1
|
Rätze MAK, Enserink LNFL, Ishiyama N, van Kempen S, Veltman CHJ, Nijman IJ, Haakma WE, Caldas C, Bernards R, van Diest PJ, Christgen M, Koorman T, Derksen PWB. Afadin loss induces breast cancer metastasis through destabilisation of E-cadherin to F-actin linkage. J Pathol 2025; 266:26-39. [PMID: 40026293 PMCID: PMC11985701 DOI: 10.1002/path.6394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/18/2024] [Accepted: 12/16/2024] [Indexed: 03/05/2025]
Abstract
Afadin is a multimodal scaffolding protein with essential functions in cell-cell adhesion. Although its loss of expression has been linked to breast cancer invasion and metastasis, the underlying mechanisms driving tumour progression upon mutational Afadin (AFDN) loss in breast cancers remains unclear. In the current study we identified a somatic frameshift AFDN mutation (p.Lys630fs) in an invasive breast cancer sample that coincides with loss of Afadin protein expression. Functional studies in E-cadherin-expressing breast cancer cells show that Afadin loss leads to immature and aberrant adherens junction (AJ) formation. The lack of AJ maturation results in a noncohesive cellular phenotype accompanied by Actomyosin-dependent anoikis resistance, which are classical progression hallmarks of single-cell breast cancer invasion. Reconstitution experiments using Afadin truncates show that proper F-actin organisation and epithelial cell-cell adhesion critically depend on the Coiled-Coil domain of Afadin but not on the designated C-terminal F-actin binding domain. Mouse xenograft experiments based on cell lines and primary patient-derived breast cancer organoids demonstrate that Afadin loss induces single-cell lobular-type invasion phenotypes and overt dissemination to the lungs and the peritoneum. In short, Afadin is a metastasis suppressor for breast cancer through stabilisation and maturation of a mechanical E-cadherin to F-actin outside-in link. © 2025 The Author(s). The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.
Collapse
Affiliation(s)
- Max AK Rätze
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Lotte NFL Enserink
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Sven van Kempen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Isaac J Nijman
- Center for Molecular Medicine, Cancer Genomics Netherlands, Department of GeneticsUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Wisse E Haakma
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Carlos Caldas
- Cancer Research UK Cambridge InstituteUniversity of CambridgeCambridgeUK
- Department of OncologyUniversity of CambridgeCambridgeUK
| | - René Bernards
- Division of Molecular Carcinogenesis, Center for Biomedical Genetics and Cancer Genomics CentreThe Netherlands Cancer InstituteAmsterdamThe Netherlands
| | - Paul J van Diest
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | | | - Thijs Koorman
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| | - Patrick WB Derksen
- Department of PathologyUniversity Medical Center UtrechtUtrechtThe Netherlands
| |
Collapse
|
2
|
Greene ES, Roach B, Cuadrado MF, Orlowski S, Dridi S. Effect of heat stress on ileal epithelial barrier integrity in broilers divergently selected for high- and low-water efficiency. Front Physiol 2025; 16:1558201. [PMID: 40260206 PMCID: PMC12009728 DOI: 10.3389/fphys.2025.1558201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Accepted: 03/18/2025] [Indexed: 04/23/2025] Open
Abstract
Water scarcity and rising global temperatures are two of the greatest current and future threats to poultry sustainability. Therefore, selection for water efficiency (WE) and heat resilience are of vital importance. Additionally, intestinal integrity is of critical importance under challenging conditions to maintain nutrient absorption and therefore, growth and performance of broilers. Here, we examined the effect of chronic cyclic heat stress (HS) on the ileal expression profile of tight-junction, gap-junction, adherens, and desmosome genes in the fourth generation of divergently selected low (LWE)- and high water efficient (HWE)-chicken lines. LWE birds exhibited higher levels of gut permeability, regardless of temperature, as measured by fluorescein isothiocyanate-dextran (FITC-D). Among the claudins (CLDN), Cldn1 showed greater expression in the HWE as compared to LWE, regardless of temperature. Cldn5, -16, -20, and -34 genes were all greater in LWE and lower in HWE during HS. Conversely, Cldn25 was decreased in LWE but increased HWE under HS. Cldn4 was increased in the HWE line and decreased by HS. Cingulin (Cgn) gene expression was lower in HWE as compared to LWE and lower in HS as compared to thermoneutral (TN) condition. Gap junction protein α1 (Gja1) and desmoglein 4 (Dsg4) were greater in the HWE as compared to the LWE. Cadherin 1 (Cdh1) gene expression was greatest in the HWE in TN conditions and lowest in HWE under HS, whereas catenin α2 (Ctnna2) and desmocollin 1 (Dsc1) were highest in HWE during HS compared to all other groups. This differential expression of key genes associated with intestinal barrier integrity likely contributes to the water efficiency phenotype and the response of these birds to HS.
Collapse
Affiliation(s)
- Elizabeth S. Greene
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | | | - Maria Fernandez Cuadrado
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sara Orlowski
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| | - Sami Dridi
- Division of Agriculture, Center of Excellence for Poultry Science, University of Arkansas, Fayetteville, AR, United States
| |
Collapse
|
3
|
Wang Y, Shi P, Liu G, Chen W, Wang YJ, Hu Y, Yang A, Wei T, Chen YC, Liang L, Liu Z, Liu YJ, Wu C. Espin enhances confined cell migration by promoting filopodia formation and contributes to cancer metastasis. EMBO Rep 2025:10.1038/s44319-025-00437-1. [PMID: 40185977 DOI: 10.1038/s44319-025-00437-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 02/22/2025] [Accepted: 03/07/2025] [Indexed: 04/07/2025] Open
Abstract
Genes regulating the finger-like cellular protrusions-filopodia have long been implicated in cancer metastasis. However, depleting the flat lamellipodia but retaining filopodia drastically hampers cell migration on spread surface, obscuring the role of filopodia in cell motility. It has been noticed recently that cells under confinement may employ distinct migratory machineries. However, the regulating factors have mainly been focused on cell blebbing, nuclear deformation and cell rear contractility, without much emphasis on cell protrusions and even less on filopodia. Here, by micropore-based screening, we identified espin as an active regulator for confined migration and that its overexpression was associated with metastasis. In comparison to fascin, espin showed stronger actin bundling in vitro and induced shorter and thicker filopodia in cells. Combining the imaging-compatible microchannels and DNA-based tension probes, we uncovered that espin overexpression induced excessive filopodia at the leading edge and along the sides, exerting force for confined migration. Our results demonstrate an important role for filopodia and the regulating protein-espin in confined cell migration and shed new light on cytoskeletal mechanisms underlying metastasis.
Collapse
Affiliation(s)
- Yan Wang
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Peng Shi
- Cancer Institute, Suzhou Medical College, Soochow University, 215000, Suzhou, Jiangsu, China.
| | - Geyao Liu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Wei Chen
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China
| | - Ya-Jun Wang
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Yiping Hu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Ao Yang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Tonghua Wei
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China
| | - Yu-Chen Chen
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China
| | - Ling Liang
- Department of Biophysics, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China
| | - Zheng Liu
- The Institute for Advanced Studies, TaiKang Center for Life and Medical Sciences, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, 430072, Wuhan, Hubei Province, China.
| | - Yan-Jun Liu
- Shanghai Xuhui Central Hospital, Zhongshan-Xuhui Hospital, Shanghai Key Laboratory of Medical Epigenetics, Institutes of Biomedical Sciences, Fudan University, 200032, Shanghai, China.
| | - Congying Wu
- Institute of Systems Biomedicine, School of Basic Medical Sciences, Peking University Health Science Center, 100191, Beijing, China.
- International Cancer Institute, Beijing Key Laboratory of Tumor Systems Biology, Peking University Health Science Center, 100191, Beijing, China.
| |
Collapse
|
4
|
Harris TJC. Dynamic Plasma Membrane Topography Linked With Arp2/3 Actin Network Induction During Cell Shape Change. Bioessays 2025:e70004. [PMID: 40159841 DOI: 10.1002/bies.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 03/13/2025] [Accepted: 03/17/2025] [Indexed: 04/02/2025]
Abstract
Recent studies show the importance of mesoscale changes to plasma membrane (PM) topography during cell shape change. Local folding and flattening of the cell surface is mechanosensitive, changing in response to both microenvironment structural elements and intracellular cytoskeletal activities. These topography changes elicit local mechanical signaling events that act in conjunction with molecular signal transduction pathways to remodel the cell cortex. Experimental manipulations of local PM curvature show its sufficiency for recruiting Arp2/3 actin network induction pathways. Additionally, studies of diverse cell shape changes-ranging from neutrophil migration to early Drosophila embryo cleavage to neural stem cell asymmetric division-show that local generation of PM folding is linked with local Arp2/3 actin network induction, which then remodels the PM topography during dynamic control of cell structure. These examples are reviewed in detail, together with known and potential causes of PM topography changes, downstream effects, and higher-order feedback.
Collapse
Affiliation(s)
- Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
5
|
McAtee C, Patel M, Hoshino D, Sung BH, von Lersner A, Shi M, Hong NH, Young A, Krystofiak E, Zijlstra A, Weaver AM. Secreted exosomes induce filopodia formation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.20.604139. [PMID: 40161676 PMCID: PMC11952364 DOI: 10.1101/2024.07.20.604139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Filopodia are dynamic adhesive cytoskeletal structures that are critical for directional sensing, polarization, cell-cell adhesion, and migration of diverse cell types. Filopodia are also critical for neuronal synapse formation. While dynamic rearrangement of the actin cytoskeleton is known to be critical for filopodia biogenesis, little is known about the upstream extracellular signals. Here, we identify secreted exosomes as potent regulators of filopodia formation. Inhibition of exosome secretion inhibited the formation and stabilization of filopodia in both cancer cells and neurons and inhibited subsequent synapse formation by neurons. Rescue experiments with purified small and large extracellular vesicles (EVs) identified exosome-enriched small EVs (SEVs) as having potent filopodia-inducing activity. Proteomic analyses of cancer cell-derived SEVs identified the TGF-β family coreceptor endoglin as a key SEV-enriched cargo that regulates filopodia. Cancer cell endoglin levels also affected filopodia-dependent behaviors, including metastasis of cancer cells in chick embryos and 3D migration in collagen gels. As neurons do not express endoglin, we performed a second proteomics experiment to identify SEV cargoes regulated by endoglin that might promote filopodia in both cell types. We discovered a single SEV cargo that was altered in endoglin-KD cancer SEVs, the transmembrane protein Thrombospondin Type 1 Domain Containing 7A (THSD7A). We further found that both cancer cell and neuronal SEVs carry THSD7A and that add-back of purified THSD7A is sufficient to rescue filopodia defects of both endoglin-KD cancer cells and exosome-inhibited neurons. We also find that THSD7A induces filopodia formation through activation of the Rho GTPase, Cdc42. These findings suggest a new model for filopodia formation, triggered by exosomes carrying THSD7A.
