1
|
Völker J, Gindikin V, Breslauer KJ. Higher-Order DNA Secondary Structures and Their Transformations: The Hidden Complexities of Tetrad and Quadruplex DNA Structures, Complexes, and Modulatory Interactions Induced by Strand Invasion Events. Biomolecules 2024; 14:1532. [PMID: 39766239 PMCID: PMC11673204 DOI: 10.3390/biom14121532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 01/11/2025] Open
Abstract
We demonstrate that a short oligonucleotide complementary to a G-quadruplex domain can invade this iconic, noncanonical DNA secondary structure in ways that profoundly influence the properties and differential occupancies of the resulting DNA polymorphic products. Our spectroscopic mapping of the conformational space of the associated reactants and products, both before and after strand invasion, yield unanticipated outcomes which reveal several overarching features. First, strand invasion induces the disruption of DNA secondary structural elements in both the invading strand (which can assume an iDNA tetrad structure) and the invaded species (a G-quadruplex). The resultant cascade of coupled alterations represents a potential pathway for the controlled unfolding of kinetically trapped DNA states, a feature that may be characteristic of biological regulatory mechanisms. Furthermore, the addition of selectively designed, exogenous invading oligonucleotides can enable the manipulation of noncanonical DNA conformations for biomedical applications. Secondly, our results highlight the importance of metastability, including the interplay between slower and faster kinetic processes in determining preferentially populated DNA states. Collectively, our data reveal the importance of sample history in defining state populations, which, in turn, determine preferred pathways for further folding steps, irrespective of the position of the thermodynamic equilibrium. Finally, our spectroscopic data reveal the impact of topological constraints on the differential stabilities of base-paired domains. We discuss how our collective observations yield insights into the coupled and uncoupled cascade of strand-invasion-induced transformations between noncanonical DNA forms, potentially as components of molecular wiring diagrams that regulate biological processes.
Collapse
Affiliation(s)
- Jens Völker
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Vera Gindikin
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
| | - Kenneth J. Breslauer
- Department of Chemistry and Chemical Biology, Rutgers University, 123 Bevier Rd, Piscataway, NJ 08854, USA; (J.V.); (V.G.)
- The Rutgers Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
2
|
Mani AK, Parvathi VD, Ravindran S. The Anti-Elixir Triad: Non-Synced Circadian Rhythm, Gut Dysbiosis, and Telomeric Damage. Med Princ Pract 2024:1-14. [PMID: 39536739 DOI: 10.1159/000542557] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Accepted: 11/11/2024] [Indexed: 11/16/2024] Open
Abstract
Aging is an inevitable life process which is accelerated by lifestyle and environmental factors. It is an irreversible accretion of molecular and cellular damage associated with changes in the body composition and deterioration in physiological functions. Each cell (other than stem cells) reaches the limit of its ability to replicate, known as cellular or replicative senescence, and consequently, the organs lose their physiological functions, resulting in overall impairment. Other factors that promote aging include smoking, alcohol, UV rays, sleep habits, food, stress, sedentary lifestyle, and genetic abnormalities. These stress factors can alter our endogenous clock (the circadian rhythm) and the microbial commensals. As a result of the effect of these stressors, the microorganisms that generally support human physiological processes become baleful. The disturbance of natural physiology instigates many age-related pathologies, such as cardiovascular diseases, chronic obstructive pulmonary disorder, cerebrovascular diseases, opportunistic infections, high blood pressure, cancer, diabetes, kidney diseases, dementia, and Alzheimer's disease. The present review covers the three most essential processes of the circadian clock; the circadian gene mechanism and regulation, the mitotic clock (which plays a vital role in the telomere's attrition) and the gut microbiota and their metabolome that drive aging and lead to age-related pathologies. In conclusion, maintaining a synchronized circadian rhythm, a healthy gut microbiome, and telomere integrity is essential for mitigating the effects of aging and promoting longevity. The interplay among these factors underscores the importance of lifestyle choices in enhancing overall health and lifespan.
Collapse
Affiliation(s)
- Anup Kumar Mani
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Venkatachalam Deepa Parvathi
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| | - Sumitha Ravindran
- Department of Biomedical Sciences, Faculty of Biomedical Sciences and Technology, Sri Ramachandra Institute of Higher Education and Research, Chennai, India
| |
Collapse
|
3
|
Peng Y, Zhao P, Li Z, Mu N, Tao S, Feng Y, Cheng X, Zhang W. Genome-wide characterization of single-stranded DNA in rice. PLANT PHYSIOLOGY 2024; 196:1268-1283. [PMID: 38917225 DOI: 10.1093/plphys/kiae357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/31/2024] [Accepted: 06/01/2024] [Indexed: 06/27/2024]
Abstract
Single-stranded DNA (ssDNA) is essential for various DNA-templated processes in both eukaryotes and prokaryotes. However, comprehensive characterizations of ssDNA still lag in plants compared to nonplant systems. Here, we conducted in situ S1-sequencing, with starting gDNA ranging from 5 µg to 250 ng, followed by comprehensive characterizations of ssDNA in rice (Oryza sativa L.). We found that ssDNA loci were substantially associated with a subset of non-B DNA structures and functional genomic loci. Subtypes of ssDNA loci had distinct epigenetic features. Importantly, ssDNA may act alone or partly coordinate with non-B DNA structures, functional genomic loci, or epigenetic marks to actively or repressively modulate gene transcription, which is genomic region dependent and associated with the distinct accumulation of RNA Pol II. Moreover, distinct types of ssDNA had differential impacts on the activities and evolution of transposable elements (TEs) (especially common or conserved TEs) in the rice genome. Our study showcases an antibody-independent technique for characterizing non-B DNA structures or functional genomic loci in plants. It lays the groundwork and fills a crucial gap for further exploration of ssDNA, non-B DNA structures, or functional genomic loci, thereby advancing our understanding of their biology in plants.
Collapse
Affiliation(s)
- Yulian Peng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Pengtao Zhao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Zhaoguo Li
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Ning Mu
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Shentong Tao
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Yilong Feng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Xuejiao Cheng
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| | - Wenli Zhang
- State Key Laboratory of Crop Genetics and Germplasm Enhancement and Utilization, CIC-MCP, Nanjing Agricultural University, No.1 Weigang, Nanjing, Jiangsu 210095, China
| |
Collapse
|
4
|
Tao HY, Zhao CY, Wang Y, Sheng WJ, Zhen YS. Targeting Telomere Dynamics as an Effective Approach for the Development of Cancer Therapeutics. Int J Nanomedicine 2024; 19:3805-3825. [PMID: 38708177 PMCID: PMC11069074 DOI: 10.2147/ijn.s448556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 03/14/2024] [Indexed: 05/07/2024] Open
Abstract
Telomere is a protective structure located at the end of chromosomes of eukaryotes, involved in maintaining the integrity and stability of the genome. Telomeres play an essential role in cancer progression; accordingly, targeting telomere dynamics emerges as an effective approach for the development of cancer therapeutics. Targeting telomere dynamics may work through multifaceted molecular mechanisms; those include the activation of anti-telomerase immune responses, shortening of telomere lengths, induction of telomere dysfunction and constitution of telomerase-responsive drug release systems. In this review, we summarize a wide variety of telomere dynamics-targeted agents in preclinical studies and clinical trials, and reveal their promising therapeutic potential in cancer therapy. As shown, telomere dynamics-active agents are effective as anti-cancer chemotherapeutics and immunotherapeutics. Notably, these agents may display efficacy against cancer stem cells, reducing cancer stem levels. Furthermore, these agents can be integrated with the capability of tumor-specific drug delivery by the constitution of related nanoparticles, antibody drug conjugates and HSA-based drugs.
Collapse
Affiliation(s)
- Hong-yu Tao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Chun-yan Zhao
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Ying Wang
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Wei-jin Sheng
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| | - Yong-su Zhen
- Laboratory of Oncology, Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, People’s Republic of China
| |
Collapse
|
5
|
Das A, Giri AK, Bhattacharjee P. Targeting 'histone mark': Advanced approaches in epigenetic regulation of telomere dynamics in cancer. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2024; 1867:195007. [PMID: 38237857 DOI: 10.1016/j.bbagrm.2024.195007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 01/09/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024]
Abstract
Telomere integrity is required for the maintenance of genome stability and prevention of oncogenic transformation of cells. Recent evidence suggests the presence of epigenetic modifications as an important regulator of mammalian telomeres. Telomeric and subtelomeric regions are rich in epigenetic marks that regulate telomere length majorly through DNA methylation and post-translational histone modifications. Specific histone modifying enzymes play an integral role in establishing telomeric histone codes necessary for the maintenance of structural integrity. Alterations of crucial histone moieties and histone modifiers cause deregulations in the telomeric chromatin leading to carcinogenic manifestations. This review delves into the significance of histone modifications and their influence on telomere dynamics concerning cancer. Additionally, it highlights the existing research gaps that hold the potential to drive the development of therapeutic interventions targeting the telomere epigenome.
Collapse
Affiliation(s)
- Ankita Das
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India; Department of Zoology, University of Calcutta, Kolkata 700019, India
| | - Ashok K Giri
- Molecular Genetics Division, CSIR-Indian Institute of Chemical Biology, Kolkata 700032, India
| | - Pritha Bhattacharjee
- Department of Environmental Science, University of Calcutta, Kolkata 700019, India.
| |
Collapse
|
6
|
Kakridonis F, Pneumatikos SG, Vakonaki E, Berdiaki A, Tzatzarakis MN, Fragkiadaki P, Spandidos DA, Baliou S, Ioannou P, Hatzidaki E, Nikitovic D, Tsatsakis A, Vasiliadis E. Telomere length as a predictive biomarker in osteoporosis (Review). Biomed Rep 2023; 19:87. [PMID: 37881605 PMCID: PMC10594068 DOI: 10.3892/br.2023.1669] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 09/22/2023] [Indexed: 10/27/2023] Open
Abstract
Telomeres are the ends of chromosomes that protect them from DNA damage. There is evidence to suggest that telomere shortening appears with advanced age. Since aging is a significant risk factor for developing age-related complications, it is plausible that telomere shortening may be involved in the development of osteoporosis. The present review summarizes the potential of telomere shortening as a biomarker for detecting the onset of osteoporosis. For the purposes of the present review, the following scientific databases were searched for relevant articles: PubMed/NCBI, Cochrane Library of Systematic Reviews, Scopus, Embase and Google Scholar. The present review includes randomized and non-randomized controlled studies and case series involving humans, irrespective of the time of their publication. In six out of the 11 included studies providing data on humans, there was at least a weak association between telomere length and osteoporosis, with the remaining studies exhibiting no such association. As a result, telomere shortening may be used as a biomarker or as part of a panel of biomarkers for tracking the onset and progression of osteoporosis.
