper- to normal gravity.
Collapse
Affiliation(s)
- Jessica Aceto
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| | | | - Raphael Marée
- GIGA & Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Nadia Dardenne
- Unité de soutien méth. en Biostatistique et Epidémiologie, University of Liège, B23, Sart Tilman, Liège, Belgium
| | - Nathalie Jeanray
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| | - Louis Wehenkel
- GIGA & Department of Electrical Engineering and Computer Science, University of Liège, Liège, Belgium
| | - Peter Aleström
- BasAM, Norwegian University of Life Sciences, Vetbio, 0033 Dep, Oslo, Norway
| | - Jack J. W. A. van Loon
- DESC (Dutch Experiment Support Center), Department of Oral and Maxillofacial Surgery / Oral Pathology, VU University Medical Center & Academic Centre for Dentistry Amsterdam (ACTA), Amsterdam, The Netherlands
- ESA-ESTEC, TEC-MMG, NL-2200 AG, Noordwijk, The Netherlands
| | - Marc Muller
- Laboratory for Organogenesis and Regeneration, GIGA- Research, University of Liège, B-4000, Liège, Sart-Tilman, Belgium
| |
Collapse
|
47
|
Alsina-Llanes M, De Brun V, Olazábal DE. Development and expression of maternal behavior in naïve female C57BL/6 mice. Dev Psychobiol 2015; 57:189-200. [DOI: 10.1002/dev.21276] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Accepted: 12/02/2014] [Indexed: 11/07/2022]
Affiliation(s)
- Marcela Alsina-Llanes
- Departamento de Fisiología; Facultad de Medicina; UdelaR. Gral Flores 2125 Montevideo 18000 Uruguay
| | - Victoria De Brun
- Departamento de Fisiología; Facultad de Medicina; UdelaR. Gral Flores 2125 Montevideo 18000 Uruguay
| | - Daniel E. Olazábal
- Departamento de Fisiología; Facultad de Medicina; UdelaR. Gral Flores 2125 Montevideo 18000 Uruguay
| |
Collapse
|
48
|
Bridges RS. Neuroendocrine regulation of maternal behavior. Front Neuroendocrinol 2015; 36:178-96. [PMID: 25500107 PMCID: PMC4342279 DOI: 10.1016/j.yfrne.2014.11.007] [Citation(s) in RCA: 229] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 10/31/2014] [Accepted: 11/30/2014] [Indexed: 11/28/2022]
Abstract
The expression of maternal behavior in mammals is regulated by the developmental and experiential events over a female's lifetime. In this review the relationships between the endocrine and neural systems that play key roles in these developmental and experiential processes that affect both the establishment and maintenance of maternal care are presented. The involvement of the hormones estrogen, progesterone, and lactogens are discussed in the context of ligand, receptor, and gene activity in rodents and to a lesser extent in higher mammals. The roles of neuroendocrine factors, including oxytocin, vasopressin, classical neurotransmitters, and other neural gene products that regulate aspects of maternal care are set forth, and the interactions of hormones with central nervous system mediators of maternal behavior are discussed. The impact of prior developmental factors, including epigenetic events, and maternal experience on subsequent maternal care are assessed over the course of the female's lifespan. It is proposed that common neuroendocrine mechanisms underlie the regulation of maternal care in mammals.
Collapse
Affiliation(s)
- Robert S Bridges
- Department of Biomedical Sciences, Neuroscience and Reproductive Biology Section, Tufts University - Cummings School of Veterinary Medicine, North Grafton, MA 01536, USA.
| |
Collapse
|
49
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
50
|
Zhao C, Eisinger BE, Driessen TM, Gammie SC. Addiction and reward-related genes show altered expression in the postpartum nucleus accumbens. Front Behav Neurosci 2014; 8:388. [PMID: 25414651 PMCID: PMC4220701 DOI: 10.3389/fnbeh.2014.00388] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Accepted: 10/17/2014] [Indexed: 11/13/2022] Open
Abstract
Motherhood involves a switch in natural rewards, whereby offspring become highly rewarding. Nucleus accumbens (NAC) is a key CNS region for natural rewards and addictions, but to date no study has evaluated on a large scale the events in NAC that underlie the maternal change in natural rewards. In this study we utilized microarray and bioinformatics approaches to evaluate postpartum NAC gene expression changes in mice. Modular Single-set Enrichment Test (MSET) indicated that postpartum (relative to virgin) NAC gene expression profile was significantly enriched for genes related to addiction and reward in five of five independently curated databases (e.g., Malacards, Phenopedia). Over 100 addiction/reward related genes were identified and these included: Per1, Per2, Arc, Homer2, Creb1, Grm3, Fosb, Gabrb3, Adra2a, Ntrk2, Cry1, Penk, Cartpt, Adcy1, Npy1r, Htr1a, Drd1a, Gria1, and Pdyn. ToppCluster analysis found maternal NAC expression profile to be significantly enriched for genes related to the drug action of nicotine, ketamine, and dronabinol. Pathway analysis indicated postpartum NAC as enriched for RNA processing, CNS development/differentiation, and transcriptional regulation. Weighted Gene Coexpression Network Analysis (WGCNA) identified possible networks for transcription factors, including Nr1d1, Per2, Fosb, Egr1, and Nr4a1. The postpartum state involves increased risk for mental health disorders and MSET analysis indicated postpartum NAC to be enriched for genes related to depression, bipolar disorder (BPD), and schizophrenia. Mental health related genes included: Fabp7, Grm3, Penk, and Nr1d1. We confirmed via quantitative PCR Nr1d1, Per2, Grm3, Penk, Drd1a, and Pdyn. This study indicates for the first time that postpartum NAC involves large scale gene expression alterations linked to addiction and reward. Because the postpartum state also involves decreased response to drugs, the findings could provide insights into how to mitigate addictions.
Collapse
Affiliation(s)
- Changjiu Zhao
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
| | | | - Terri M. Driessen
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
| | - Stephen C. Gammie
- Department of Zoology, University of Wisconsin-MadisonMadison, WI, USA
- Neuroscience Training Program, University of Wisconsin-MadisonMadison, WI, USA
| |
Collapse
|