Collapse
Affiliation(s)
- Caitlin McAtee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Mikin Patel
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | | | - Bong Hwan Sung
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
| | - Ariana von Lersner
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Mingjian Shi
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, USA
| | - Nan Hyung Hong
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
| | - Anna Young
- Department of Biological Sciences, Vanderbilt University, Nashville, USA
| | - Evan Krystofiak
- Cell Imaging Shared Resource EM Facility, Vanderbilt University, Nashville, Tennessee, USA
| | - Andries Zijlstra
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| | - Alissa M. Weaver
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, USA
- Center for Extracellular Vesicle Research, Vanderbilt University School of Medicine, Nashville, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, USA
| |
Collapse
|
6
|
Robinson KR, Curtis SW, Paschall JE, Beaty TH, Butali A, Buxó CJ, Cutler DJ, Epstein MP, Hecht JT, Uribe LM, Shaw GM, Murray JC, Brand H, Weinberg SM, Marazita ML, Doheny KF, Leslie-Clarkson EJ. Distinguishing syndromic and nonsyndromic cleft palate through analysis of protein-altering de novo variants in 816 trios. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.03.25323233. [PMID: 40093200 PMCID: PMC11908282 DOI: 10.1101/2025.03.03.25323233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
De novo variants (DNs) are sporadically occurring variants that most commonly arise in the germline and are present in offspring but absent in both parents. As they are not under selective pressure, they may be enriched for disease-causing alleles and have been implicated in multiple rare genetic disorders. Cleft palate (CP) is a common craniofacial congenital anomaly occurring in ~1 in 1700 live births. Genome-wide association studies for CP have found fewer than a dozen loci, while exome and targeted sequencing studies in family-based and case-control cohorts often lack statistical power to conclusively identify causal genes. Based on previous work by our group and others, deciphering the genetic architecture of CP and gene discovery efforts are complicated by the heterogeneous nature of the disorder. We aggregated sequence data for 816 case-parent trios with CP, representing all subtypes of CP and roughly evenly split between isolated and syndromic presentations. We hypothesized there would be a burden of DNs in CP probands and tested this hypothesis in the full cohort and various phenotypic subgroupings. We identified global enrichment of protein-altering DNs (1.36, p=2.39×10-22), and exome-wide significant (p<1.3×10-6) gene-specific enrichment for SATB2, MEIS2, COL2A1, ZC4H2, EFTUD2, KAT6B, and ANKRD11. We found a statistically significant higher enrichment of loss-of-function and missense DNs in syndromic (1.49, p=2.84×10-19) versus nonsyndromic probands (1.25, p=4.01×10-7) but no differences between CP subtypes. We also evaluated biological differences, identifying distinct enrichments across two single cell RNA sequencing datasets: mouse palate at the time of palate fusion and human embryos at post-conceptional weeks 3-5. Altogether, we show DNs are a contributor to CP risk, and that combined analysis can enhance our ability to find genetic associations that would otherwise be undetected.
Collapse
Affiliation(s)
- Kelsey R Robinson
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Sarah W Curtis
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Justin E Paschall
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Terri H Beaty
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD
| | - Azeez Butali
- Department of Oral Biology, Radiology, and Medicine, University of Iowa, Iowa City, IA
| | - Carmen J Buxó
- School of Dental Medicine, University of Puerto Rico, San Juan, Puerto Rico
| | - David J Cutler
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Michael P Epstein
- Department of Human Genetics, Emory University School of Medicine, Atlanta, GA
| | - Jacqueline T Hecht
- Department of Pediatrics, McGovern Medical School University of Texas Health at Houston, Houston, TX
| | - Lina Moreno Uribe
- Department of Orthodontics & The Iowa Institute for Oral Health Research, University of Iowa, Iowa City, IA
| | - Gary M Shaw
- Department of Pediatrics, Stanford University, Stanford, CA
| | | | - Harrison Brand
- Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA
| | - Seth M Weinberg
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Mary L Marazita
- Center for Craniofacial and Dental Genetics, Department of Oral and Craniofacial Sciences, School of Dental Medicine; Department of Human Genetics, School of Public Health, University of Pittsburgh, Pittsburgh, PA
| | - Kimberly F Doheny
- Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD
| | | |
Collapse
|
7
|
Oak ASW, Bagchi A, Brukman MJ, Toth J, Ford J, Zheng Y, Nace A, Yang R, Hsieh JC, Hayden JE, Ruthel G, Ray A, Kim E, Shenoy VB, Cotsarelis G. Wnt signaling modulates mechanotransduction in the epidermis to drive hair follicle regeneration. SCIENCE ADVANCES 2025; 11:eadq0638. [PMID: 39970220 PMCID: PMC11838001 DOI: 10.1126/sciadv.adq0638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 01/15/2025] [Indexed: 02/21/2025]
Abstract
Most wounds form scars without hair follicles. However, in the wound-induced hair neogenesis (WIHN) model of skin regeneration, wounds regenerate hair follicles if tissue rigidity is optimal. Although WIHN depends on Wnt signaling, whether Wnt performs a mechanoregulatory role that contributes to regeneration remains uncharacterized. Here, we demonstrate that Wnt signaling affects mechanosensitivity at both cellular and tissue levels to drive WIHN. Atomic force microscopy revealed an attenuated substrate rigidity response in epidermal but not dermal cells of healing wounds. Super-resolution microscopy and nanoneedle probing of intracellular compartments in live human keratinocytes revealed that Wnt-induced chromatin remodeling triggers a 10-fold drop in nuclear rigidity without jeopardizing the nucleocytoskeletal mechanical coupling. Mechanistically, Wnt signaling orchestrated a massive reorganization of actin architecture and recruited adherens junctions to generate a mechanical syncytium-a cohesive contractile unit with superior capacity for force coordination and collective durotaxis. Collectively, our findings unveil Wnt signaling's mechanoregulatory role that manipulates the machinery of mechanotransduction to drive regeneration.
Collapse
Affiliation(s)
- Allen S. W. Oak
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Amrit Bagchi
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Matthew J. Brukman
- Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA, USA
| | - Joshua Toth
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Jamie Ford
- Singh Center for Nanotechnology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zheng
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Arben Nace
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ruifeng Yang
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jen-Chih Hsieh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | | - Gordon Ruthel
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Anisa Ray
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elaine Kim
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Vivek B. Shenoy
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, PA, USA
- Center for Engineering Mechanobiology, University of Pennsylvania, Philadelphia, PA, USA
| | - George Cotsarelis
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
8
|
Troyanovsky RB, Indra I, Troyanovsky SM. Actin-dependent α-catenin oligomerization contributes to adherens junction assembly. Nat Commun 2025; 16:1801. [PMID: 39979305 PMCID: PMC11842732 DOI: 10.1038/s41467-025-57079-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 02/07/2025] [Indexed: 02/22/2025] Open
Abstract
Classic cadherins, specifically E-cadherin in most epithelial cells, are transmembrane adhesion receptors, whose intracellular region interacts with proteins, termed catenins, forming the cadherin-catenin complex (CCC). The cadherin ectodomain generates 2D adhesive clusters (E-clusters) through cooperative trans and cis interactions, while catenins anchor the E-clusters to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. Here, we focus on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of the αABD with actin generates actin-bound linear CCC oligomers (CCC/actin strands) incorporating up to six CCCs. This actin-driven CCC oligomerization, which is cadherin ectodomain independent, preferentially occurs along the actin cortex enriched with key basolateral proteins, myosin-1c, scribble, and DLG1. In cell-cell contacts, the CCC/actin strands integrate with the E-clusters giving rise to the composite oligomers, E/actin clusters. Targeted inactivation of strand formation by point mutations emphasizes the importance of this oligomerization process for blocking intercellular protrusive membrane activity and for coupling AJs with the actomyosin-derived tensional forces.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
9
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin promote assembly and bundling of actin filaments. Dev Cell 2025:S1534-5807(25)00032-2. [PMID: 39914390 DOI: 10.1016/j.devcel.2025.01.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 10/30/2024] [Accepted: 01/15/2025] [Indexed: 02/12/2025]
Abstract
Biomolecular condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that assemble and bundle actin. Here, we show that this behavior does not require proteins with specific polymerase activity. Specifically, condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of assembling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds filamentous actin could bundle filaments through multivalent crosslinking. To test this, we added a filamentous-actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that facilitated efficient assembly and bundling of actin filaments. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any filamentous-actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, USA
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Eileen M Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California, San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California, San Diego School of Medicine, La Jolla, CA, USA.
| | - Jeanne C Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, USA; Chemical Engineering, The University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Lu Q, Sasaki S, Sera T, Kudo S. Spatiotemporal distribution of PTEN before directed cell migration in monolayers. In Vitro Cell Dev Biol Anim 2024; 60:1160-1173. [PMID: 38926230 DOI: 10.1007/s11626-024-00927-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 05/12/2024] [Indexed: 06/28/2024]
Abstract
The intracellular distribution of phosphatase and tensin homolog (PTEN) is closely related to directed cell migration. In single cells, PTEN accumulates at the rear of the cell before and during directed migration; however, the spatiotemporal distribution of PTEN in confluent cell monolayers, particularly before directed migration, remains unclear. In this study, we wounded a cell in confluent fetal rat skin keratinocytes (FRSKs) and examined the dynamics of PTEN in the cells adjacent to the wounded cell. In contrast to single-cell migration, we found that PTEN translocated to the nucleus before the beginning of directed migration. This nuclear translocation of PTEN did not occur in disconnected cells, and it was also suppressed by importin-β inhibitor and actin inhibitor. When the nuclear localization of PTEN was inhibited by an importin-β inhibitor, cell elongation in the direction of migration was also significantly inhibited. Our results indicate that PTEN translocation is induced by the disruption of cell-cell adhesion and requires the involvement of importin-β and actin cytoskeleton signaling. In addition, phosphatidylinositol 3,4,5-triphosphate (PIP3) may regulate PTEN distribution through its localized accumulation at the cell edge. Our findings suggest that the translocation of PTEN is crucial for directed cell migration and for responding to mechanical environmental changes in confluent cell monolayers.
Collapse
Affiliation(s)
- Quanzhi Lu
- Department of Mechanical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan
| | - Saori Sasaki
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan
| | - Toshihiro Sera
- Department of Medical and Robotic Engineering Design, Faculty of Advanced Engineering, Tokyo University of Science, 6-3-1 Niijuku, Katsushika-ku, Tokyo, 125-8585, Japan
| | - Susumu Kudo
- Department of Mechanical Engineering, Faculty of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka-Shi, Fukuoka, 819-0395, Japan.
| |
Collapse
|
11
|
Tsujimoto T, Ou Y, Suzuki M, Murata Y, Inubushi T, Nagata M, Ishihara Y, Yonei A, Miyashita Y, Asano Y, Sakai N, Sakata Y, Ogino H, Yamashiro T, Kurosaka H. Compromised actin dynamics underlie the orofacial cleft in Baraitser-Winter Cerebrofrontofacial syndrome with a variant in ACTB. Hum Mol Genet 2024; 33:1975-1985. [PMID: 39271101 DOI: 10.1093/hmg/ddae133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 08/08/2024] [Accepted: 08/29/2024] [Indexed: 09/15/2024] Open
Abstract
Craniofacial anomalies encompassing the orofacial cleft are associated with > 30% of systemic congenital malformations. Baraitser-Winter Cerebrofrontofacial syndrome (BWCFF) is a rare genetic disorder attributed to variants in the actin beta (ACTB) or actin gamma genes that are correlated with a range of craniofacial abnormalities, including cleft lip and/or palate. The underlying pathological mechanism of BWCFF remains elusive, and it is necessary to investigate the etiology of orofacial clefts in patients with BWCFF. In this study, we identified a missense variant (c.1043C > T: p.S348L) in the ACTB gene of a patient with BWCFF and concomitant cleft lip and palate. Furthermore, we performed functional assessments of this variant using various disease models such as the MDCK cell line and Xenopus laevis. These models revealed a compromised capacity of mutated ACTB to localize to the epithelial junction, consequently affecting the behavior of epithelial cells. Additionally, we discovered that the mutated ACTB exhibited an impaired ability to bind PROFILIN1, a critical factor in actin polymerization. This defective ability may contribute to the molecular etiology of aberrant epithelial cell adhesion and migration, resulting in orofacial cleft formation in BWCFF.