Collapse
Affiliation(s)
- Fotios Kakridonis
- 5th Department of Orthopaedics, KAT Attica General Hospital, 14561 Athens, Greece
| | - Spyros G. Pneumatikos
- 3rd Department of Orthopaedics, KAT Attica General Hospital, 14561 Athens, Greece
- Department of Orthopaedics, Medical School, Kapodistrian University of Athens, 11527 Athens, Greece
| | - Elena Vakonaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aikaterini Berdiaki
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | | | - Persefoni Fragkiadaki
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Demetrios A. Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Stella Baliou
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Petros Ioannou
- Laboratory of Internal Medicine, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Eleftheria Hatzidaki
- Department of Neonatology and NICU, University Hospital of Heraklion, 71500 Heraklion, Greece
| | - Dragana Nikitovic
- Laboratory of Anatomy-Histology-Embryology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Aristidis Tsatsakis
- Laboratory of Toxicology, Medical School, University of Crete, 71003 Heraklion, Greece
| | - Elias Vasiliadis
- 3rd Department of Orthopaedics, KAT Attica General Hospital, 14561 Athens, Greece
| |
Collapse
|
7
|
Xu D, Huang Y, Luo L, Tang L, Lu M, Cao H, Wang F, Diao Y, Lyubchenko L, Kapranov P. Genome-Wide Profiling of Endogenous Single-Stranded DNA Using the SSiNGLe-P1 Method. Int J Mol Sci 2023; 24:12062. [PMID: 37569439 PMCID: PMC10418711 DOI: 10.3390/ijms241512062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/23/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023] Open
Abstract
Endogenous single-stranded DNA (essDNA) can form in a mammalian genome as the result of a variety of molecular processes and can both play important roles inside the cell as well as have detrimental consequences to genome integrity, much of which remains to be fully understood. Here, we established the SSiNGLe-P1 approach based on limited digestion by P1 endonuclease for high-throughput genome-wide identification of essDNA regions. We applied this method to profile essDNA in both human mitochondrial and nuclear genomes. In the mitochondrial genome, the profiles of essDNA provide new evidence to support the strand-displacement model of mitochondrial DNA replication. In the nuclear genome, essDNA regions were found to be enriched in certain types of functional genomic elements, particularly, the origins of DNA replication, R-loops, and to a lesser degree, in promoters. Furthermore, interestingly, many of the essDNA regions identified by SSiNGLe-P1 have not been annotated and thus could represent yet unknown functional elements.
Collapse
Affiliation(s)
- Dongyang Xu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Yu Huang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Lingcong Luo
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Lu Tang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Meng Lu
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Huifen Cao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Fang Wang
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Yong Diao
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
| | - Liudmila Lyubchenko
- National Medical Research Center for Radiology, Ministry of Health of Russia, 125284 Moscow, Russia
| | - Philipp Kapranov
- Institute of Genomics, School of Medicine, Huaqiao University, 668 Jimei Road, Xiamen 361021, China; (D.X.)
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
8
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
9
|
Niveta JPS, Kumar MA, Parvathi VD. Telomere attrition and inflammation: the chicken and the egg story. EGYPTIAN JOURNAL OF MEDICAL HUMAN GENETICS 2022. [DOI: 10.1186/s43042-022-00335-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
AbstractThe challenge to improve human life span has progressed with the advent of health care services and technologies. This improvement poses a new challenge of an associated wave of diseases and pathologies that have not been observed or experienced. This has led to rise in geriatric population who are currently facing health challenges that needs to be addressed by the research community. This review focuses primarily on two mechanisms that have contributed to aging and associated pathologies: telomere attrition and inflammatory insults. A strong interplay appears to exist between telomere attrition and inflammation, and this could be the basis of many pathologies associated with increasing age. This creates a scientific dilemma as to what comes first: telomere attrition or inflammation. This review will enthuse the reader to the underlying molecules and mechanisms associated with telomere attrition and inflammation and their contribution to aging.
Collapse
|
10
|
Chang TR, Long X, Shastry S, Parks JW, Stone MD. Single-Molecule Mechanical Analysis of Strand Invasion in Human Telomere DNA. Biochemistry 2022; 61:1554-1560. [PMID: 35852986 PMCID: PMC9352315 DOI: 10.1021/acs.biochem.1c00448] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Telomeres are essential
chromosome end capping structures that
safeguard the genome from dangerous DNA processing events. DNA strand
invasion occurs during vital transactions at telomeres, including
telomere length maintenance by the alternative lengthening of telomeres
(ALT) pathway. During telomeric strand invasion, a single-stranded
guanine-rich (G-rich) DNA invades at a complementary duplex telomere
repeat sequence, forming a displacement loop (D-loop) in which the
displaced DNA consists of the same G-rich sequence as the invading
single-stranded DNA. Single-stranded G-rich telomeric DNA readily
folds into stable, compact, structures called G-quadruplexes (GQs)
in vitro and is anticipated to form within the context of a D-loop;
however, evidence supporting this hypothesis is lacking. Here, we
report a magnetic tweezers assay that permits the controlled formation
of telomeric D-loops (TDLs) within uninterrupted duplex human telomere
DNA molecules of physiologically relevant lengths. Our results are
consistent with a model wherein the displaced single-stranded DNA
of a TDL fold into a GQ. This study provides new insight into telomere
structure and establishes a framework for the development of novel
therapeutics designed to target GQs at telomeres in cancer cells.
Collapse
Affiliation(s)
- Terren R. Chang
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Xi Long
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| | - Shankar Shastry
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- 10X Genomics, 6230 Stoneridge Mall Rd, Pleasanton, California 94588, United States
| | - Joseph W. Parks
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
- Invitae, 1400 16th St, San Francisco, California 94103, United States
| | - Michael D. Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High St, Santa Cruz, California 95064, United States
| |
Collapse
|
11
|
Aghali A, Koloko Ngassie ML, Pabelick CM, Prakash YS. Cellular Senescence in Aging Lungs and Diseases. Cells 2022; 11:cells11111781. [PMID: 35681476 PMCID: PMC9179897 DOI: 10.3390/cells11111781] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 05/23/2022] [Accepted: 05/26/2022] [Indexed: 12/10/2022] Open
Abstract
Cellular senescence represents a state of irreversible cell cycle arrest occurring naturally or in response to exogenous stressors. Following the initial arrest, progressive phenotypic changes define conditions of cellular senescence. Understanding molecular mechanisms that drive senescence can help to recognize the importance of such pathways in lung health and disease. There is increasing interest in the role of cellular senescence in conditions such as chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) in the context of understanding pathophysiology and identification of novel therapies. Herein, we discuss the current knowledge of molecular mechanisms and mitochondrial dysfunction regulating different aspects of cellular senescence-related to chronic lung diseases to develop rational strategies for modulating the senescent cell phenotype in the lung for therapeutic benefit.
Collapse
Affiliation(s)
- Arbi Aghali
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (C.M.P.)
| | - Maunick Lefin Koloko Ngassie
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713 GZ Groningen, The Netherlands;
- Groningen Research Institute for Asthma and COPD, University Medical Center Groningen, University of Groningen, 9700 RB Groningen, The Netherlands
| | - Christina M. Pabelick
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (C.M.P.)
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
| | - Y. S. Prakash
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN 55905, USA; (A.A.); (C.M.P.)
- Department of Anesthesiology and Perioperative Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Correspondence:
| |
Collapse
|
12
|
Telomeres and Cancer. Life (Basel) 2021; 11:life11121405. [PMID: 34947936 PMCID: PMC8704776 DOI: 10.3390/life11121405] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/01/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Telomeres cap the ends of eukaryotic chromosomes and are indispensable chromatin structures for genome protection and replication. Telomere length maintenance has been attributed to several functional modulators, including telomerase, the shelterin complex, and the CST complex, synergizing with DNA replication, repair, and the RNA metabolism pathway components. As dysfunctional telomere maintenance and telomerase activation are associated with several human diseases, including cancer, the molecular mechanisms behind telomere length regulation and protection need particular emphasis. Cancer cells exhibit telomerase activation, enabling replicative immortality. Telomerase reverse transcriptase (TERT) activation is involved in cancer development through diverse activities other than mediating telomere elongation. This review describes the telomere functions, the role of functional modulators, the implications in cancer development, and the future therapeutic opportunities.
Collapse
|
13
|
Lee KH, Kim DY, Kim W. Regulation of Gene Expression by Telomere Position Effect. Int J Mol Sci 2021; 22:ijms222312807. [PMID: 34884608 PMCID: PMC8657463 DOI: 10.3390/ijms222312807] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/23/2021] [Accepted: 11/24/2021] [Indexed: 11/16/2022] Open
Abstract
Many diseases that involve malignant tumors in the elderly affect the quality of human life; therefore, the relationship between aging and pathogenesis in geriatric diseases must be under-stood to develop appropriate treatments for these diseases. Recent reports have shown that epigenetic regulation caused by changes in the local chromatin structure plays an essential role in aging. This review provides an overview of the roles of telomere shortening on genomic structural changes during an age-dependent shift in gene expression. Telomere shortening is one of the most prominent events that is involved in cellular aging and it affects global gene expression through genome rearrangement. This review provides novel insights into the roles of telomere shortening in disease-affected cells during pathogenesis and suggests novel therapeutic approaches.
Collapse
Affiliation(s)
- Kyung-Ha Lee
- Division of Cosmetic Science and Technology, Daegu Haany University, Gyeongsan 38610, Korea;
| | - Do-Yeon Kim
- Department of Pharmacology, School of Dentistry, Kyungpook National University, Daegu 41940, Korea
- Correspondence: (D.-Y.K.); (W.K.)
| | - Wanil Kim
- Department of Biochemistry, Department of Convergence Medical Science, Institute of Health Sciences, School of Medicine, Gyeongsang National University, Jinju 52727, Korea
- Correspondence: (D.-Y.K.); (W.K.)
| |
Collapse
|
14
|
Gudmundsrud R, Skjånes TH, Gilmour BC, Caponio D, Lautrup S, Fang EF. Crosstalk among DNA Damage, Mitochondrial Dysfunction, Impaired Mitophagy, Stem Cell Attrition, and Senescence in the Accelerated Ageing Disorder Werner Syndrome. Cytogenet Genome Res 2021; 161:297-304. [PMID: 34433164 DOI: 10.1159/000516386] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 12/10/2020] [Indexed: 12/13/2022] Open
Abstract
Werner syndrome (WS) is an accelerated ageing disease caused by multiple mutations in the gene encoding the Werner DNA helicase (WRN). The major clinical features of WS include wrinkles, grey hair, osteoporosis, and metabolic phenomena such as atherosclerosis, diabetes, and fatty liver, and resemble those seen in normal ageing, but occur earlier, in middle age. Defective DNA repair resulting from mutations in WRN explain the majority of the clinical features of WS, but the underlying mechanisms driving the larger metabolic dysfunction remain elusive. Recent studies in animal models of WS and in WS patient cells and blood samples suggest the involvement of impaired mitophagy, NAD+ depletion, and accumulation of damaged mitochondria in metabolic dysfunction. This mini-review summarizes recent progress in the understanding of the molecular mechanisms of metabolic dysfunction in WS, with the involvement of DNA damage, mitochondrial dysfunction, mitophagy reduction, stem cell impairment, and senescence. Future studies on NAD+ and mitophagy may shed light on potential therapeutic strategies for the WS patients.
Collapse
Affiliation(s)
- Ruben Gudmundsrud
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Tarjei H Skjånes
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Brian C Gilmour
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Domenica Caponio
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, Lørenskog, Norway.,The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| |
Collapse
|
15
|
Wang Z, Wu X. Abnormal function of telomere protein TRF2 induces cell mutation and the effects of environmental tumor‑promoting factors (Review). Oncol Rep 2021; 46:184. [PMID: 34278498 PMCID: PMC8273685 DOI: 10.3892/or.2021.8135] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/14/2021] [Indexed: 01/30/2023] Open
Abstract
Recent studies have found that somatic gene mutations and environmental tumor-promoting factors are both indispensable for tumor formation. Telomeric repeat-binding factor (TRF)2 is the core component of the telomere shelterin complex, which plays an important role in chromosome stability and the maintenance of normal cell physiological states. In recent years, TRF2 and its role in tumor formation have gradually become a research hot topic, which has promoted in-depth discussions into tumorigenesis and treatment strategies, and has achieved promising results. Some cells bypass elimination, due to either aging, apoptosis via mutations or abnormal prolongation of the mitotic cycle, and enter the telomere crisis period, where large-scale DNA reorganization occurs repeatedly, which manifests as the precancerous cell cycle. Finally, at the end of the crisis cycle, the mutation activates either the expression level of telomerase or activates the alternative lengthening of telomere mechanism to extend the local telomeres. Under the protection of TRF2, chromosomes are gradually stabilized, immortal cells are formed and the stagewise mutation-driven transformation of normal cells to cancer cells is completed. In addition, TRF2 also shares the characteristics of environmental tumor-promoting factors. It acts on multiple signal transduction pathway-related proteins associated with cell proliferation, and affects peripheral angiogenesis, inhibits the immune recognition and killing ability of the microenvironment, and maintains the stemness characteristics of tumor cells. TRF2 levels are abnormally elevated by a variety of tumor control proteins, which are more conducive to the protection of telomeres and the survival of tumor cells. In brief, the various regulatory mechanisms which tumor cells rely on to survive are organically integrated around TRF2, forming a regulatory network, which is conducive to the optimization of the survival direction of heterogeneous tumor cells, and promotes their survival and adaptability. In terms of clinical application, TRF2 is expected to become a new type of cancer prognostic marker and a new tumor treatment target. Inhibition of TRF2 overexpression could effectively cut off the core network regulating tumor cell survival, reduce drug resistance, or bypass the mutation under the pressure of tumor treatment selection, which may represent a promising therapeutic strategy for the complete eradication of tumors in the clinical setting. Based on recent research, the aim of the present review was to systematically elaborate on the basic structure and functional characteristics of TRF2 and its role in tumor formation, and to analyze the findings indicating that TRF2 deficiency or overexpression could cause severe damage to telomere function and telomere shortening, and induce DNA damage response and chromosomal instability.
Collapse
Affiliation(s)
- Zhengyi Wang
- Good Clinical Practice Center, Sichuan Academy of Medical Sciences and Sichuan Provincial People's Hospital, Chengdu, Sichuan 610071, P.R. China
| | - Xiaoying Wu
- Ministry of Education and Training, Chengdu Second People's Hospital, Chengdu, Sichuan 610000, P.R. China
| |
Collapse
|
16
|
Fernandes SG, Dsouza R, Khattar E. External environmental agents influence telomere length and telomerase activity by modulating internal cellular processes: Implications in human aging. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 85:103633. [PMID: 33711516 DOI: 10.1016/j.etap.2021.103633] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 01/30/2021] [Accepted: 03/05/2021] [Indexed: 06/12/2023]
Abstract
External environment affects cellular physiological processes and impact the stability of our genome. The most important structural components of our linear chromosomes which endure the impact by these agents, are the chromosomal ends called telomeres. Telomeres preserve the integrity of our genome by preventing end to end fusions and telomeric loss through by inhibiting DNA damage response (DDR) activation. This is accomplished by the presence of a six membered shelterin complex at telomeres. Further, telomeres cannot be replicated by normal DNA polymerase and require a special enzyme called telomerase which is expressed only in stem cells, few immune cells and germ cells. Telomeres are rich in guanine content and thus become extremely prone to damage arising due to physiological processes like oxidative stress and inflammation. External environmental factors which includes various physical, biological and chemical agents also affect telomere homeostasis by increasing oxidative stress and inflammation. In the present review, we highlight the effect of these external factors on telomerase activity and telomere length. We also discuss how the external agents affect the physiological processes, thus modulating telomere stability. Further, we describe its implication in the development of aging and its related pathologies.
Collapse
Affiliation(s)
- Stina George Fernandes
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Rebecca Dsouza
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India
| | - Ekta Khattar
- Sunandan Divatia School of Science, SVKM's NMIMS (Deemed to be University), Vile Parle West, Mumbai, 400056, India.
| |
Collapse
|
17
|
Dogan F, Forsyth NR. Telomerase Regulation: A Role for Epigenetics. Cancers (Basel) 2021; 13:cancers13061213. [PMID: 33802026 PMCID: PMC8000866 DOI: 10.3390/cancers13061213] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 12/11/2022] Open
Abstract
Simple Summary Maintenance of telomeres is a fundamental step in human carcinogenesis and is primarily regulated by telomerase and the human telomerase reverse transcriptase gene (TERT). Improved understanding of the transcriptional control of this gene may provide potential therapeutic targets. Epigenetic modifications are a prominent mechanism to control telomerase activity and regulation of the TERT gene. TERT-targeting miRNAs have been widely studied and their function explained through pre-clinical in vivo model-based validation studies. Further, histone deacetylase inhibitors are now in pre and early clinical trials with significant clinical success. Importantly, TERT downregulation through epigenetic modifications including TERT promoter methylation, histone deacetylase inhibitors, and miRNA activity might contribute to clinical study design. This review provides an overview of the epigenetic mechanisms involved in the regulation of TERT expression and telomerase activity. Abstract Telomerase was first described by Greider and Blackburn in 1984, a discovery ultimately recognized by the Nobel Prize committee in 2009. The three decades following on from its discovery have been accompanied by an increased understanding of the fundamental mechanisms of telomerase activity, and its role in telomere biology. Telomerase has a clearly defined role in telomere length maintenance and an established influence on DNA replication, differentiation, survival, development, apoptosis, tumorigenesis, and a further role in therapeutic resistance in human stem and cancer cells including those of breast and cervical origin. TERT encodes the catalytic subunit and rate-limiting factor for telomerase enzyme activity. The mechanisms of activation or silencing of TERT remain open to debate across somatic, cancer, and stem cells. Promoter mutations upstream of TERT may promote dysregulated telomerase activation in tumour cells but additional factors including epigenetic, transcriptional and posttranscriptional modifications also have a role to play. Previous systematic analysis indicated methylation and mutation of the TERT promoter in 53% and 31%, respectively, of TERT expressing cancer cell lines supporting the concept of a key role for epigenetic alteration associated with TERT dysregulation and cellular transformation. Epigenetic regulators including DNA methylation, histone modification, and non-coding RNAs are now emerging as drivers in the regulation of telomeres and telomerase activity. Epigenetic regulation may be responsible for reversible silencing of TERT in several biological processes including development and differentiation, and increased TERT expression in cancers. Understanding the epigenetic mechanisms behind telomerase regulation holds important prospects for cancer treatment, diagnosis and prognosis. This review will focus on the role of epigenetics in telomerase regulation.