Collapse
Affiliation(s)
- Takayuki Tsujimoto
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yushi Ou
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Makoto Suzuki
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Yuka Murata
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Toshihiro Inubushi
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Miho Nagata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasuki Ishihara
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Ayumi Yonei
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yohei Miyashita
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Norio Sakai
- Department of Genetic Counseling, Osaka University Hospital, 2-15 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Pediatrics, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Department of Health Science, Child Healthcare and Genetic Science, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hajime Ogino
- Amphibian Research Center, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-hiroshima, Hiroshima 739-8526, Japan
| | - Takashi Yamashiro
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Hiroshi Kurosaka
- Department of Orthodontics and Dentofacial Orthopedics, Osaka University Graduate School of Dentistry, 1-8 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
12
|
Zhou M, Kang S, Xia Y, Zhang D, Chen W. ATP2C1 knockdown induces abnormal expressions of cytoskeletal and tight junction proteins mimicking Hailey-Hailey disease. Indian J Dermatol Venereol Leprol 2024; 90:722-730. [PMID: 38841932 DOI: 10.25259/ijdvl_853_2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 10/29/2023] [Indexed: 06/07/2024]
Abstract
Background Hailey-Hailey disease (HHD) is a rare, autosomal dominant, hereditary skin disorder characterised by epidermal acantholysis. The HHD-associated gene ATPase calcium-transporting type 2C member 1 (ATP2C1) encodes the protein secretory pathway Ca2+ ATPase1 (SPCA1), playing a critical role in HHD pathogenesis. Aims We aimed to investigate the effect of ATP2C1 knockdown on keratinocytes that mimicked acantholysis in HHD. Methods Immunohistochemistry (IHC) was employed to evaluate the levels of cytoskeletal and tight junction proteins such as SPCA1, P-cofilin, F-actin, claudins, occludin, and zonula occludens 1 in the skin biopsies of patients with HHD. Subsequently, the expression of these proteins in cultured ATP2C1 knockdown keratinocytes was analysed using Western blotting and immunofluorescence. Furthermore, we assessed the proliferation, apoptosis, and intracellular Ca2+ concentrations in the ATP2C1-knocked keratinocytes. Results The results showed decreased levels of these proteins (SPCA1, P-cofilin, F-actin, claudins, occluding, and zonula occludens 1) in HHD skin lesions. Moreover, their levels decreased in human keratinocytes transfected with ATP2C1 short hairpin RNA, accompanied by morphological acantholysis. Furthermore, the proliferation and apoptosis of the keratinocytes, as well as intracellular calcium concentrations in these cells, were not affected. Limitations The limitations of this study are the absence of animal experiments and the failure to explore the relationship between skeletal and tight junction proteins. Conclusion The present study indicated that ATP2C1 inhibition led to abnormal levels of the cytoskeletal and tight junction proteins in the keratinocytes. Therefore, keratinocytes can mimic HHD-like acantholysis and serve as an in vitro model, helping develop treatment strategies against HHD.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shiran Kang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yumin Xia
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Dingwei Zhang
- Department of Dermatology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wenwen Chen
- Department of Dermatology, Yangling Demonstration Zone Hospital, Yangling, China
| |
Collapse
|
13
|
Janssen V, Huveneers S. Cell-cell junctions in focus - imaging junctional architectures and dynamics at high resolution. J Cell Sci 2024; 137:jcs262041. [PMID: 39480660 DOI: 10.1242/jcs.262041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024] Open
Abstract
Studies utilizing electron microscopy and live fluorescence microscopy have significantly enhanced our understanding of the molecular mechanisms that regulate junctional dynamics during homeostasis, development and disease. To fully grasp the enormous complexity of cell-cell adhesions, it is crucial to study the nanoscale architectures of tight junctions, adherens junctions and desmosomes. It is important to integrate these junctional architectures with the membrane morphology and cellular topography in which the junctions are embedded. In this Review, we explore new insights from studies using super-resolution and volume electron microscopy into the nanoscale organization of these junctional complexes as well as the roles of the junction-associated cytoskeleton, neighboring organelles and the plasma membrane. Furthermore, we provide an overview of junction- and cytoskeletal-related biosensors and optogenetic probes that have contributed to these advances and discuss how these microscopy tools enhance our understanding of junctional dynamics across cellular environments.
Collapse
Affiliation(s)
- Vera Janssen
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| | - Stephan Huveneers
- Amsterdam UMC, University of Amsterdam, Department of Medical Biochemistry, Amsterdam Cardiovascular Sciences, 1105 AZ, Amsterdam, The Netherlands
| |
Collapse
|
14
|
Cai F, Jiang B, He F. Formation and biological activities of foreign body giant cells in response to biomaterials. Acta Biomater 2024; 188:1-26. [PMID: 39245307 DOI: 10.1016/j.actbio.2024.08.034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 08/12/2024] [Accepted: 08/21/2024] [Indexed: 09/10/2024]
Abstract
The integration of biomaterials in medical applications triggers the foreign body response (FBR), a multi-stage immune reaction characterized by the formation of foreign body giant cells (FBGCs). Originating from the fusion of monocyte/macrophage lineage cells, FBGCs are pivotal participants during tissue-material interactions. This review provides an in-depth examination of the molecular processes during FBGC formation, highlighting signaling pathways and fusion mediators in response to both exogenous and endogenous stimuli. Moreover, a wide range of material-specific characteristics, such as surface chemical and physical properties, has been proven to influence the fusion of macrophages into FBGCs. Multifaceted biological activities of FBGCs are also explored, with emphasis on their phagocytic capabilities and extracellular secretory functions, which profoundly affect the vascularization, degradation, and encapsulation of the biomaterials. This review further elucidates the heterogeneity of FBGCs and their diverse roles during FBR, as demonstrated by their distinct behaviors in response to different materials. By presenting a comprehensive understanding of FBGCs, this review intends to provide strategies and insights into optimizing biocompatibility and the therapeutic potential of biomaterials for enhanced stability and efficacy in clinical applications. STATEMENT OF SIGNIFICANCE: As a hallmark of the foreign body response (FBR), foreign body giant cells (FBGCs) significantly impact the success of implantable biomaterials, potentially leading to complications such as chronic inflammation, fibrosis, and device failure. Understanding the role of FBGCs and modulating their responses are vital for successful material applications. This review provides a comprehensive overview of the molecules and signaling pathways guiding macrophage fusion into FBGCs. By elucidating the physical and chemical properties of materials inducing distinct levels of FBGCs, potential strategies of materials in modulating FBGC formation are investigated. Additionally, the biological activities of FBGCs and their heterogeneity in responses to different material categories in vivo are highlighted in this review, offering crucial insights for improving the biocompatibility and efficacy of biomaterials.
Collapse
Affiliation(s)
- Fangyuan Cai
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China
| | - Bulin Jiang
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| | - Fuming He
- Department of Prosthodontics, Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Hangzhou, Zhejiang, China.
| |
Collapse
|
15
|
Wang R, Shu RR, Seldin L. Noncanonical functions of adhesion proteins in inflammation. Am J Physiol Cell Physiol 2024; 327:C505-C515. [PMID: 38981610 PMCID: PMC11427013 DOI: 10.1152/ajpcell.00292.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 06/24/2024] [Accepted: 07/01/2024] [Indexed: 07/11/2024]
Abstract
Cell adhesion proteins localize to epithelial and endothelial cell membranes to form junctional complexes between neighboring cells or between cells and the underlying basement membrane. The structural and functional integrities of these junctions are critical to establish cell polarity and maintain tissue barrier function, while also facilitating leukocyte migration and adhesion to sites of inflammation. In addition to their adhesive properties, however, junctional proteins can also serve important noncanonical functions in inflammatory signaling and transcriptional regulation. Intriguingly, recent work has unveiled novel roles for cell adhesion proteins as both signaling initiators and downstream targets during inflammation. In this review, we discuss both the traditional functions of junction proteins in cell adhesion and tissue barrier function as well as their noncanonical signaling roles that have been implicated in facilitating diverse inflammatory pathologies.
Collapse
Affiliation(s)
- Ruochong Wang
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Raphael R Shu
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
| | - Lindsey Seldin
- Department of Cell Biology, Emory University School of Medicine, Atlanta, Georgia, United States
- Department of Dermatology, Emory University School of Medicine, Atlanta, Georgia, United States
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia, United States
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia, United States
| |
Collapse
|
16
|
Mai Y, Kobayashi Y, Kitahata H, Seo T, Nohara T, Itamoto S, Mai S, Kumamoto J, Nagayama M, Nishie W, Ujiie H, Natsuga K. Patterning in stratified epithelia depends on cell-cell adhesion. Life Sci Alliance 2024; 7:e202402893. [PMID: 39025524 PMCID: PMC11258421 DOI: 10.26508/lsa.202402893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Epithelia consist of proliferating and differentiating cells that often display patterned arrangements. However, the mechanism regulating these spatial arrangements remains unclear. Here, we show that cell-cell adhesion dictates multicellular patterning in stratified epithelia. When cultured keratinocytes, a type of epithelial cell in the skin, are subjected to starvation, they spontaneously develop a pattern characterized by areas of high and low cell density. Pharmacological and knockout experiments show that adherens junctions are essential for patterning, whereas the mathematical model that only considers local cell-cell adhesion as a source of attractive interactions can form regions with high/low cell density. This phenomenon, called cell-cell adhesion-induced patterning (CAIP), influences cell differentiation and proliferation through Yes-associated protein modulation. Starvation, which induces CAIP, enhances the stratification of the epithelia. These findings highlight the intrinsic self-organizing property of epithelial cells.
Collapse
Affiliation(s)
- Yosuke Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Yasuaki Kobayashi
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
- Department of Mathematics, Faculty of Science, Josai University, Sakado, Japan
| | - Hiroyuki Kitahata
- Department of Physics, Graduate School of Science, Chiba University, Chiba, Japan
| | - Takashi Seo
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Takuma Nohara
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Sota Itamoto
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Shoko Mai
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Junichi Kumamoto
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Masaharu Nagayama
- Research Center of Mathematics for Social Creativity, Research Institute for Electronic Science, Hokkaido University, Sapporo, Japan
| | - Wataru Nishie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Hideyuki Ujiie
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| | - Ken Natsuga
- Department of Dermatology, Faculty of Medicine and Graduate School of Medicine, Hokkaido University, Sapporo, Japan
| |
Collapse
|
17
|
Quan J, Fan Q, Simons LM, Smukowski SN, Pegg C, Longnecker R, Savas JN, Hultquist JF, Smith GA. Leveraging biotin-based proximity labeling to identify cellular factors governing early alphaherpesvirus infection. mBio 2024; 15:e0144524. [PMID: 38953638 PMCID: PMC11323796 DOI: 10.1128/mbio.01445-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 05/24/2024] [Indexed: 07/04/2024] Open
Abstract
Neurotropic alphaherpesviruses, including herpes simplex virus type 1 and pseudorabies virus, establish a lifelong presence within the peripheral nervous system of their mammalian hosts. Upon entering cells, two conserved tegument proteins, pUL36 and pUL37, traffic DNA-containing capsids to nuclei. These proteins support long-distance retrograde axonal transport and invasion of the nervous system in vivo. To better understand how pUL36 and pUL37 function, recombinant viral particles carrying BioID2 fused to these proteins were produced to biotinylate cellular proteins in their proximity (<10 nm) during infection. Eighty-six high-confidence host proteins were identified by mass spectrometry and subsequently targeted by CRISPR-Cas9 gene editing to assess their contributions to early infection. Proteins were identified that both supported and antagonized infection in immortalized human epithelial cells. The latter included zyxin, a protein that localizes to focal adhesions and regulates actin cytoskeletal dynamics. Zyxin knockout cells were hyper-permissive to infection and could be rescued with even modest expression of GFP-zyxin. These results provide a resource for studies of the virus-cell interface and identify zyxin as a novel deterrent to alphaherpesvirus infection.IMPORTANCENeuroinvasive alphaherpesviruses are highly prevalent with many members found across mammals [e.g., herpes simplex virus type 1 (HSV-1) in humans and pseudorabies virus in pigs]. HSV-1 causes a range of clinical manifestations from cold sores to blindness and encephalitis. There are no vaccines or curative therapies available for HSV-1. A fundamental feature of these viruses is their establishment of lifelong infection of the nervous system in their respective hosts. This outcome is possible due to a potent neuroinvasive property that is coordinated by two proteins: pUL36 and pUL37. In this study, we explore the cellular protein network in proximity to pUL36 and pUL37 during infection and examine the impact of knocking down the expression of these proteins upon infection.