Collapse
Affiliation(s)
- Fatma Dogan
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
| | - Nicholas R. Forsyth
- The Guy Hilton Research Laboratories, School of Pharmacy and Bioengineering, Faculty of Medicine and Health Sciences, Keele University, Stoke on Trent ST4 7QB, UK;
- School of Medicine, Tongji University, Shanghai 200092, China
- Correspondence:
| |
Collapse
|
18
|
Photosensitizers Based on G-Quadruplex Ligand for Cancer Photodynamic Therapy. Genes (Basel) 2020; 11:genes11111340. [PMID: 33198362 PMCID: PMC7697063 DOI: 10.3390/genes11111340] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 11/09/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022] Open
Abstract
G-quadruplex (G4) is the non-canonical secondary structure of DNA and RNA formed by guanine-rich sequences. G4-forming sequences are abundantly located in telomeric regions and in the promoter and untranslated regions (UTR) of cancer-related genes, such as RAS and MYC. Extensive research has suggested that G4 is a potential molecular target for cancer therapy. Here, we reviewed G4 ligands as photosensitizers for cancer photodynamic therapy (PDT), which is a minimally invasive therapeutic approach. The photosensitizers, such as porphyrins, were found to be highly toxic against cancer cells via the generation of reactive oxidative species (ROS) upon photo-irradiation. Several porphyrin derivatives and analogs, such as phthalocyanines, which can generate ROS upon photo-irradiation, have been reported to act as G4 ligands. Therefore, they have been implicated as promising photosensitizers that can selectively break down cancer-related DNA and RNA forming G4. In this review, we majorly focused on the potential application of G4 ligands as photosensitizers, which would provide a novel strategy for PDT, especially molecularly targeted PDT (mtPDT).
Collapse
|
19
|
Berei J, Eckburg A, Miliavski E, Anderson AD, Miller RJ, Dein J, Giuffre AM, Tang D, Deb S, Racherla KS, Patel M, Vela MS, Puri N. Potential Telomere-Related Pharmacological Targets. Curr Top Med Chem 2020; 20:458-484. [DOI: 10.2174/1568026620666200109114339] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 11/21/2019] [Accepted: 11/21/2019] [Indexed: 12/22/2022]
Abstract
Telomeres function as protective caps at the terminal portion of chromosomes, containing
non-coding nucleotide sequence repeats. As part of their protective function, telomeres preserve genomic
integrity and minimize chromosomal exposure, thus limiting DNA damage responses. With
continued mitotic divisions in normal cells, telomeres progressively shorten until they reach a threshold
at a point where they activate senescence or cell death pathways. However, the presence of the enzyme
telomerase can provide functional immortality to the cells that have reached or progressed past
senescence. In senescent cells that amass several oncogenic mutations, cancer formation can occur due
to genomic instability and the induction of telomerase activity. Telomerase has been found to be expressed
in over 85% of human tumors and is labeled as a near-universal marker for cancer. Due to this
feature being present in a majority of tumors but absent in most somatic cells, telomerase and telomeres
have become promising targets for the development of new and effective anticancer therapeutics.
In this review, we evaluate novel anticancer targets in development which aim to alter telomerase
or telomere function. Additionally, we analyze the progress that has been made, including preclinical
studies and clinical trials, with therapeutics directed at telomere-related targets. Furthermore, we review
the potential telomere-related therapeutics that are used in combination therapy with more traditional
cancer treatments. Throughout the review, topics related to medicinal chemistry are discussed,
including drug bioavailability and delivery, chemical structure-activity relationships of select therapies,
and the development of a unique telomere assay to analyze compounds affecting telomere elongation.
Collapse
Affiliation(s)
- Joseph Berei
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Adam Eckburg
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Edward Miliavski
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Austin D. Anderson
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Rachel J. Miller
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Joshua Dein
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Allison M. Giuffre
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Diana Tang
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Shreya Deb
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Kavya Sri Racherla
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Meet Patel
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Monica Saravana Vela
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| | - Neelu Puri
- Department of Biomedical Sciences, University of Illinois College of Medicine at Rockford, Rockford, IL 61107, United States
| |
Collapse
|
20
|
Tan J, Lan L. The DNA secondary structures at telomeres and genome instability. Cell Biosci 2020; 10:47. [PMID: 32257105 PMCID: PMC7104500 DOI: 10.1186/s13578-020-00409-z] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Accepted: 03/14/2020] [Indexed: 01/09/2023] Open
Abstract
Telomeric DNA are TTAGGG tandem repeats, which are susceptible for oxidative DNA damage and hotspot regions for formation of DNA secondary structures such as t-loop, D-loop, G-quadruplexes (G4), and R-loop. In the past two decades, unique DNA or RNA secondary structures at telomeres or some specific regions of genome have become promising therapeutic targets. G-quadruplex and R-loops at telomeres or transcribed regions of genome have been considered as the potential targets for cancer therapy. Here we discuss the potentials to target the secondary structures (G4s and R-loops) in genome as therapy approaches.
Collapse
Affiliation(s)
- Jun Tan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| | - Li Lan
- Harvard Medical School, Massachusetts General Hospital Cancer Center, Charlestown, MA 02129 USA
- Department of Radiation Oncology, Harvard Medical School, Massachusetts General Hospital, Boston, MA 02115 USA
| |
Collapse
|
21
|
Davé A, Pai CC, Durley SC, Hulme L, Sarkar S, Wee BY, Prudden J, Tinline-Purvis H, Cullen JK, Walker C, Watson A, Carr AM, Murray JM, Humphrey TC. Homologous recombination repair intermediates promote efficient de novo telomere addition at DNA double-strand breaks. Nucleic Acids Res 2020; 48:1271-1284. [PMID: 31828313 PMCID: PMC7026635 DOI: 10.1093/nar/gkz1109] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 10/23/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
The healing of broken chromosomes by de novo telomere addition, while a normal developmental process in some organisms, has the potential to cause extensive loss of heterozygosity, genetic disease, or cell death. However, it is unclear how de novo telomere addition (dnTA) is regulated at DNA double-strand breaks (DSBs). Here, using a non-essential minichromosome in fission yeast, we identify roles for the HR factors Rqh1 helicase, in concert with Rad55, in suppressing dnTA at or near a DSB. We find the frequency of dnTA in rqh1Δ rad55Δ cells is reduced following loss of Exo1, Swi5 or Rad51. Strikingly, in the absence of the distal homologous chromosome arm dnTA is further increased, with nearly half of the breaks being healed in rqh1Δ rad55Δ or rqh1Δ exo1Δ cells. These findings provide new insights into the genetic context of highly efficient dnTA within HR intermediates, and how such events are normally suppressed to maintain genome stability.
Collapse
Affiliation(s)
- Anoushka Davé
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Chen-Chun Pai
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Samuel C Durley
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Lydia Hulme
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Sovan Sarkar
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Boon-Yu Wee
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - John Prudden
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Helen Tinline-Purvis
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Jason K Cullen
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- QIMR Berghofer Medical Research Institute, Brisbane 4006, Australia
| | - Carol Walker
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| | - Adam Watson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Antony M Carr
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Johanne M Murray
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, Sussex BN1 9RQ, UK
| | - Timothy C Humphrey
- CRUK/MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
22
|
Denham J. Telomere regulation: lessons learnt from mice and men, potential opportunities in horses. Anim Genet 2019; 51:3-13. [PMID: 31637754 DOI: 10.1111/age.12870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 11/26/2022]
Abstract
Telomeres are genetically conserved nucleoprotein complexes located at the ends of chromosomes that preserve genomic stability. In large mammals, somatic cell telomeres shorten with age, owing to the end replication problem and lack of telomere-lengthening events (e.g. telomerase and ALT activity). Therefore, telomere length reflects cellular replicative reserve and mitotic potential. Environmental insults can accelerate telomere attrition in response to cell division and DNA damage. As such, telomere shortening is considered one of the major hallmarks of ageing. Much effort has been dedicated to understanding the environmental perturbations that accelerate telomere attrition and therapeutic strategies to preserve or extend telomeres. As telomere dynamics seem to reflect cumulative cellular stress, telomere length could serve as a biomarker of animal welfare. The assessment of telomere dynamics (i.e. rate of shortening) in conjunction with telomere-regulating genes and telomerase activity in racehorses could monitor long-term animal health, yet it could also provide some unique opportunities to address particular limitations with the use of other animal models in telomere research. Considering the ongoing efforts to optimise the health and welfare of equine athletes, the purpose of this review is to discuss the potential utility of assessing telomere length in Thoroughbred racehorses. A brief review of telomere biology in large and small mammals will be provided, followed by discussion on the biological implications of telomere length and environmental (e.g. lifestyle) factors that accelerate or attenuate telomere attrition. Finally, the utility of quantifying telomere dynamics in horses will be offered with directions for future research.
Collapse
Affiliation(s)
- J Denham
- School of Health and Biomedical Sciences, Bundoora West Campus, RMIT University, Room 53, Level 4, Building 202, Bundoora, VIC, 3083, Australia
| |
Collapse
|
23
|
Louzon M, Coeurdassier M, Gimbert F, Pauget B, de Vaufleury A. Telomere dynamic in humans and animals: Review and perspectives in environmental toxicology. ENVIRONMENT INTERNATIONAL 2019; 131:105025. [PMID: 31352262 DOI: 10.1016/j.envint.2019.105025] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 06/19/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Telomeres (TLs) play major roles in stabilizing the genome and are usually shortened with ageing. The maintenance of TLs is ensured by two mechanisms involving telomerase (TA) enzyme and alternative lengthening telomeres (ALT). TL shortening and/or TA inhibition have been related to health effects on organisms (leading to reduced reproductive lifespan and survival), suggesting that they could be key processes in toxicity mechanisms (at molecular and cellular levels) and relevant as an early warning of exposure and effect of chemicals on human health and animal population dynamics. Consequently, a critical analysis of knowledge about relationships between TL dynamic and environmental pollution is essential to highlight the relevance of TL measurement in environmental toxicology. The first objective of this review is to provide a survey on the basic knowledge about TL structure, roles, maintenance mechanisms and causes of shortening in both vertebrates (including humans) and invertebrates. Overall, TL length decreases with ageing but some unexpected exceptions are reported (e.g., in species with different lifespans, such as the nematode Caenorhabditis elegans or the crustacean Homarus americanus). Inconsistent results reported in various biological groups or even between species of the same genus (e.g., the microcrustacean Daphnia sp.) indicate that the relation usually proposed between TL shortening and a decrease in TA activity cannot be generalized and depends on the species, stage of development or lifespan. Although the scientific literature provides evidence of the effect of ageing on TL shortening, much less information on the relationships between shortening, maintenance of TLs, influence of other endogenous and environmental drivers, including exposure to chemical pollutants, is available, especially in invertebrates. The second objective of this review is to connect knowledge on TL dynamic and exposure to contaminants. Most of the studies published on humans rely on correlative epidemiological approaches and few in vitro experiments. They have shown TL attrition when exposed to contaminants, such as polycyclic aromatic hydrocarbons (PAH), polychlorinated biphenyls (PCB), pesticides and metallic elements (ME). In other vertebrates, the studies we found deals mainly with birds and, overall, report a disturbance of TL dynamic consecutively to exposure to chemicals, including metals and organic compounds. In invertebrates, no data are available and the potential of TL dynamic in environmental risk assessment remains to be explored. On the basis of the main gaps identified some research perspectives (e.g., impact of endogenous and environmental drivers, dose response effects, link between TL length, TA activity, longevity and ageing) are proposed to better understand the potential of TL and TA measurements in humans and animals in environmental toxicology.
Collapse
Affiliation(s)
- Maxime Louzon
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Michael Coeurdassier
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Frédéric Gimbert
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France
| | - Benjamin Pauget
- TESORA, Le Visium, 22 avenue Aristide Briand, 94110 Arcueil, France
| | - Annette de Vaufleury
- Department Chrono-Environnement, UMR UFC/CNRS 6249 USC INRA University of Bourgogne Franche-Comté, 16 route de Gray, 25000 Besançon, France.
| |
Collapse
|
24
|
Zalzman M, Meltzer WA, Portney BA, Brown RA, Gupta A. The Role of Ubiquitination and SUMOylation in Telomere Biology. Curr Issues Mol Biol 2019; 35:85-98. [PMID: 31422934 DOI: 10.21775/cimb.035.085] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Telomeres are a unique structure of DNA repeats covered by proteins at the ends of the chromosomes that protect the coding regions of the genome and function as a biological clock. They require a tight regulation of the factors covering and protecting their structure, as they are shortened with each cell division to limit the ability of cells to replicate uncontrollably. Additionally, they protect the chromosome ends from DNA damage responses and thereby, prevent genomic instability. Telomere dysfunction can lead to chromosomal abnormalities and cancer. Therefore, dysregulation of any of the factors that regulate the integrity of the telomeres will have implications to chromosomal stability, replicative lifespan and may lead to cell transformation. This review will cover the main factors participating in the normal function of the telomeres and how these are regulated by the ubiquitin and SUMO systems. Accumulating evidence indicate that the ubiquitin and SUMO pathways are significant regulators of the shelterin complex and other chromatin modifiers, which are important for telomere structure integrity. Furthermore, the crosstalk between these two pathways has been reported in telomeric DNA repair. A better understanding of the factors contributing to telomere biology, and how they are regulated, is important for the design of new strategies for cancer therapies and regenerative medicine.
Collapse
Affiliation(s)
- Michal Zalzman
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - W Alex Meltzer
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Benjamin A Portney
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Robert A Brown
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aditi Gupta
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
25
|
Molecular and Cellular Bases of Immunosenescence, Inflammation, and Cardiovascular Complications Mimicking "Inflammaging" in Patients with Systemic Lupus Erythematosus. Int J Mol Sci 2019; 20:ijms20163878. [PMID: 31395799 PMCID: PMC6721773 DOI: 10.3390/ijms20163878] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/04/2019] [Accepted: 08/05/2019] [Indexed: 12/19/2022] Open
Abstract
Systemic lupus erythematosus (SLE) is an archetype of systemic autoimmune disease, characterized by the presence of diverse autoantibodies and chronic inflammation. There are multiple factors involved in lupus pathogenesis, including genetic/epigenetic predisposition, sexual hormone imbalance, environmental stimulants, mental/psychological stresses, and undefined events. Recently, many authors noted that "inflammaging", consisting of immunosenescence and inflammation, is a common feature in aging people and patients with SLE. It is conceivable that chronic oxidative stresses originating from mitochondrial dysfunction, defective bioenergetics, abnormal immunometabolism, and premature telomere erosion may accelerate immune cell senescence in patients with SLE. The mitochondrial dysfunctions in SLE have been extensively investigated in recent years. The molecular basis of normoglycemic metabolic syndrome has been found to be relevant to the production of advanced glycosylated and nitrosative end products. Besides, immunosenescence, autoimmunity, endothelial cell damage, and decreased tissue regeneration could be the results of premature telomere erosion in patients with SLE. Herein, the molecular and cellular bases of inflammaging and cardiovascular complications in SLE patients will be extensively reviewed from the aspects of mitochondrial dysfunctions, abnormal bioenergetics/immunometabolism, and telomere/telomerase disequilibrium.
Collapse
|
26
|
Anitha A, Thanseem I, Vasu MM, Viswambharan V, Poovathinal SA. Telomeres in neurological disorders. Adv Clin Chem 2019; 90:81-132. [PMID: 31122612 DOI: 10.1016/bs.acc.2019.01.003] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Ever since their discovery, the telomeres and the telomerase have been topics of intensive research, first as a mechanism of cellular aging and later as an indicator of health and diseases in humans. By protecting the chromosome ends, the telomeres play a vital role in preserving the information in our genome. Telomeres shorten with age and the rate of telomere erosion provides insight into the proliferation history of cells. The pace of telomere attrition is known to increase at the onset of several pathological conditions. Telomere shortening has been emerging as a potential contributor in the pathogenesis of several neurological disorders including autism spectrum disorders (ASD), schizophrenia, Alzheimer's disease (AD), Parkinson's disease (PD) and depression. The rate of telomere attrition in the brain is slower than that of other tissues owing to the low rate of cell proliferation in brain. Telomere maintenance is crucial for the functioning of stem cells in brain. Taking together the studies on telomere attrition in various neurological disorders, an association between telomere shortening and disease status has been demonstrated in schizophrenia, AD and depression, in spite of a few negative reports. But, studies in ASD and PD have failed to produce conclusive results. The cause-effect relationship between TL and neurological disorders is yet to be elucidated. The factors responsible for telomere erosion, which have also been implicated in the pathogenesis of neurological disorders, need to be explored in detail. Telomerase activation is now being considered as a potential therapeutic strategy for neurological disorders.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Ismail Thanseem
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mahesh Mundalil Vasu
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Vijitha Viswambharan
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Suresh A Poovathinal
- Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| |
Collapse
|
27
|
Kalathiya U, Padariya M, Baginski M. The structurally similar TRFH domain of TRF1 and TRF2 dimers shows distinct behaviour towards TIN2. Arch Biochem Biophys 2018; 642:52-62. [PMID: 29428209 DOI: 10.1016/j.abb.2018.02.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 01/25/2023]
Abstract
The telomere repeat binding-factor 1 and 2 (TRF1 and TRF2) proteins of the shelterin complex bind to duplex telomeric DNA as homodimers, and the homodimerization is mediated by their TRFH (TRF-homology) domains. We performed molecular dynamic (MD) simulations of the dimer forms of TRF1TRFH and TRF2TRFH in the presence/absence of the TIN2TBM (TIN2, TRF-interacting nuclear protein 2, TBM, TRF-binding motif) peptide. The MD results suggest that TIN2TBM is necessary to ensure the stability of TRF1TRFH homodimer but not the TRF2TRFH homodimer. In TRF1-TIN2-TRF2 complex, the peptide enhances the protein-protein interactions to yield a stable heterodimer. Both monomers in TRF1TRFH homodimer interact almost equally with the peptide, whereas in TRF2TRFH homodimer, monomer TRF2TRFH(M1) exhibits more dominant interactions than the TRF2TRFH(M2). The common residues of TRF1/2TRFH(M1) that form interactions with TIN2TBM in all peptide-bound systems originate from the H3 (helix) and L3 (loop) regions. Additionally, in the homodimer systems, residues of TRF1/2TRFH(M2) also interact with the peptide. The residue pair E71-K213 is responsible for different conformations of TRF1TRFH homodimers; specifically, this residue pair enhances the protein-peptide/protein interactions in peptide-bound/unbound systems, respectively. TRF1TRFH and TRF2TRFH proteins have a conserved but different interface responsible for the protein-protein/peptide interactions that exist in the corresponding dimers.
Collapse
Affiliation(s)
- Umesh Kalathiya
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland.
| | - Monikaben Padariya
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland
| | - Maciej Baginski
- Department of Pharmaceutical Technology and Biochemistry, Faculty of Chemistry, Gdansk University of Technology, Narutowicza St 11/12, 80-233 Gdansk, Poland
| |
Collapse
|
28
|
Martens DS, Nawrot TS. Air Pollution Stress and the Aging Phenotype: The Telomere Connection. Curr Environ Health Rep 2018; 3:258-69. [PMID: 27357566 DOI: 10.1007/s40572-016-0098-8] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Aging is a complex physiological phenomenon. The question why some subjects grow old while remaining free from disease whereas others prematurely die remains largely unanswered. We focus here on the role of air pollution in biological aging. Hallmarks of aging can be grouped into three main categories: genomic instability, telomere attrition, and epigenetic alterations leading to altered mitochondrial function and cellular senescence. At birth, the initial telomere length of a person is largely determined by environmental factors. Telomere length shortens with each cell division and exposure to air pollution as well as low residential greens space exposure is associated with shorter telomere length. Recent studies show that the estimated effects of particulate air pollution exposure on the telomere mitochondrial axis of aging may play an important role in chronic health effects of air pollution. The exposome encompasses all exposures over an entire life. As telomeres can be considered as the cellular memories of exposure to oxidative stress and inflammation, telomere maintenance may be a proxy for assessing the "exposome". If telomeres are causally related to the aging phenotype and environmental air pollution is an important determinant of telomere length, this might provide new avenues for future preventive strategies.