Collapse
Affiliation(s)
- Jenai Quan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Qing Fan
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lacy M. Simons
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Samuel N. Smukowski
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Caitlin Pegg
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Richard Longnecker
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Jeffrey N. Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Judd F. Hultquist
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
- Division of Infectious Diseases, Department of Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Gregory A. Smith
- Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| |
Collapse
|
18
|
Niraula G, Pyne A, Wang X. Develop Tandem Tension Sensor to Gauge Integrin-Transmitted Molecular Forces. ACS Sens 2024; 9:3660-3670. [PMID: 38968930 PMCID: PMC11287754 DOI: 10.1021/acssensors.4c00756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/11/2024] [Accepted: 06/27/2024] [Indexed: 07/07/2024]
Abstract
DNA-based tension sensors have innovated the imaging and calibration of mechanosensitive receptor-transmitted molecular forces, such as integrin tensions. However, these sensors mainly serve as binary reporters, only indicating if molecular forces exceed one predefined threshold. Here, we have developed tandem tension sensor (TTS), which comprises two consecutive force-sensing units, each with unique force detection thresholds and distinct fluorescence spectra, thereby enabling the quantification of molecular forces with dual reference levels. With TTS, we revealed that vinculin is not required for transmitting integrin tensions at approximately 10 pN (piconewtons) but is essential for elevating integrin tensions beyond 20 pN in focal adhesions (FAs). Such high tensions have emerged during the early stage of FA formation. TTS also successfully detected changes in integrin tensions in response to disrupted actin formation, inhibited myosin activity, and tuned substrate elasticity. We also applied TTS to examine integrin tensions in platelets and revealed two force regimes, with integrin tensions surpassing 20 pN at cell central regions and 13-20 pN integrin tensions at the cell edge. Overall, TTS, especially the construct consisting of a hairpin DNA (13 pN opening force) and a shearing DNA (20 pN opening force), stands as a valuable tool for the quantification of receptor-transmitted molecular forces within living cells.
Collapse
Affiliation(s)
- Gopal Niraula
- Department
of Physics and Astronomy, Iowa State University, Ames, Iowa 50011, United States
| | - Arghajit Pyne
- Research
Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45219, United States
| | - Xuefeng Wang
- Research
Division in Hoxworth Center, College of Medicine, University of Cincinnati, Cincinnati, Ohio 45219, United States
| |
Collapse
|
19
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-on protein switches for controlling actin binding in cells. Nat Commun 2024; 15:5840. [PMID: 38992021 PMCID: PMC11239668 DOI: 10.1038/s41467-024-49934-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 06/26/2024] [Indexed: 07/13/2024] Open
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality and multiplexing. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
20
|
Hu HT, Nishimura T, Kawana H, Dante RAS, D’Angelo G, Suetsugu S. The cellular protrusions for inter-cellular material transfer: similarities between filopodia, cytonemes, tunneling nanotubes, viruses, and extracellular vesicles. Front Cell Dev Biol 2024; 12:1422227. [PMID: 39035026 PMCID: PMC11257967 DOI: 10.3389/fcell.2024.1422227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Accepted: 06/17/2024] [Indexed: 07/23/2024] Open
Abstract
Extracellular vesicles (EVs) are crucial for transferring bioactive materials between cells and play vital roles in both health and diseases. Cellular protrusions, including filopodia and microvilli, are generated by the bending of the plasma membrane and are considered to be rigid structures facilitating various cellular functions, such as cell migration, adhesion, and environment sensing. Compelling evidence suggests that these protrusions are dynamic and flexible structures that can serve as sources of a new class of EVs, highlighting the unique role they play in intercellular material transfer. Cytonemes are specialized filopodia protrusions that make direct contact with neighboring cells, mediating the transfer of bioactive materials between cells through their tips. In some cases, these tips fuse with the plasma membrane of neighboring cells, creating tunneling nanotubes that directly connect the cytosols of the adjacent cells. Additionally, virus particles can be released from infected cells through small bud-like of plasma membrane protrusions. These different types of protrusions, which can transfer bioactive materials, share common protein components, including I-BAR domain-containing proteins, actin cytoskeleton, and their regulatory proteins. The dynamic and flexible nature of these protrusions highlights their importance in cellular communication and material transfer within the body, including development, cancer progression, and other diseases.
Collapse
Affiliation(s)
- Hooi Ting Hu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Tamako Nishimura
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroki Kawana
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Rachelle Anne So Dante
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Gisela D’Angelo
- Institut Curie, PSL Research University, Centre national de la recherche scientifique (CNRS), Paris, France
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
- Data Science Center, Nara Institute of Science and Technology, Nara, Japan
- Center for Digital Green-innovation, Nara Institute of Science and Technology, Nara, Japan
| |
Collapse
|
21
|
Walker C, Chandrasekaran A, Mansour D, Graham K, Torres A, Wang L, Lafer EM, Rangamani P, Stachowiak JC. Liquid-like condensates that bind actin drive filament polymerization and bundling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.04.592527. [PMID: 38826190 PMCID: PMC11142076 DOI: 10.1101/2024.05.04.592527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Liquid-like protein condensates perform diverse physiological functions. Previous work showed that VASP, a processive actin polymerase, forms condensates that polymerize and bundle actin. To minimize their curvature, filaments accumulated at the inner condensate surface, ultimately deforming the condensate into a rod-like shape, filled with a bundle of parallel filaments. Here we show that this behavior does not require proteins with specific polymerase activity. Specifically, we found that condensates composed of Lamellipodin, a protein that binds actin but is not an actin polymerase, were also capable of polymerizing and bundling actin filaments. To probe the minimum requirements for condensate-mediated actin bundling, we developed an agent-based computational model. Guided by its predictions, we hypothesized that any condensate-forming protein that binds actin could bundle filaments through multivalent crosslinking. To test this idea, we added an actin-binding motif to Eps15, a condensate-forming protein that does not normally bind actin. The resulting chimera formed condensates that drove efficient actin polymerization and bundling. Collectively, these findings broaden the family of proteins that could organize cytoskeletal filaments to include any actin-binding protein that participates in protein condensation.
Collapse
Affiliation(s)
- Caleb Walker
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Aravind Chandrasekaran
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Daniel Mansour
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Kristin Graham
- Cell and Molecular Biology, The University of Texas at Austin, Austin, TX, United States
| | - Andrea Torres
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
| | - Liping Wang
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Eileen M. Lafer
- Department of Biochemistry and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Padmini Rangamani
- Department of Mechanical and Aerospace Engineering, University of California San Diego, La Jolla, CA, United States
| | - Jeanne C. Stachowiak
- Biomedical Engineering, The University of Texas at Austin, Austin, TX, United States
- Chemical Engineering, The University of Texas at Austin, Austin, TX, United States
| |
Collapse
|
22
|
Ouyang M, Zhang Q, Zhu Y, Luo M, Bu B, Deng L. α-Catenin and Piezo1 Mediate Cell Mechanical Communication via Cell Adhesions. BIOLOGY 2024; 13:357. [PMID: 38785839 PMCID: PMC11118126 DOI: 10.3390/biology13050357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 05/15/2024] [Accepted: 05/17/2024] [Indexed: 05/25/2024]
Abstract
Cell-to-cell distant mechanical communication has been demonstrated using in vitro and in vivo models. However, the molecular mechanisms underlying long-range cell mechanoresponsive interactions remain to be fully elucidated. This study further examined the roles of α-Catenin and Piezo1 in traction force-induced rapid branch assembly of airway smooth muscle (ASM) cells on a Matrigel hydrogel containing type I collagen. Our findings demonstrated that siRNA-mediated downregulation of α-Catenin or Piezo1 expression or chemical inhibition of Piezo1 activity significantly reduced both directional cell movement and branch assembly. Regarding the role of N-cadherin in regulating branch assembly but not directional migration, our results further confirmed that siRNA-mediated downregulation of α-Catenin expression caused a marked reduction in focal adhesion formation, as assessed by focal Paxillin and Integrin α5 localization. These observations imply that mechanosensitive α-Catenin is involved in both cell-cell and cell-matrix adhesions. Additionally, Piezo1 partially localized in focal adhesions, which was inhibited by siRNA-mediated downregulation of α-Catenin expression. This result provides insights into the Piezo1-mediated mechanosensing of traction force on a hydrogel. Collectively, our findings highlight the significance of α-Catenin in the regulation of cell-matrix interactions and provide a possible interpretation of Piezo1-mediated mechanosensing activity at focal adhesions during cell-cell mechanical communication.
Collapse
Affiliation(s)
- Mingxing Ouyang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Qingyu Zhang
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Yiming Zhu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
- School of Pharmacy, Changzhou University, Changzhou 213164, China
| | - Mingzhi Luo
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Bing Bu
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| | - Linhong Deng
- Institute of Biomedical Engineering and Health Sciences, School of Medical and Health Engineering, Changzhou University, Changzhou 213164, China (M.L.); (B.B.)
| |
Collapse
|
23
|
Nguyen TP, Otani T, Tsutsumi M, Kinoshita N, Fujiwara S, Nemoto T, Fujimori T, Furuse M. Tight junction membrane proteins regulate the mechanical resistance of the apical junctional complex. J Cell Biol 2024; 223:e202307104. [PMID: 38517380 PMCID: PMC10959758 DOI: 10.1083/jcb.202307104] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/29/2024] [Accepted: 02/16/2024] [Indexed: 03/23/2024] Open
Abstract
Epithelia must be able to resist mechanical force to preserve tissue integrity. While intercellular junctions are known to be important for the mechanical resistance of epithelia, the roles of tight junctions (TJs) remain to be established. We previously demonstrated that epithelial cells devoid of the TJ membrane proteins claudins and JAM-A completely lack TJs and exhibit focal breakages of their apical junctions. Here, we demonstrate that apical junctions fracture when claudin/JAM-A-deficient cells undergo spontaneous cell stretching. The junction fracture was accompanied by actin disorganization, and actin polymerization was required for apical junction integrity in the claudin/JAM-A-deficient cells. Further deletion of CAR resulted in the disruption of ZO-1 molecule ordering at cell junctions, accompanied by severe defects in apical junction integrity. These results demonstrate that TJ membrane proteins regulate the mechanical resistance of the apical junctional complex in epithelial cells.
Collapse
Affiliation(s)
- Thanh Phuong Nguyen
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tetsuhisa Otani
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Japan Science and Technology Agency, Precursory Research for Embryonic Science and Technology, Kawaguchi, Japan
| | - Motosuke Tsutsumi
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Noriyuki Kinoshita
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Sachiko Fujiwara
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Tomomi Nemoto
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Division of Biophotonics, National Institute for Physiological Sciences, Okazaki, Japan
- Biophotonics Research Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, Okazaki, Japan
| | - Toshihiko Fujimori
- Division of Embryology, National Institute for Basic Biology, Okazaki, Japan
- Basic Biology Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
| | - Mikio Furuse
- Division of Cell Structure, National Institute for Physiological Sciences, Okazaki, Japan
- Physiological Sciences Program, Graduate Institute for Advanced Studies, SOKENDAI, Okazaki, Japan
- Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
24
|
Nolte DD. Coherent light scattering from cellular dynamics in living tissues. REPORTS ON PROGRESS IN PHYSICS. PHYSICAL SOCIETY (GREAT BRITAIN) 2024; 87:036601. [PMID: 38433567 DOI: 10.1088/1361-6633/ad2229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/24/2024] [Indexed: 03/05/2024]
Abstract
This review examines the biological physics of intracellular transport probed by the coherent optics of dynamic light scattering from optically thick living tissues. Cells and their constituents are in constant motion, composed of a broad range of speeds spanning many orders of magnitude that reflect the wide array of functions and mechanisms that maintain cellular health. From the organelle scale of tens of nanometers and upward in size, the motion inside living tissue is actively driven rather than thermal, propelled by the hydrolysis of bioenergetic molecules and the forces of molecular motors. Active transport can mimic the random walks of thermal Brownian motion, but mean-squared displacements are far from thermal equilibrium and can display anomalous diffusion through Lévy or fractional Brownian walks. Despite the average isotropic three-dimensional environment of cells and tissues, active cellular or intracellular transport of single light-scattering objects is often pseudo-one-dimensional, for instance as organelle displacement persists along cytoskeletal tracks or as membranes displace along the normal to cell surfaces, albeit isotropically oriented in three dimensions. Coherent light scattering is a natural tool to characterize such tissue dynamics because persistent directed transport induces Doppler shifts in the scattered light. The many frequency-shifted partial waves from the complex and dynamic media interfere to produce dynamic speckle that reveals tissue-scale processes through speckle contrast imaging and fluctuation spectroscopy. Low-coherence interferometry, dynamic optical coherence tomography, diffusing-wave spectroscopy, diffuse-correlation spectroscopy, differential dynamic microscopy and digital holography offer coherent detection methods that shed light on intracellular processes. In health-care applications, altered states of cellular health and disease display altered cellular motions that imprint on the statistical fluctuations of the scattered light. For instance, the efficacy of medical therapeutics can be monitored by measuring the changes they induce in the Doppler spectra of livingex vivocancer biopsies.
Collapse
Affiliation(s)
- David D Nolte
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN 47907, United States of America
| |
Collapse
|
25
|
Troyanovsky RB, Indra I, Troyanovsky SM. Characterization of early and late events of adherens junction assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583373. [PMID: 38496678 PMCID: PMC10942379 DOI: 10.1101/2024.03.04.583373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cadherins are transmembrane adhesion receptors. Cadherin ectodomains form adhesive 2D clusters through cooperative trans and cis interactions, whereas its intracellular region interacts with specific cytosolic proteins, termed catenins, to anchor the cadherin-catenin complex (CCC) to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. We focus here on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of αABD with actin generates actin-bound CCC oligomers (CCC/actin strands) incorporating up to six CCCs. The strands are primarily formed on the actin-rich cell protrusions. Once in cell-cell interface, the strands become involved in cadherin ectodomain clustering. Such combination of the extracellular and intracellular oligomerizations gives rise to the composite oligomers, trans CCC/actin clusters. To mature, these clusters then rearrange their actin filaments using several redundant pathways, two of which are characterized here: one depends on the α-catenin-associated protein, vinculin and the second one depends on the unstructured C-terminus of αABD. Thus, AJ assembly proceeds through spontaneous formation of trans CCC/actin clusters and their successive reorganization.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL 60614
| |
Collapse
|
26
|
Fülle JB, de Almeida RA, Lawless C, Stockdale L, Yanes B, Lane EB, Garrod DR, Ballestrem C. Proximity Mapping of Desmosomes Reveals a Striking Shift in Their Molecular Neighborhood Associated With Maturation. Mol Cell Proteomics 2024; 23:100735. [PMID: 38342409 PMCID: PMC10943070 DOI: 10.1016/j.mcpro.2024.100735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 01/29/2024] [Accepted: 02/08/2024] [Indexed: 02/13/2024] Open
Abstract
Desmosomes are multiprotein adhesion complexes that link intermediate filaments to the plasma membrane, ensuring the mechanical integrity of cells across tissues, but how they participate in the wider signaling network to exert their full function is unclear. To investigate this, we carried out protein proximity mapping using biotinylation (BioID). The combined interactomes of the essential desmosomal proteins desmocollin 2a, plakoglobin, and plakophilin 2a (Pkp2a) in Madin-Darby canine kidney epithelial cells were mapped and their differences and commonalities characterized as desmosome matured from Ca2+ dependence to the mature, Ca2+-independent, hyper-adhesive state, which predominates in tissues. Results suggest that individual desmosomal proteins have distinct roles in connecting to cellular signaling pathways and that these roles alter substantially when cells change their adhesion state. The data provide further support for a dualistic concept of desmosomes in which the properties of Pkp2a differ from those of the other, more stable proteins. This body of data provides an invaluable resource for the analysis of desmosome function.
Collapse
Affiliation(s)
- Judith B Fülle
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | | | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Liam Stockdale
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - Bian Yanes
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK
| | - E Birgitte Lane
- Skin Research Institute of Singapore, Agency of Science Technology and Research (A∗STAR), Singapore, Singapore
| | - David R Garrod
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| | - Christoph Ballestrem
- Wellcome Trust Centre for Cell-Matrix Research, University of Manchester, Manchester, UK.
| |
Collapse
|
27
|
Aggarwal S, Wang Z, Fernandez Pacheco DR, Rinaldi A, Rajewski A, Callemeyn J, Van Loon E, Lamarthée B, Covarrubias AE, Hou J, Yamashita M, Akiyama H, Karumanchi SA, Svendsen CN, Noble PW, Jordan SC, Breunig J, Naesens M, Cippà PE, Kumar S. SOX9 switch links regeneration to fibrosis at the single-cell level in mammalian kidneys. Science 2024; 383:eadd6371. [PMID: 38386758 PMCID: PMC11345873 DOI: 10.1126/science.add6371] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 01/11/2024] [Indexed: 02/24/2024]
Abstract
The steps governing healing with or without fibrosis within the same microenvironment are unclear. After acute kidney injury (AKI), injured proximal tubular epithelial cells activate SOX9 for self-restoration. Using a multimodal approach for a head-to-head comparison of injury-induced SOX9 lineages, we identified a dynamic SOX9 switch in repairing epithelia. Lineages that regenerated epithelia silenced SOX9 and healed without fibrosis (SOX9on-off). By contrast, lineages with unrestored apicobasal polarity maintained SOX9 activity in sustained efforts to regenerate, which were identified as a SOX9on-on Cadherin6pos cell state. These reprogrammed cells generated substantial single-cell WNT activity to provoke a fibroproliferative response in adjacent fibroblasts, driving AKI to chronic kidney disease. Transplanted human kidneys displayed similar SOX9/CDH6/WNT2B responses. Thus, we have uncovered a sensor of epithelial repair status, the activity of which determines regeneration with or without fibrosis.
Collapse
Affiliation(s)
- Shikhar Aggarwal
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Zhanxiang Wang
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - David Rincon Fernandez Pacheco
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Anna Rinaldi
- Division of Nephrology, Ente Ospedaliero Cantonale, CH-6900 Lugano, Switzerland
| | - Alex Rajewski
- Applied Genomics, Computation, and Translational Core, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jasper Callemeyn
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Elisabet Van Loon
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Baptiste Lamarthée
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Ambart Ester Covarrubias
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Jean Hou
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Michifumi Yamashita
- Department of Pathology and Laboratory Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Haruhiko Akiyama
- Department of Orthopaedic Surgery, Gifu University Graduate School of Medicine, Gifu 500-8705, Japan
| | - S. Ananth Karumanchi
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Clive N. Svendsen
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Paul W. Noble
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Women’s Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Stanley C. Jordan
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Joshua Breunig
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Maarten Naesens
- Department of Microbiology, Immunology and Transplantation, KU Leuven, BE-3000 Leuven, Belgium
| | - Pietro E Cippà
- Division of Nephrology, Ente Ospedaliero Cantonale, CH-6900 Lugano, Switzerland
- Faculty of Biomedical Sciences, Università della Svizzera Italiana, CH-6900 Lugano, Switzerland
| | - Sanjeev Kumar
- Board of Governors Regenerative Medicine Institute, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
- Division of Nephrology, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| |
Collapse
|
28
|
Valdivia A, Avalos AM, Leyton L. Thy-1 (CD90)-regulated cell adhesion and migration of mesenchymal cells: insights into adhesomes, mechanical forces, and signaling pathways. Front Cell Dev Biol 2023; 11:1221306. [PMID: 38099295 PMCID: PMC10720913 DOI: 10.3389/fcell.2023.1221306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 09/25/2023] [Indexed: 12/17/2023] Open
Abstract
Cell adhesion and migration depend on the assembly and disassembly of adhesive structures known as focal adhesions. Cells adhere to the extracellular matrix (ECM) and form these structures via receptors, such as integrins and syndecans, which initiate signal transduction pathways that bridge the ECM to the cytoskeleton, thus governing adhesion and migration processes. Integrins bind to the ECM and soluble or cell surface ligands to form integrin adhesion complexes (IAC), whose composition depends on the cellular context and cell type. Proteomic analyses of these IACs led to the curation of the term adhesome, which is a complex molecular network containing hundreds of proteins involved in signaling, adhesion, and cell movement. One of the hallmarks of these IACs is to sense mechanical cues that arise due to ECM rigidity, as well as the tension exerted by cell-cell interactions, and transduce this force by modifying the actin cytoskeleton to regulate cell migration. Among the integrin/syndecan cell surface ligands, we have described Thy-1 (CD90), a GPI-anchored protein that possesses binding domains for each of these receptors and, upon engaging them, stimulates cell adhesion and migration. In this review, we examine what is currently known about adhesomes, revise how mechanical forces have changed our view on the regulation of cell migration, and, in this context, discuss how we have contributed to the understanding of signaling mechanisms that control cell adhesion and migration.
Collapse
Affiliation(s)
- Alejandra Valdivia
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA, United States
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences & Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Yu M, Ma D, Eszterhas S, Rollenhagen C, Lee SA. The Early Endocytosis Gene PAL1 Contributes to Stress Tolerance and Hyphal Formation in Candida albicans. J Fungi (Basel) 2023; 9:1097. [PMID: 37998902 PMCID: PMC10672141 DOI: 10.3390/jof9111097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/01/2023] [Accepted: 11/06/2023] [Indexed: 11/25/2023] Open
Abstract
The endocytic and secretory pathways of the fungal pathogen Candida albicans are fundamental to various key cellular processes such as cell growth, cell wall integrity, protein secretion, hyphal formation, and pathogenesis. Our previous studies focused on several candidate genes involved in early endocytosis, including ENT2 and END3, that play crucial roles in such processes. However, much remains to be discovered about other endocytosis-related genes and their contributions toward Candida albicans secretion and virulence. In this study, we examined the functions of the early endocytosis gene PAL1 using a reverse genetics approach based on CRISPR-Cas9-mediated gene deletion. Saccharomyces cerevisiae Pal1 is a protein in the early coat complex involved in clathrin-mediated endocytosis that is later internalized with the coat. The C. albicans pal1Δ/Δ null mutant demonstrated increased resistance to the antifungal agent caspofungin and the cell wall stressor Congo Red. In contrast, the null mutant was more sensitive to the antifungal drug fluconazole and low concentrations of SDS than the wild type (WT) and the re-integrant (KI). While pal1Δ/Δ can form hyphae and a biofilm, under some hyphal-inducing conditions, it was less able to demonstrate filamentous growth when compared to the WT and KI. The pal1Δ/Δ null mutant had no defect in clathrin-mediated endocytosis, and there were no changes in virulence-related processes compared to controls. Our results suggest that PAL1 has a role in susceptibility to antifungal agents, cell wall integrity, and membrane stability related to early endocytosis.
Collapse
Affiliation(s)
- Miranda Yu
- Thayer School of Engineering at Dartmouth, Dartmouth College, Hanover, NH 03755, USA;
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
| | - Dakota Ma
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Biological Sciences, Dartmouth College, Hanover, NH 03755, USA
| | - Susan Eszterhas
- Medicine Service, White River Junction VA Medical Center, Hartford, VT 05009, USA; (D.M.); (S.E.)
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Christiane Rollenhagen
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| | - Samuel A. Lee
- Department of Medicine, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA;
| |
Collapse
|
30
|
Effiong UM, Khairandish H, Ramirez-Velez I, Wang Y, Belardi B. Turn-On Protein Switches for Controlling Actin Binding in Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.26.561921. [PMID: 37961502 PMCID: PMC10634840 DOI: 10.1101/2023.10.26.561921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Within a shared cytoplasm, filamentous actin (F-actin) plays numerous and critical roles across the cell body. Cells rely on actin-binding proteins (ABPs) to organize F-actin and to integrate its polymeric characteristics into diverse cellular processes. Yet, the multitude of ABPs that engage with and shape F-actin make studying a single ABP's influence on cellular activities a significant challenge. Moreover, without a means of manipulating actin-binding subcellularly, harnessing the F-actin cytoskeleton for synthetic biology purposes remains elusive. Here, we describe a suite of designed proteins, Controllable Actin-binding Switch Tools (CASTs), whose actin-binding behavior can be controlled with external stimuli. CASTs were developed that respond to different external inputs, providing options for turn-on kinetics and enabling orthogonality. Being genetically encoded, we show that CASTs can be inserted into native protein sequences to control F-actin association locally and engineered into new structures to control cell and tissue shape and behavior.