Collapse
Affiliation(s)
- Dries S Martens
- Centre for Environmental Sciences, Hasselt University, 3500, Hasselt, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, 3500, Hasselt, Belgium. .,Department of Public Health & Primary Care, Leuven University, 3000, Leuven, Belgium.
| |
Collapse
|
29
|
Necasová I, Janoušková E, Klumpler T, Hofr C. Basic domain of telomere guardian TRF2 reduces D-loop unwinding whereas Rap1 restores it. Nucleic Acids Res 2017; 45:12170-12180. [PMID: 28981702 PMCID: PMC5716094 DOI: 10.1093/nar/gkx812] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 09/09/2017] [Indexed: 01/06/2023] Open
Abstract
Telomeric repeat binding factor 2 (TRF2) folds human telomeres into loops to prevent unwanted DNA repair and chromosome end-joining. The N-terminal basic domain of TRF2 (B-domain) protects the telomeric displacement loop (D-loop) from cleavage by endonucleases. Repressor activator protein 1 (Rap1) binds TRF2 and improves telomeric DNA recognition. We found that the B-domain of TRF2 stabilized the D-loop and thus reduced unwinding by BLM and RPA, whereas the formation of the Rap1–TRF2 complex restored DNA unwinding. To understand how the B-domain of TRF2 affects DNA binding and D-loop processing, we analyzed DNA binding of full-length TRF2 and a truncated TRF2 construct lacking the B-domain. We quantified how the B-domain improves TRF2’s interaction with DNA via enhanced long-range electrostatic interactions. We developed a structural envelope model of the B-domain bound on DNA. The model revealed that the B-domain is flexible in solution but becomes rigid upon binding to telomeric DNA. We proposed a mechanism for how the B-domain stabilizes the D-loop.
Collapse
Affiliation(s)
- Ivona Necasová
- LifeB, Chromatin Molecular Complexes, CEITEC and Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Eliška Janoušková
- LifeB, Chromatin Molecular Complexes, CEITEC and Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| | - Tomáš Klumpler
- Structural Biology of Gene Regulation, CEITEC, Masaryk University, Brno CZ-62500, Czech Republic
| | - Ctirad Hofr
- LifeB, Chromatin Molecular Complexes, CEITEC and Functional Genomics and Proteomics, National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno CZ-62500, Czech Republic
| |
Collapse
|
30
|
Expression of Telomere-Associated Proteins is Interdependent to Stabilize Native Telomere Structure and Telomere Dysfunction by G-Quadruplex Ligand Causes TERRA Upregulation. Cell Biochem Biophys 2017; 76:311-319. [DOI: 10.1007/s12013-017-0835-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 09/18/2017] [Indexed: 11/26/2022]
|
31
|
Wang G, Ding X, Hu J, Wu W, Sun J, Mu Y. Unusual isothermal multimerization and amplification by the strand-displacing DNA polymerases with reverse transcription activities. Sci Rep 2017; 7:13928. [PMID: 29066799 PMCID: PMC5654958 DOI: 10.1038/s41598-017-13324-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 09/20/2017] [Indexed: 01/16/2023] Open
Abstract
ABSTARCT Existing isothermal nucleic acid amplification (INAA) relying on the strand displacement activity of DNA polymerase usually requires at least two primers. However, in this paper, we report an unusual isothermal multimerization and amplification (UIMA) which only needs one primer and is efficiently initiated by the strand-displacing DNA polymerases with reverse transcription activities. On electrophoresis, the products of UIMA present a cascade-shape band and they are confirmed to be multimeric DNAs with repeated target sequences. In contrast to current methods, UIMA is simple to product multimeric DNA, due to the independent of multiple primers and rolling circle structures. Through assaying the synthesized single-stranded DNA targets, UIMA performs high sensitivity and specificity, as well as the universality. In addition, a plausible mechanism of UIMA is proposed, involving short DNA bending, mismatch extension, and template slippage. UIMA is a good explanation for why nonspecific amplification easily happens in existing INAAs. As the simplest INAA till now, UIMA provides a new insight for deeply understanding INAA and opens a new avenue for thoroughly addressing nonspecific amplification.
Collapse
Affiliation(s)
- Guoping Wang
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Xiong Ding
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jiumei Hu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Wenshuai Wu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Jingjing Sun
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, P. R. China
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, P. R. China
| | - Ying Mu
- Research Center for Analytical Instrumentation, Institute of Cyber-Systems and Control, State Key Laboratory of Industrial Control Technology, Zhejiang University, Hangzhou, 310058, P. R. China.
| |
Collapse
|
32
|
Kim H, Li F, He Q, Deng T, Xu J, Jin F, Coarfa C, Putluri N, Liu D, Songyang Z. Systematic analysis of human telomeric dysfunction using inducible telosome/shelterin CRISPR/Cas9 knockout cells. Cell Discov 2017; 3:17034. [PMID: 28955502 PMCID: PMC5613224 DOI: 10.1038/celldisc.2017.34] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Accepted: 07/27/2017] [Indexed: 01/14/2023] Open
Abstract
CRISPR/Cas9 technology enables efficient loss-of-function analysis of human genes using
somatic cells. Studies of essential genes, however, require conditional knockout (KO)
cells. Here, we describe the generation of inducible CRISPR KO human cell lines for the
subunits of the telosome/shelterin complex, TRF1, TRF2, RAP1, TIN2, TPP1 and POT1, which
directly interact with telomeres or can bind to telomeres through association with other
subunits. Homozygous inactivation of several subunits is lethal in mice, and most
loss-of-function studies of human telomere regulators have relied on RNA
interference-mediated gene knockdown, which suffers its own limitations. Our inducible
CRISPR approach has allowed us to more expediently obtain large numbers of KO cells in
which essential telomere regulators have been inactivated for biochemical and molecular
studies. Our systematic analysis revealed functional differences between human and mouse
telomeric proteins in DNA damage responses, telomere length and metabolic control,
providing new insights into how human telomeres are maintained.
Collapse
Affiliation(s)
- Hyeung Kim
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Feng Li
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Quanyuan He
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Tingting Deng
- Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| | - Jun Xu
- Cell-Based Assay Screening Service Core, Baylor College of Medicine, Houston, TX, USA
| | - Feng Jin
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX, USA
| | - Cristian Coarfa
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX, USA
| | - Nagireddy Putluri
- Department of Molecular and Cellular Biology and Advanced Technology Core, Baylor College of Medicine, Houston, TX, USA
| | - Dan Liu
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Cell-Based Assay Screening Service Core, Baylor College of Medicine, Houston, TX, USA
| | - Zhou Songyang
- Verna and Marrs McLean Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA.,Key Laboratory of Gene Engineering of the Ministry of Education and State Key Laboratory for Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
33
|
Thanseem I, Viswambharan V, Poovathinal SA, Anitha A. Is telomere length a biomarker of neurological disorders? Biomark Med 2017; 11:799-810. [PMID: 30669856 DOI: 10.2217/bmm-2017-0032] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Telomeres are DNA-protein complexes that form protective caps at the termini of chromosomes, maintaining genomic stability. In this review, we provide a comprehensive overview on the usefulness of telomere length (TL) as biomarkers of neurological disorders. The implications of TL in relation to cognitive ability, cognitive aging and cognitive decline in neurodegenerative disorders are also briefly discussed. Our review suggests that at present it is difficult to draw a reliable conclusion regarding the contribution of TL to neurological disorders. Further, it needs to be examined whether leukocyte TL, which is generally considered as a surrogate marker of TL in other tissues, serves as an indicator of central nervous system TL.
Collapse
Affiliation(s)
- Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Vijitha Viswambharan
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Suresh A Poovathinal
- Department of Neurology, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| | - Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative & Cognitive Neurosciences (ICCONS), Shoranur, Palakkad 679 523, Kerala, India
| |
Collapse
|
34
|
Yang B, Li X, Lei L, Chen J. APOBEC: From mutator to editor. J Genet Genomics 2017; 44:423-437. [PMID: 28964683 DOI: 10.1016/j.jgg.2017.04.009] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 04/04/2017] [Accepted: 04/10/2017] [Indexed: 12/21/2022]
Abstract
APOBECs (apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like) are a family of cytidine deaminases that prefer single-stranded nucleic acids as substrates. Besides their physiological functions, APOBEC family members have been found to cause hypermutations of cancer genomes, which could be correlated with cancer development and poor prognosis. Recently, APOBEC family members have been combined with the versatile CRISPR/Cas9 system to perform targeted base editing or induce hypermutagenesis. This combination improved the CRISPR/Cas9-mediated gene editing at single-base precision, greatly enhancing its usefulness. Here, we review the physiological functions and structural characteristics of APOBEC family members and their roles as endogenous mutators that contribute to hypermutations during carcinogenesis. We also review the various iterations of the APOBEC-CRISPR/Cas9 gene-editing tools, pointing out their features and limitations as well as the possibilities for future developments.