Collapse
Affiliation(s)
- Unyime M. Effiong
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Hannah Khairandish
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Isabela Ramirez-Velez
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Yanran Wang
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| | - Brian Belardi
- McKetta Department of Chemical Engineering, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
31
|
Zhou M, Ma Y, Rock EC, Chiang CC, Luker KE, Luker GD, Chen YC. Microfluidic single-cell migration chip reveals insights into the impact of extracellular matrices on cell movement. LAB ON A CHIP 2023; 23:4619-4635. [PMID: 37750357 PMCID: PMC10615797 DOI: 10.1039/d3lc00651d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Cell migration is a complex process that plays a crucial role in normal physiology and pathologies such as cancer, autoimmune diseases, and mental disorders. Conventional cell migration assays face limitations in tracking a large number of individual migrating cells. To address this challenge, we have developed a high-throughput microfluidic cell migration chip, which seamlessly integrates robotic liquid handling and computer vision to swiftly monitor the movement of 3200 individual cells, providing unparalleled single-cell resolution for discerning distinct behaviors of the fast-moving cell population. This study focuses on the ECM's role in regulating cellular migration, utilizing this cutting-edge microfluidic technology to investigate the impact of ten different ECMs on triple-negative breast cancer cell lines. We found that collagen IV, collagen III, and collagen I coatings were the top enhancers of cell movement. Combining these ECMs increased cell motility, but the effect was sub-additive. Furthermore, we examined 87 compounds and found that while some compounds inhibited migration on all substrates, significantly distinct effects on differently coated substrates were observed, underscoring the importance of considering ECM coating. We also utilized cells expressing a fluorescent actin reporter and observed distinct actin structures in ECM-interacting cells. ScRNA-Seq analysis revealed that ECM coatings induced EMT and enhanced cell migration. Finally, we identified genes that were particularly up-regulated by collagen IV and the selective inhibitors successfully blocked cell migration on collagen IV. Overall, the study provides insights into the impact of various ECMs on cell migration and dynamics of cell movement with implications for developing therapeutic strategies to combat diseases related to cell motility.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Kathryn E Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd., Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA.
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O'Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
32
|
Zheng S, Wang X, Matskova L, Zhou X, Zhang Z, Kashuba E, Ernberg I, Aspenström P. MTSS1 is downregulated in nasopharyngeal carcinoma (NPC) which disrupts adherens junctions leading to enhanced cell migration and invasion. Front Cell Dev Biol 2023; 11:1275668. [PMID: 37920825 PMCID: PMC10618355 DOI: 10.3389/fcell.2023.1275668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 10/03/2023] [Indexed: 11/04/2023] Open
Abstract
Loss of cell-cell adhesions is the indispensable first step for cancer cells to depart from the primary tumor mass to metastasize. Metastasis suppressor 1 (MTSS1) is frequently lost in metastatic tissues, correlating to advanced tumor stages and poor prognosis across a variety of cancers. Here we explore the anti-metastatic mechanisms of MTSS1, which have not been well understood. We found that MTSS1 is downregulated in NPC tissues. Lower levels of MTSS1 expression correlate to worse prognosis. We show that MTSS1 suppresses NPC cell migration and invasion in vitro through cytoskeletal remodeling at cell-cell borders and assembly of E-cadherin/β-catenin/F-actin in adherens junctions. The I-BAR domain of MTSS1 was both necessary and sufficient to restore this formation of E-cadherin/β-catenin/F-actin-mediated cell adherens junctions.
Collapse
Affiliation(s)
- Shixing Zheng
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- ENT Institute and Department of Otorhinolaryngology, Eye & ENT Hospital, Fudan University, Shanghai, China
| | - Xiaoxia Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Liudmila Matskova
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Xiaoying Zhou
- Scientific Research Centre, Life Science Institute, Guangxi Medical University, Nanning, China
| | - Zhe Zhang
- Department of Otolaryngology-Head and Neck Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Elena Kashuba
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- RE Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of National Academy of Sciences of Ukraine, Kyiv, Ukraine
| | - Ingemar Ernberg
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Pontus Aspenström
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
- Rudbeck Laboratory, Department of Immunology, Genetics and Pathology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
33
|
LaGuardia JS, Shariati K, Bedar M, Ren X, Moghadam S, Huang KX, Chen W, Kang Y, Yamaguchi DT, Lee JC. Convergence of Calcium Channel Regulation and Mechanotransduction in Skeletal Regenerative Biomaterial Design. Adv Healthc Mater 2023; 12:e2301081. [PMID: 37380172 PMCID: PMC10615747 DOI: 10.1002/adhm.202301081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/20/2023] [Indexed: 06/30/2023]
Abstract
Cells are known to perceive their microenvironment through extracellular and intracellular mechanical signals. Upon sensing mechanical stimuli, cells can initiate various downstream signaling pathways that are vital to regulating proliferation, growth, and homeostasis. One such physiologic activity modulated by mechanical stimuli is osteogenic differentiation. The process of osteogenic mechanotransduction is regulated by numerous calcium ion channels-including channels coupled to cilia, mechanosensitive and voltage-sensitive channels, and channels associated with the endoplasmic reticulum. Evidence suggests these channels are implicated in osteogenic pathways such as the YAP/TAZ and canonical Wnt pathways. This review aims to describe the involvement of calcium channels in regulating osteogenic differentiation in response to mechanical loading and characterize the fashion in which those channels directly or indirectly mediate this process. The mechanotransduction pathway is a promising target for the development of regenerative materials for clinical applications due to its independence from exogenous growth factor supplementation. As such, also described are examples of osteogenic biomaterial strategies that involve the discussed calcium ion channels, calcium-dependent cellular structures, or calcium ion-regulating cellular features. Understanding the distinct ways calcium channels and signaling regulate these processes may uncover potential targets for advancing biomaterials with regenerative osteogenic capabilities.
Collapse
Affiliation(s)
- Jonnby S. LaGuardia
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kaavian Shariati
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Meiwand Bedar
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Xiaoyan Ren
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Shahrzad Moghadam
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Kelly X. Huang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Wei Chen
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Youngnam Kang
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
| | - Dean T. Yamaguchi
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
| | - Justine C. Lee
- Division of Plastic & Reconstructive Surgery, University of California, Los Angeles David Geffen School of Medicine, Los Angeles, CA, 90095, USA
- Research Service, Greater Los Angeles VA Healthcare System, Los Angeles, CA, 91343, USA
- Department of Orthopaedic Surgery, Los Angeles, CA, 90095, USA
- UCLA Molecular Biology Institute, Los Angeles, CA, 90095, USA
| |
Collapse
|
34
|
Li W, Chung WL, Kozlov MM, Medalia O, Geiger B, Bershadsky AD. Chiral growth of adherent filopodia. Biophys J 2023; 122:3704-3721. [PMID: 37301982 PMCID: PMC10541518 DOI: 10.1016/j.bpj.2023.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/03/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
Adherent filopodia are elongated finger-like membrane protrusions, extending from the edges of diverse cell types and participating in cell adhesion, spreading, migration, and environmental sensing. The formation and elongation of filopodia are driven by the polymerization of parallel actin filaments, comprising the filopodia cytoskeletal core. Here, we report that adherent filopodia, formed during the spreading of cultured cells on galectin-8-coated substrates, tend to change the direction of their extension in a chiral fashion, acquiring a left-bent shape. Cryoelectron tomography examination indicated that turning of the filopodia tip to the left is accompanied by the displacement of the actin core bundle to the right of the filopodia midline. Reduction of the adhesion to galectin-8 by treatment with thiodigalactoside abolished this filopodia chirality. By modulating the expression of a variety of actin-associated filopodia proteins, we identified myosin-X and formin DAAM1 as major filopodia chirality promoting factors. Formin mDia1, actin filament elongation factor VASP, and actin filament cross-linker fascin were also shown to be involved. Thus, the simple actin cytoskeleton of filopodia, together with a small number of associated proteins are sufficient to drive a complex navigation process, manifested by the development of left-right asymmetry in these cellular protrusions.
Collapse
Affiliation(s)
- Wenhong Li
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Wen-Lu Chung
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Michael M Kozlov
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Ohad Medalia
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Benjamin Geiger
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel.
| | - Alexander D Bershadsky
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot, Israel; Mechanobiology Institute, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
35
|
Wu Y, Sun SX. Mechanics of cell-cell junctions. Biophys J 2023; 122:3354-3368. [PMID: 37475215 PMCID: PMC10465726 DOI: 10.1016/j.bpj.2023.07.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 06/01/2023] [Accepted: 07/17/2023] [Indexed: 07/22/2023] Open
Abstract
Tissue cells in epithelial or endothelial monolayers are connected through cell-cell junctions, which are stabilized by transmembrane E-cadherin bonds and intracellular actin filaments. These bonds and junctions play a crucial role in maintaining the barrier function of epithelia and endothelia and are believed to transmit forces between cells. Additionally, E-cadherin bonds can impact the shape of cell-cell junctions. In this study, we develop a continuum mechanical model of the cell-cell junction by explicitly incorporating the cell membrane, distributions of E-cadherin bonds, cytoplasmic fluid pressure, and F-actin dynamics. The static force-balanced version of the model is able to analyze the influences of cell cortical tension, actin dynamics, and cytoplasmic pressure on the junction shape and E-cadherin bonds. Furthermore, an extended model that incorporates fluid flow, across the cell boundary as well as around the cell, is also examined. This model can couple cell-shape changes with cell cortical tension and fluid flow, and predicts the additional effect of fluid motion on cell-cell junction mechanics. Taken together, our models serve as an intermediate link between molecular-scale models of cell-junction molecules and cell-scale models of tissue and epithelia.
Collapse
Affiliation(s)
- Yufei Wu
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland
| | - Sean X Sun
- Department of Mechanical Engineering, Johns Hopkins University, Baltimore, Maryland; Institute for NanoBioTechnology, Johns Hopkins University, Baltimore, Maryland; Center for Cell Dynamics, Johns Hopkins School of Medicine, Baltimore, Maryland.
| |
Collapse
|
36
|
Dai Y, Zhang X, Ou Y, Zou L, Zhang D, Yang Q, Qin Y, Du X, Li W, Yuan Z, Xiao Z, Wen Q. Anoikis resistance--protagonists of breast cancer cells survive and metastasize after ECM detachment. Cell Commun Signal 2023; 21:190. [PMID: 37537585 PMCID: PMC10399053 DOI: 10.1186/s12964-023-01183-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 06/04/2023] [Indexed: 08/05/2023] Open
Abstract
Breast cancer exhibits the highest global incidence among all tumor types. Regardless of the type of breast cancer, metastasis is a crucial cause of poor prognosis. Anoikis, a form of apoptosis initiated by cell detachment from the native environment, is an outside-in process commencing with the disruption of cytosolic connectors such as integrin-ECM and cadherin-cell. This disruption subsequently leads to intracellular cytoskeletal and signaling pathway alterations, ultimately activating caspases and initiating programmed cell death. Development of an anoikis-resistant phenotype is a critical initial step in tumor metastasis. Breast cancer employs a series of stromal alterations to suppress anoikis in cancer cells. Comprehensive investigation of anoikis resistance mechanisms can inform strategies for preventing and regressing metastatic breast cancer. The present review first outlines the physiological mechanisms of anoikis, elucidating the alterations in signaling pathways, cytoskeleton, and protein targets that transpire from the outside in upon adhesion loss in normal breast cells. The specific anoikis resistance mechanisms induced by pathological changes in various spatial structures during breast cancer development are also discussed. Additionally, the genetic loci of targets altered in the development of anoikis resistance in breast cancer, are summarized. Finally, the micro-RNAs and targeted drugs reported in the literature concerning anoikis are compiled, with keratocin being the most functionally comprehensive. Video Abstract.
Collapse
Affiliation(s)
- Yalan Dai
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Oncology, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Xinyi Zhang
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shenzhen, China
| | - Yingjun Ou
- Clinical Medicine School, Southwest Medicial Univercity, Luzhou, China
- Orthopaedics, Garze Tibetan Autonomous Prefecture People's Hospital, Kangding, China
| | - Linglin Zou
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Duoli Zhang
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China
| | - Qingfan Yang
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yi Qin
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Xiuju Du
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wei Li
- Southwest Medical University, Luzhou, China
| | | | - Zhangang Xiao
- Laboratory of Molecular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, China.
| | - Qinglian Wen
- Department of Oncology, The Affiliated Hospital of Southwest Medical University, Luzhou, China.
| |
Collapse
|
37
|
Fang HY, Forghani R, Clarke A, McQueen PG, Chandrasekaran A, O’Neill KM, Losert W, Papoian GA, Giniger E. Enabled primarily controls filopodial morphology, not actin organization, in the TSM1 growth cone in Drosophila. Mol Biol Cell 2023; 34:ar83. [PMID: 37223966 PMCID: PMC10398877 DOI: 10.1091/mbc.e23-01-0003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 05/18/2023] [Accepted: 05/19/2023] [Indexed: 05/25/2023] Open
Abstract
Ena/VASP proteins are processive actin polymerases that are required throughout animal phylogeny for many morphogenetic processes, including axon growth and guidance. Here we use in vivo live imaging of morphology and actin distribution to determine the role of Ena in promoting the growth of the TSM1 axon of the Drosophila wing. Altering Ena activity causes stalling and misrouting of TSM1. Our data show that Ena has a substantial impact on filopodial morphology in this growth cone but exerts only modest effects on actin distribution. This is in contrast to the main regulator of Ena, Abl tyrosine kinase, which was shown previously to have profound effects on actin and only mild effects on TSM1 growth cone morphology. We interpret these data as suggesting that the primary role of Ena in this axon may be to link actin to the morphogenetic processes of the plasma membrane, rather than to regulate actin organization itself. These data also suggest that a key role of Ena, acting downstream of Abl, may be to maintain consistent organization and reliable evolution of growth cone structure, even as Abl activity varies in response to guidance cues in the environment.
Collapse
Affiliation(s)
- Hsiao Yu Fang
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Rameen Forghani
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Akanni Clarke
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Philip G. McQueen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Aravind Chandrasekaran
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Kate M. O’Neill
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Wolfgang Losert
- Institute for Physical Sciences and Department of Physics, University of Maryland, College Park, MD 20752
| | - Garegin A. Papoian
- Department of Chemistry and Biochemistry, University of Maryland, College Park, MD 20752
| | - Edward Giniger
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| |
Collapse
|
38
|
Benz PM, Frömel T, Laban H, Zink J, Ulrich L, Groneberg D, Boon RA, Poley P, Renne T, de Wit C, Fleming I. Cardiovascular Functions of Ena/VASP Proteins: Past, Present and Beyond. Cells 2023; 12:1740. [PMID: 37443774 PMCID: PMC10340426 DOI: 10.3390/cells12131740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 07/15/2023] Open
Abstract
Actin binding proteins are of crucial importance for the spatiotemporal regulation of actin cytoskeletal dynamics, thereby mediating a tremendous range of cellular processes. Since their initial discovery more than 30 years ago, the enabled/vasodilator-stimulated phosphoprotein (Ena/VASP) family has evolved as one of the most fascinating and versatile family of actin regulating proteins. The proteins directly enhance actin filament assembly, but they also organize higher order actin networks and link kinase signaling pathways to actin filament assembly. Thereby, Ena/VASP proteins regulate dynamic cellular processes ranging from membrane protrusions and trafficking, and cell-cell and cell-matrix adhesions, to the generation of mechanical tension and contractile force. Important insights have been gained into the physiological functions of Ena/VASP proteins in platelets, leukocytes, endothelial cells, smooth muscle cells and cardiomyocytes. In this review, we summarize the unique and redundant functions of Ena/VASP proteins in cardiovascular cells and discuss the underlying molecular mechanisms.
Collapse
Affiliation(s)
- Peter M. Benz
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
| | - Timo Frömel
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Hebatullah Laban
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Joana Zink
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Lea Ulrich
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
| | - Dieter Groneberg
- Institute of Physiology I, University of Würzburg, 97070 Würzburg, Germany
| | - Reinier A. Boon
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
- Centre of Molecular Medicine, Institute of Cardiovascular Regeneration, Goethe-University, 60596 Frankfurt am Main, Germany
- Department of Physiology, Amsterdam Cardiovascular Sciences, VU University Medical Centre, 1081 HZ Amsterdam, The Netherlands
| | - Philip Poley
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Thomas Renne
- Institute of Clinical Chemistry and Laboratory Medicine, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
- Center for Thrombosis and Hemostasis (CTH), Johannes Gutenberg University Medical Center, 55131 Mainz, Germany
- Irish Centre for Vascular Biology, School of Pharmacy and Biomolecular Sciences, Royal College of Surgeons in Ireland, D02 VN51 Dublin, Ireland
| | - Cor de Wit
- Institut für Physiologie, Universität zu Lübeck, 23562 Lübeck, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Hamburg/Kiel/Lübeck, 23562 Lübeck, Germany
| | - Ingrid Fleming
- Institute for Vascular Signalling, Centre for Molecular Medicine, Goethe University, 60596 Frankfurt am Main, Germany
- German Centre of Cardiovascular Research (DZHK), Partner Site Rhein-Main, 60596 Frankfurt am Main, Germany
- Cardiopulmonary Institute, 60596 Frankfurt am Main, Germany
| |
Collapse
|
39
|
Ma D, Yu M, Eszterhas S, Rollenhagen C, Lee SA. A C. albicans TRAPP Complex-Associated Gene Contributes to Cell Wall Integrity, Hyphal and Biofilm Formation, and Tissue Invasion. Microbiol Spectr 2023; 11:e0536122. [PMID: 37222596 PMCID: PMC10269527 DOI: 10.1128/spectrum.05361-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 05/08/2023] [Indexed: 05/25/2023] Open
Abstract
While endocytic and secretory pathways are well-studied cellular processes in the model yeast Saccharomyces cerevisiae, they remain understudied in the opportunistic fungal pathogen Candida albicans. We previously found that null mutants of C. albicans homologs of the S. cerevisiae early endocytosis genes ENT2 and END3 not only exhibited delayed endocytosis but also had defects in cell wall integrity, filamentation, biofilm formation, extracellular protease activity, and tissue invasion in an in vitro model. In this study, we focused on a potential C. albicans homolog to S. cerevisiae TCA17, which was discovered in our whole-genome bioinformatics approach aimed at identifying genes involved in endocytosis. In S. cerevisiae, TCA17 encodes a transport protein particle (TRAPP) complex-associated protein. Using a reverse genetics approach with CRISPR-Cas9-mediated gene deletion, we analyzed the function of the TCA17 homolog in C. albicans. Although the C. albicans tca17Δ/Δ null mutant did not have defects in endocytosis, it displayed an enlarged cell and vacuole morphology, impaired filamentation, and reduced biofilm formation. Moreover, the mutant exhibited altered sensitivity to cell wall stressors and antifungal agents. When assayed using an in vitro keratinocyte infection model, virulence properties were also diminished. Our findings indicate that C. albicans TCA17 may be involved in secretion-related vesicle transport and plays a role in cell wall and vacuolar integrity, hyphal and biofilm formation, and virulence. IMPORTANCE The fungal pathogen Candida albicans causes serious opportunistic infections in immunocompromised patients and has become a major cause of hospital-acquired bloodstream infections, catheter-associated infections, and invasive disease. However, due to a limited understanding of Candida molecular pathogenesis, clinical approaches for the prevention, diagnosis, and treatment of invasive candidiasis need significant improvement. In this study, we focus on identifying and characterizing a gene potentially involved in the C. albicans secretory pathway, as intracellular transport is critical for C. albicans virulence. We specifically investigated the role of this gene in filamentation, biofilm formation, and tissue invasion. Ultimately, these findings advance our current understanding of C. albicans biology and may have implications for the diagnosis and treatment of candidiasis.
Collapse
Affiliation(s)
- Dakota Ma
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Dartmouth College, Hanover, New Hampshire, USA
| | - Miranda Yu
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Dartmouth College, Hanover, New Hampshire, USA
| | - Susan Eszterhas
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Christiane Rollenhagen
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Samuel A. Lee
- Medicine Service, White River Junction VA Medical Center, Hartford, Vermont, USA
- Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
40
|
Rao STRB, Turek I, Ratcliffe J, Beckham S, Cianciarulo C, Adil SSBMY, Kettle C, Whelan DR, Irving HR. 5-HT 3 Receptors on Mitochondria Influence Mitochondrial Function. Int J Mol Sci 2023; 24:ijms24098301. [PMID: 37176009 PMCID: PMC10179570 DOI: 10.3390/ijms24098301] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/30/2023] [Accepted: 05/01/2023] [Indexed: 05/15/2023] Open
Abstract
The 5-hydroxytryptamine 3 (5-HT3) receptor belongs to the pentameric ligand-gated cation channel superfamily. Humans have five different 5-HT3 receptor subunits: A to E. The 5-HT3 receptors are located on the cell membrane, but a previous study suggested that mitochondria could also contain A subunits. In this article, we explored the distribution of 5-HT3 receptor subunits in intracellular and cell-free mitochondria. Organelle prediction software supported the localization of the A and E subunits on the inner membrane of the mitochondria. We transiently transfected HEK293T cells that do not natively express the 5-HT3 receptor with an epitope and fluorescent protein-tagged 5HT3A and 5HT3E subunits. Fluorescence microscopy and cell fractionation indicated that both subunits, A and E, localized to the mitochondria, while transmission electron microscopy revealed the location of the subunits on the mitochondrial inner membrane, where they could form heteromeric complexes. Cell-free mitochondria isolated from cell culture media colocalized with the fluorescent signal for A subunits. The presence of A and E subunits influenced changes in the membrane potential and mitochondrial oxygen consumption rates upon exposure to serotonin; this was inhibited by pre-treatment with ondansetron. Therefore, it is likely that the 5-HT3 receptors present on mitochondria directly impact mitochondrial function and that this may have therapeutic implications.
Collapse
Affiliation(s)
- Santosh T R B Rao
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Ilona Turek
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Julian Ratcliffe
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Bio Imaging Platform, La Trobe University, Kingsbury Dr, Bundoora, VIC 3086, Australia
| | - Simone Beckham
- Regional Science Operations, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Cassandra Cianciarulo
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Siti S B M Y Adil
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Christine Kettle
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Donna R Whelan
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| | - Helen R Irving
- La Trobe Institute for Molecular Science, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
- Department of Rural Clinical Sciences, La Trobe University, P.O. Box 199, Bendigo, VIC 3552, Australia
| |
Collapse
|
41
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
42
|
Bai J, Zeng X. Computational modeling and simulation of epithelial wound closure. Sci Rep 2023; 13:6265. [PMID: 37069231 PMCID: PMC10110613 DOI: 10.1038/s41598-023-33111-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 04/07/2023] [Indexed: 04/19/2023] Open
Abstract
Wounds in the epithelium may lead to serious injurious events or chronic inflammatory diseases, however, multicellular organisms have the ability to self-repair wounds through the movement of epithelial cell toward the wound area. Despite intensive studies exploring the mechanism of wound closure, the role of mechanics in epithelial wound closure is still not well explained. In order to investigate the role of mechanical properties on wound closure process, a three-dimensional continuum physics-based computational model is presented in this study. The model takes into account the material property of the epithelial cell, intercellular interactions between neighboring cells at cell-cell junctions, and cell-substrate adhesion between epithelial cells and ECM. Through finite element simulation, it is found that the closure efficiency is related to the initial gap size and the intensity of lamellipodial protrusion. It is also shown that cells at the wound edge undergo higher stress compared with other cells in the epithelial monolayer, and the cellular normal stress dominates over the cellular shear stress. The model presented in this study can be employed as a numerical tool to unravel the mechanical principles behind the complex wound closure process. These results might have the potential to improve effective wound management and optimize the treatment.