Collapse
Affiliation(s)
- Bei Yang
- Shanghai Institute for Advanced Immunochemical Studies, ShanghaiTech University, Shanghai 201210, China.
| | - Xiaosa Li
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Liqun Lei
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jia Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
35
|
Structural insights into POT1-TPP1 interaction and POT1 C-terminal mutations in human cancer. Nat Commun 2017; 8:14929. [PMID: 28393832 PMCID: PMC5394241 DOI: 10.1038/ncomms14929] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 02/14/2017] [Indexed: 01/01/2023] Open
Abstract
Mammalian shelterin proteins POT1 and TPP1 form a stable heterodimer that protects chromosome ends and regulates telomerase-mediated telomere extension. However, how POT1 interacts with TPP1 remains unknown. Here we present the crystal structure of the C-terminal portion of human POT1 (POT1C) complexed with the POT1-binding motif of TPP1. The structure shows that POT1C contains two domains, a third OB fold and a Holliday junction resolvase-like domain. Both domains are essential for binding to TPP1. Notably, unlike the heart-shaped structure of ciliated protozoan Oxytricha nova TEBPα–β complex, POT1–TPP1 adopts an elongated V-shaped conformation. In addition, we identify several missense mutations in human cancers that disrupt the POT1C–TPP1 interaction, resulting in POT1 instability. POT1C mutants that bind TPP1 localize to telomeres but fail to repress a DNA damage response and inappropriate repair by A-NHEJ. Our results reveal that POT1 C terminus is essential to prevent initiation of genome instability permissive for tumorigenesis. Human telomeres are protected by a specialized shelterin complex composed of six proteins. Here the authors structurally characterize the interaction between the POT1-TPP1 shelterin component and identify mutations associated with genome instability and cancer that disrupt the POT1-TPP1 interaction.
Collapse
|
36
|
Robinson NJ, Schiemann WP. Means to the ends: The role of telomeres and telomere processing machinery in metastasis. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1866:320-329. [PMID: 27768860 PMCID: PMC5138103 DOI: 10.1016/j.bbcan.2016.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 10/12/2016] [Accepted: 10/15/2016] [Indexed: 12/29/2022]
Abstract
Despite significant clinical advancements, cancer remains a leading cause of mortality throughout the world due largely to the process of metastasis and the dissemination of cancer cells from their primary tumor of origin to distant secondary sites. The clinical burden imposed by metastasis is further compounded by a paucity of information regarding the factors that mediate metastatic progression. Linear chromosomes are capped by structures known as telomeres, which dictate cellular lifespan in humans by shortening progressively during successive cell divisions. Although telomere shortening occurs in nearly all somatic cells, telomeres may be elongated via two seemingly disjoint pathways: (i) telomerase-mediated extension, and (ii) homologous recombination-based alternative lengthening of telomeres (ALT). Both telomerase and ALT are activated in various human cancers, with more recent evidence implicating both pathways as potential mediators of metastasis. Here we review the known roles of telomere homeostasis in metastasis and posit a mechanism whereby metastatic activity is determined by a dynamic fluctuation between ALT and telomerase, as opposed to the mere activation of a generic telomere elongation program. Additionally, the pleiotropic nature of the telomere processing machinery makes it an attractive therapeutic target for metastasis, and as such, we also explore the therapeutic implications of our proposed mechanism.
Collapse
Affiliation(s)
- Nathaniel J Robinson
- Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
| | - William P Schiemann
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, OH 44106, USA.
| |
Collapse
|
37
|
Recent advances in targeting the telomeric G-quadruplex DNA sequence with small molecules as a strategy for anticancer therapies. Future Med Chem 2016; 8:1259-90. [PMID: 27442231 DOI: 10.4155/fmc-2015-0017] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Human telomeric DNA (hTelo), present at the ends of chromosomes to protect their integrity during cell division, comprises tandem repeats of the sequence d(TTAGGG) which is known to form a G-quadruplex secondary structure. This unique structural formation of DNA is distinct from the well-known helical structure that most genomic DNA is thought to adopt, and has recently gained prominence as a molecular target for new types of anticancer agents. In particular, compounds that can stabilize the intramolecular G-quadruplex formed within the human telomeric DNA sequence can inhibit the activity of the enzyme telomerase which is known to be upregulated in tumor cells and is a major contributor to their immortality. This provides the basis for the discovery and development of small molecules with the potential for selective toxicity toward tumor cells. This review summarizes the various families of small molecules reported in the literature that have telomeric quadruplex stabilizing properties, and assesses the potential for compounds of this type to be developed as novel anticancer therapies. A future perspective is also presented, emphasizing the need for researchers to adopt approaches that will allow the discovery of molecules with more drug-like properties in order to improve the chances of lead molecules reaching the clinic in the next decade.
Collapse
|
38
|
Patel TN, Vasan R, Gupta D, Patel J, Trivedi M. Shelterin proteins and cancer. Asian Pac J Cancer Prev 2016; 16:3085-90. [PMID: 25921101 DOI: 10.7314/apjcp.2015.16.8.3085] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
The telomeric end structures of the DNA are known to contain tandem repeats of TTAGGG sequence bound with specialised protein complex called the "shelterin complex". It comprises six proteins, namely TRF1, TRF2, TIN2, POT1, TPP1 and RAP1. All of these assemble together to form a complex with double strand and single strand DNA repeats at the telomere. Such an association contributes to telomere stability and its protection from undesirable DNA damage control-specific responses. However, any alteration in the structure and function of any of these proteins may lead to undesirable DNA damage responses and thus cellular senescence and death. In our review, we throw light on how mutations in the proteins belonging to the shelterin complex may lead to various malfunctions and ultimately have a role in tumorigenesis and cancer progression.
Collapse
Affiliation(s)
- Trupti Nv Patel
- Department of Medical Biotechnology, Vellore Institute of Technology, Vellore, Tamilnadu, India E-mail : ,
| | | | | | | | | |
Collapse
|
39
|
|
40
|
Ilicheva NV, Podgornaya OI, Voronin AP. Telomere Repeat-Binding Factor 2 Is Responsible for the Telomere Attachment to the Nuclear Membrane. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2015; 101:67-96. [DOI: 10.1016/bs.apcsb.2015.06.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
41
|
The mitochondrial genome in aging and senescence. Ageing Res Rev 2014; 18:1-15. [PMID: 25042573 DOI: 10.1016/j.arr.2014.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 07/07/2014] [Accepted: 07/09/2014] [Indexed: 12/15/2022]
Abstract
Aging is characterized by a progressive decline in organism functions due to the impairment of all organs. The deterioration of both proliferative tissues in liver, skin and the vascular system, as well as of largely post-mitotic organs, such as the heart and brain could be attributed at least in part to cell senescence. In this review we examine the role of mitochondrial dysfunction and mtDNA mutations in cell aging and senescence. Specifically, we address how p53 and telomerase reverse transcriptase (TERT) activity switch their roles from cytoprotective to detrimental and also examine the role of microRNAs in cell aging. The proposed role of Reactive Oxygen Species (ROS), both as mutating agents and as signalling molecules, underlying these processes is also described.
Collapse
|
42
|
DNA-PKcs-interacting protein KIP binding to TRF2 is required for the maintenance of functional telomeres. Biochem J 2014; 463:19-30. [DOI: 10.1042/bj20131395] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
DNA-PKcs-interacting protein KIP interacts with TRF2 and enhances the telomere binding activity of TRF2. Depletion of KIP induces telomere-damage response foci. Thus KIP plays important roles in the maintenance of functional telomeres and the regulation of telomere-associated DNA-damage response.
Collapse
|
43
|
Silva BA, Stambaugh JR, Yokomori K, Shah JV, Berns MW. DNA damage to a single chromosome end delays anaphase onset. J Biol Chem 2014; 289:22771-22784. [PMID: 24982423 DOI: 10.1074/jbc.m113.535955] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Chromosome ends contain nucleoprotein structures known as telomeres. Damage to chromosome ends during interphase elicits a DNA damage response (DDR) resulting in cell cycle arrest. However, little is known regarding the signaling from damaged chromosome ends (designated here as "TIPs") during mitosis. In the present study, we investigated the consequences of DNA damage induced at a single TIP in mitosis. We used laser microirradiation to damage mitotic TIPs or chromosome arms (non-TIPs) in PtK2 kidney epithelial cells. We found that damage to a single TIP, but not a non-TIP, delays anaphase onset. This TIP-specific checkpoint response is accompanied by differential recruitment of DDR proteins. Although phosphorylation of H2AX and the recruitment of several repair factors, such as Ku70-Ku80, occur in a comparable manner at both TIP and non-TIP damage sites, DDR factors such as ataxia telangiectasia mutated (ATM), MDC1, WRN, and FANCD2 are specifically recruited to TIPs but not to non-TIPs. In addition, Nbs1, BRCA1, and ubiquitin accumulate at damaged TIPs more rapidly than at damaged non-TIPs. ATR and 53BP1 are not detected at either TIPs or non-TIPs in mitosis. The observed delay in anaphase onset is dependent on the activity of DDR kinases ATM and Chk1, and the spindle assembly checkpoint kinase Mps1. Cells damaged at a single TIP or non-TIP eventually exit mitosis with unrepaired lesions. Damaged TIPs are segregated into micronuclei at a significantly higher frequency than damaged non-TIPs. Together, these findings reveal a mitosis-specific DDR uniquely associated with chromosome ends.
Collapse
Affiliation(s)
- Bárbara Alcaraz Silva
- Beckman Laser Institute and Medical Clinic, Irvine, California 92612,; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92617
| | | | - Kyoko Yokomori
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, California 92697-1700, and.
| | - Jagesh V Shah
- Department of Systems Biology, Harvard Medical School and Renal Division, Brigham and Women's Hospital, Boston, Massachusetts 02115.
| | - Michael W Berns
- Beckman Laser Institute and Medical Clinic, Irvine, California 92612,; Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, California 92617,; Department of Biomedical Engineering, University of California, Irvine, California 92617,.
| |
Collapse
|
44
|
Sama RRK, Ward CL, Bosco DA. Functions of FUS/TLS from DNA repair to stress response: implications for ALS. ASN Neuro 2014; 6:6/4/1759091414544472. [PMID: 25289647 PMCID: PMC4189536 DOI: 10.1177/1759091414544472] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Fused in sarcoma/translocated in liposarcoma (FUS/TLS or FUS) is a multifunctional DNA-/RNA-binding protein that is involved in a variety of cellular functions including transcription, protein translation, RNA splicing, and transport. FUS was initially identified as a fusion oncoprotein, and thus, the early literature focused on the role of FUS in cancer. With the recent discoveries revealing the role of FUS in neurodegenerative diseases, namely amyotrophic lateral sclerosis and frontotemporal lobar degeneration, there has been a renewed interest in elucidating the normal functions of FUS. It is not clear which, if any, endogenous functions of FUS are involved in disease pathogenesis. Here, we review what is currently known regarding the normal functions of FUS with an emphasis on DNA damage repair, RNA processing, and cellular stress response. Further, we discuss how ALS-causing mutations can potentially alter the role of FUS in these pathways, thereby contributing to disease pathogenesis.
Collapse
Affiliation(s)
| | - Catherine L Ward
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Medical School, Worcester, MA, USA Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
45
|
Popuri V, Hsu J, Khadka P, Horvath K, Liu Y, Croteau DL, Bohr VA. Human RECQL1 participates in telomere maintenance. Nucleic Acids Res 2014; 42:5671-88. [PMID: 24623817 PMCID: PMC4027191 DOI: 10.1093/nar/gku200] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
A variety of human tumors employ alternative and recombination-mediated lengthening for telomere maintenance (ALT). Human RecQ helicases, such as BLM and WRN, can efficiently unwind alternate/secondary structures during telomere replication and/or recombination. Here, we report a novel role for RECQL1, the most abundant human RecQ helicase but functionally least studied, in telomere maintenance. RECQL1 associates with telomeres in ALT cells and actively resolves telomeric D-loops and Holliday junction substrates. RECQL1 physically and functionally interacts with telomere repeat-binding factor 2 that in turn regulates its helicase activity on telomeric substrates. The telomeric single-stranded binding protein, protection of telomeres 1 efficiently stimulates RECQL1 on telomeric substrates containing thymine glycol, a replicative blocking lesion. Loss of RECQL1 results in dysfunctional telomeres, telomere loss and telomere shortening, elevation of telomere sister-chromatid exchanges and increased aphidicolin-induced telomere fragility, indicating a role for RECQL1 in telomere maintenance. Further, our results indicate that RECQL1 may participate in the same pathway as WRN, probably in telomere replication.
Collapse
Affiliation(s)
- Venkateswarlu Popuri
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Joseph Hsu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Prabhat Khadka
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Kent Horvath
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Yie Liu
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Deborah L Croteau
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| | - Vilhelm A Bohr
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, 251 Bayview Blvd, Suite 100, Baltimore, MD 21224, USA
| |
Collapse
|
46
|
Izzo C, Bertozzi T, Gillanders BM, Donnellan SC. Variation in Telomere Length of the Common Carp,Cyprinus carpio(Cyprinidae), in Relation to Body Length. COPEIA 2014. [DOI: 10.1643/ci-11-162] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
47
|
Ludlow AT, Spangenburg EE, Chin ER, Cheng WH, Roth SM. Telomeres shorten in response to oxidative stress in mouse skeletal muscle fibers. J Gerontol A Biol Sci Med Sci 2014; 69:821-30. [PMID: 24418792 DOI: 10.1093/gerona/glt211] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Aging phenotypes are dictated by myriad cellular changes including telomere shortening. In most tissues, telomere shortening is accelerated during replication if unrepaired oxidative damage to telomere sequences is present. However, the effect of reactive oxygen species exposure on skeletal muscle telomeres is unknown. We sought to determine if oxidative stress shortens telomeres in isolated adult rodent skeletal muscle fibers. Flexor digitorum brevis muscles were dissected from male mice (C57BL/6, long telomere and CAST/Ei, wild-derived, short telomere) and dissociated into single fibers. Fibers were cultured at an oxygen tension of 2%-5% for 5 days in control, hydrogen peroxide (oxidant), or a combination of N-acetylcysteine (antioxidant) and oxidant containing media. Telomere length, telomerase enzyme activity, and protein content of TRF1 and TRF2 were subsequently measured. In both strains, oxidative stress resulted in significant telomere shortening in isolated skeletal muscle fibers, likely by different mechanisms. Telomerase activity was not altered by oxidative stress treatment but was significantly different between strains, with greater telomerase activity in long-telomere-bearing C57BL/6 mice. These results provide important insights into mechanisms by which oxidative stress could shorten skeletal muscle telomeres.
Collapse
Affiliation(s)
| | | | - Eva R Chin
- Department of Kinesiology, School of Public Health and
| | - Wen-Hsing Cheng
- Department of Nutrition and Food Science, University of Maryland, College Park. Present address: Department of Food Science, Nutrition and Health Promotion, Mississippi State University
| | | |
Collapse
|
48
|
Gómez DLM, Farina HG, Gómez DE. Telomerase regulation: a key to inhibition? (Review). Int J Oncol 2013; 43:1351-6. [PMID: 24042470 DOI: 10.3892/ijo.2013.2104] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 07/05/2013] [Indexed: 11/06/2022] Open
Abstract
Telomerase has been recognized as a common factor in most tumor cells, and in turn a distinctive feature with respect to non-malignant cells. This feature has made telomerase a promising target for cancer therapy. Telomerase studies revealed that it is a multi-subunit complex possessing different levels of regulation, including control of expression, phosphorylation state, assembly and transportation to sites of activity. Thus, we emphasize that targeting telomerase expression or activity is not the only way to shorten telomeres, induce cell senescence and apoptosis. Therefore, there are multiple sites capable of allowing the modulation of its enzymatic activity. In the development of strategies based on the regulation of telomerase activity the understanding of the mechanisms regulating their subunits is essential. Based on this, in this review we summarize the current state of knowledge of some regulatory mechanisms of the components of the telomerase complex, and hypothetize their potential therapeutic application against cancer.
Collapse
Affiliation(s)
- Diego L Mengual Gómez
- Laboratory of Molecular Oncology, Science and Technology Department, National University of Quilmes, Buenos Aires, Argentina
| | | | | |
Collapse
|
49
|
Hemmat M, Hemmat O, Boyar FZ. Isochromosome Yp and jumping translocation of Yq resulting in five cell lines in an infertile male: a case report and review of the literature. Mol Cytogenet 2013; 6:36. [PMID: 24020961 PMCID: PMC3848363 DOI: 10.1186/1755-8166-6-36] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Accepted: 08/14/2013] [Indexed: 11/25/2022] Open
Abstract
Background Jumping translocations are a rare type of mosaicism in which the same portion of one donor chromosome is translocated to several recipient chromosomes. Constitutional forms of jumping translocations are rare, and the 48 cases reported to date have been associated with both normal and abnormal phenotypes. Concurrence of isochromosome (i) of one arm and translocation of the other is also rare, with seven reported cases. We describe a unique case involving concurrence of i(Yp) and a jumping translocation of Yq to the telomere of chromosomes 12q and 17q, which resulted in five cell lines. Case presentation The patient, an otherwise healthy 35-year-old man, was referred for cytogenetic studies because of absolute azoospermia. He had elevated levels of follicle stimulating hormone and luteinizing hormone, consistent with abnormal spermatogenesis, and decreased levels of free testosterone and inhibin B. G-banded chromosome analysis revealed a mosaic male karyotype involving five abnormal cell lines. One of the cell lines showed loss of chromosome Y and presence of i(Yp) as the sole abnormality. Three cell lines exhibited jumping translocation: two involved 17qter, and the other involved 12qter as the recipient and Yq as the common donor chromosome. One of the cell lines with der(17) additionally showed i(Yp). The other der(17) and der(12) cell lines had a missing Y chromosome. All five cell lines were confirmed by FISH. Subtelomric FISH study demonstrated no loss of chromosome material from the recipient chromosomes at the translocation junctions. Conclusions We postulate that a postzygotic pericentromeric break of the Y chromosome led to formation of isochromosome Yp, whereas Yq formed a jumping translocation through recombination between its internal telomere repeats and telomeric repeats of recipient chromosomes. This in turn led to either pairing or an exchange at the complimentary sequences. Such translocation junctions appear to be unstable and to result in a jumping translocation. Cryptic deletion or disruption of AZF (azoospermic factor) genes at Yq11 during translocation or defective pairing of X and Y chromosomes during meiosis, with abnormal sex vesicle formation and consequent spermatogenetic arrest, might be the main cause of the azoospermia in our patient.
Collapse
Affiliation(s)
- Morteza Hemmat
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690, USA
| | - Omid Hemmat
- Ostrow School of Dentistry, University of Southern California, Los Angeles, CA, USA
| | - Fatih Z Boyar
- Cytogenetics Department, Quest Diagnostics Nichols Institute, 33608 Ortega Highway, San Juan Capistrano, CA 92690, USA
| |
Collapse
|
50
|
Yamada O, Kawauchi K. The role of the JAK-STAT pathway and related signal cascades in telomerase activation during the development of hematologic malignancies. JAKSTAT 2013; 2:e25256. [PMID: 24416646 PMCID: PMC3876434 DOI: 10.4161/jkst.25256] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 05/25/2013] [Accepted: 06/03/2013] [Indexed: 12/28/2022] Open
Abstract
Telomerase, comprising a reverse transcriptase protein (TERT) and an RNA template, plays a critical role during senescence and carcinogenesis; however, the mechanisms by which telomerase is regulated remain to be elucidated. Several signaling pathways are involved in the activation of TERT at multistep levels. The JAK-STAT pathway is indispensable for mediating signals through growth factor and cytokine receptors during the development of hematopoietic cells, and its activity is frequently upregulated in hematological malignancies. Here, we review the role of the JAK-STAT pathway and related signaling cascades in the regulation of telomerase in hematological malignancies.
Collapse
Affiliation(s)
- Osamu Yamada
- Medical Research Institute and Department of Hematology; Tokyo Women's Medical University; Tokyo, Japan
| | - Kiyotaka Kawauchi
- Department of Medicine; Tokyo Women's Medical University; Medical Center East; Tokyo, Japan ; Nishiogu Clinic; Tokyo, Japan
| |
Collapse
|