Collapse
Affiliation(s)
- Jie Bai
- Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA
| | - Xiaowei Zeng
- Department of Mechanical Engineering, University of Texas at San Antonio, One UTSA Circle, San Antonio, TX, 78249, USA.
| |
Collapse
|
43
|
Rangarajan ES, Smith EW, Izard T. Distinct inter-domain interactions of dimeric versus monomeric α-catenin link cell junctions to filaments. Commun Biol 2023; 6:276. [PMID: 36928388 PMCID: PMC10020564 DOI: 10.1038/s42003-023-04610-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 02/17/2023] [Indexed: 03/18/2023] Open
Abstract
Attachment between cells is crucial for almost all aspects of the life of cells. These inter-cell adhesions are mediated by the binding of transmembrane cadherin receptors of one cell to cadherins of a neighboring cell. Inside the cell, cadherin binds β-catenin, which interacts with α-catenin. The transitioning of cells between migration and adhesion is modulated by α-catenin, which links cell junctions and the plasma membrane to the actin cytoskeleton. At cell junctions, a single β-catenin/α-catenin heterodimer slips along filamentous actin in the direction of cytoskeletal tension which unfolds clustered heterodimers to form catch bonds with F-actin. Outside cell junctions, α-catenin dimerizes and links the plasma membrane to F-actin. Under cytoskeletal tension, α-catenin unfolds and forms an asymmetric catch bond with F-actin. To understand the mechanism of this important α-catenin function, we determined the 2.7 Å cryogenic electron microscopy (cryoEM) structures of filamentous actin alone and bound to human dimeric α-catenin. Our structures provide mechanistic insights into the role of the α-catenin interdomain interactions in directing α-catenin function and suggest a bivalent mechanism. Further, our cryoEM structure of human monomeric α-catenin provides mechanistic insights into α-catenin autoinhibition. Collectively, our structures capture the initial α-catenin interaction with F-actin before the sensing of force, which is a crucial event in cell adhesion and human disease.
Collapse
Affiliation(s)
| | - Emmanuel W Smith
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA
| | - Tina Izard
- The Cell Adhesion Laboratory, UF Scripps, Jupiter, FL, 33458, USA.
- The Skaggs Graduate School, The Scripps Research Institute, Jupiter, FL, 33458, USA.
| |
Collapse
|
44
|
Bii VM, Rudoy D, Klezovitch O, Vasioukhin V. Lethal giant larvae gene family ( Llgl1 and Llgl2 ) functions as a tumor suppressor in mouse skin epidermis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.06.531408. [PMID: 36945368 PMCID: PMC10028895 DOI: 10.1101/2023.03.06.531408] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/11/2023]
Abstract
Loss of cell polarity and tissue disorganization occurs in majority of epithelial cancers. Studies in simple model organisms identified molecular mechanisms responsible for the establishment and maintenance of cellular polarity, which play a pivotal role in establishing proper tissue architecture. The exact role of these cell polarity pathways in mammalian cancer is not completely understood. Here we analyzed the mammalian orthologs of drosophila apical-basal polarity gene lethal giant larvae ( lgl ), which regulates asymmetric stem cell division and functions as a tumor suppressor in flies. There are two mammalian orthologs of lgl ( Llgl1 and Llgl2 ). To determine the role of the entire lgl signaling pathway in mammals we generated mice with ablation of both Llgl1 and Llgl2 in skin epidermis using K14-Cre ( Llgl1/2 -/- cKO mice). Surprisingly, we found that ablation of Llgl1/2 genes does not impact epidermal polarity in adult mice. However, old Llgl1/2 cKO mice present with focal skin lesions which are missing epidermal layer and ripe with inflammation. To determine the role of lgl signaling pathway in cancer we generated Trp53 -/- /Llgl1/2 -/- cKO and Trp53 -/+ /Llgl1/2 -/- cKO mice. Loss of Llgl1/2 promoted squamous cell carcinoma (SCC) development in Trp53 -/- cKO and caused SCC in Trp53 -/+ cKO mice, while no cancer was observed in Trp53 -/+ cKO controls. Mechanistically, we show that ablation of Llgl1/2 causes activation of aPKC and upregulation of NF-kB signaling pathway, which may be necessary for SCC in Trp53 -/+ /Llgl1/2 -/- cKO mice. We conclude that Lgl signaling pathway functions as a tumor suppressor in mammalian skin epidermis.
Collapse
|
45
|
Beppler C, Eichorst J, Marchuk K, Cai E, Castellanos CA, Sriram V, Roybal KT, Krummel MF. Hyperstabilization of T cell microvilli contacts by chimeric antigen receptors. J Cell Biol 2023; 222:e202205118. [PMID: 36520493 PMCID: PMC9757849 DOI: 10.1083/jcb.202205118] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/25/2022] [Accepted: 11/29/2022] [Indexed: 12/23/2022] Open
Abstract
T cells typically recognize their ligands using a defined cell biology-the scanning of their membrane microvilli (MV) to palpate their environment-while that same membrane scaffolds T cell receptors (TCRs) that can signal upon ligand binding. Chimeric antigen receptors (CARs) present both a therapeutic promise and a tractable means to study the interplay between receptor affinity, MV dynamics and T cell function. CARs are often built using single-chain variable fragments (scFvs) with far greater affinity than that of natural TCRs. We used high-resolution lattice lightsheet (LLS) and total internal reflection fluorescence (TIRF) imaging to visualize MV scanning in the context of variations in CAR design. This demonstrated that conventional CARs hyper-stabilized microvillar contacts relative to TCRs. Reducing receptor affinity, antigen density, and/or multiplicity of receptor binding sites normalized microvillar dynamics and synapse resolution, and effector functions improved with reduced affinity and/or antigen density, highlighting the importance of understanding the underlying cell biology when designing receptors for optimal antigen engagement.
Collapse
Affiliation(s)
- Casey Beppler
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - John Eichorst
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - Kyle Marchuk
- Biological Imaging Development CoLab, University of California, San Francisco, San Francisco, CA, USA
| | - En Cai
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| | - Carlos A. Castellanos
- Department of Microbiology and Immunology, Sandler Asthma Basic Research Center, University of California, San Francisco, San Francisco, CA, USA
| | | | - Kole T. Roybal
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
- Helen Diller Comprehensive Cancer Center, San Francisco, CA, USA
| | - Matthew F. Krummel
- Department of Pathology and ImmunoX, University of California, San Francisco, San Francisco, CA, USA
| |
Collapse
|
46
|
Frank D, Moussi CJ, Ulferts S, Lorenzen L, Schwan C, Grosse R. Vesicle-Associated Actin Assembly by Formins Promotes TGFβ-Induced ANGPTL4 Trafficking, Secretion and Cell Invasion. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2204896. [PMID: 36691769 PMCID: PMC10037683 DOI: 10.1002/advs.202204896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 12/01/2022] [Indexed: 06/17/2023]
Abstract
Vesicle trafficking has emerged as an important process driving tumor progression through various mechanisms. Transforming growth factor beta (TGFβ)-mediated secretion of Angiopoietin-like 4 (ANGPTL4) is important for cancer development. Here, Formin-like 2 (FMNL2) is identified to be necessary for ANGPTL4 trafficking and secretion in response to TGFβ. Protein kinase C (PKC)-dependent phosphorylation of FMNL2 downstream of TGFβ stimulation is required for cancer cell invasion as well as ANGPTL4 vesicle trafficking and secretion. Moreover, using super resolution microscopy, ANGPTL4 trafficking is actin-dependent with FMNL2 directly polymerizing actin at ANGPTL4-containing vesicles, which are associated with Rab8a and myosin Vb. This work uncovers a formin-controlled mechanism that transiently polymerizes actin directly at intracellular vesicles to facilitate their mobility. This mechanism may be important for the regulation of cancer cell metastasis and tumor progression.
Collapse
Affiliation(s)
- Dennis Frank
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Christel Jessica Moussi
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Deutsche Forschungsgemeinschaft Research Training GroupMembrane Plasticity in Tissue Development and RemodelingUniversity of Marburg35037MarburgGermany
| | - Svenja Ulferts
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Lina Lorenzen
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Carsten Schwan
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
| | - Robert Grosse
- Institute of Experimental and Clinical Pharmacology and ToxicologyMedical FacultyUniversity of Freiburg79104FreiburgGermany
- Centre for Integrative Biological Signalling Studies – CIBSS79104FreiburgGermany
| |
Collapse
|
47
|
Esmaeilniakooshkghazi A, Pham E, George SP, Ahrorov A, Villagomez FR, Byington M, Mukhopadhyay S, Patnaik S, Conrad JC, Naik M, Ravi S, Tebbutt N, Mooi J, Reehorst CM, Mariadason JM, Khurana S. In colon cancer cells fascin1 regulates adherens junction remodeling. FASEB J 2023; 37:e22786. [PMID: 36786724 DOI: 10.1096/fj.202201454r] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Revised: 11/21/2022] [Accepted: 01/10/2023] [Indexed: 02/15/2023]
Abstract
Adherens junctions (AJs) are a defining feature of all epithelial cells. They regulate epithelial tissue architecture and integrity, and their dysregulation is a key step in tumor metastasis. AJ remodeling is crucial for cancer progression, and it plays a key role in tumor cell survival, growth, and dissemination. Few studies have examined AJ remodeling in cancer cells consequently, it remains poorly understood and unleveraged in the treatment of metastatic carcinomas. Fascin1 is an actin-bundling protein that is absent from the normal epithelium but its expression in colon cancer is linked to metastasis and increased mortality. Here, we provide the molecular mechanism of AJ remodeling in colon cancer cells and identify for the first time, fascin1's function in AJ remodeling. We show that in colon cancer cells fascin1 remodels junctional actin and actomyosin contractility which makes AJs less stable but more dynamic. By remodeling AJs fascin1 drives mechanoactivation of WNT/β-catenin signaling and generates "collective plasticity" which influences the behavior of cells during cell migration. The impact of mechanical inputs on WNT/β-catenin activation in cancer cells remains poorly understood. Our findings highlight the role of AJ remodeling and mechanosensitive WNT/β-catenin signaling in the growth and dissemination of colorectal carcinomas.
Collapse
Affiliation(s)
| | - Eric Pham
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Sudeep P George
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Afzal Ahrorov
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Fabian R Villagomez
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Michael Byington
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Srijita Mukhopadhyay
- Department of Biology and Biochemistry, Center for Nuclear Receptors and Cell Signaling, University of Houston, Houston, Texas, USA
| | - Srinivas Patnaik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Jacinta C Conrad
- Department of Chemical and Bimolecular Engineering, University of Houston, Houston, Texas, USA
| | - Monali Naik
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Saathvika Ravi
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - Niall Tebbutt
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Jennifer Mooi
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Camilla M Reehorst
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - John M Mariadason
- Gastrointestinal Cancers Programs, Olivia Newton-John Cancer Research Institute, and La Trobe University School of Cancer Medicine, Melbourne, Victoria, Australia
| | - Seema Khurana
- Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA.,School of Health Professions, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
48
|
TRIM40 is a pathogenic driver of inflammatory bowel disease subverting intestinal barrier integrity. Nat Commun 2023; 14:700. [PMID: 36755029 PMCID: PMC9908899 DOI: 10.1038/s41467-023-36424-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 01/30/2023] [Indexed: 02/10/2023] Open
Abstract
The cortical actin cytoskeleton plays a critical role in maintaining intestinal epithelial integrity, and the loss of this architecture leads to chronic inflammation, as seen in inflammatory bowel disease (IBD). However, the exact mechanisms underlying aberrant actin remodeling in pathological states remain largely unknown. Here, we show that a subset of patients with IBD exhibits substantially higher levels of tripartite motif-containing protein 40 (TRIM40), a gene that is hardly detectable in healthy individuals. TRIM40 is an E3 ligase that directly targets Rho-associated coiled-coil-containing protein kinase 1 (ROCK1), an essential kinase involved in promoting cell-cell junctions, markedly decreasing the phosphorylation of key signaling factors critical for cortical actin formation and stabilization. This causes failure of the epithelial barrier function, thereby promoting a long-lived inflammatory response. A mutant TRIM40 lacking the RING, B-box, or C-terminal domains has impaired ability to accelerate ROCK1 degradation-driven cortical actin disruption. Accordingly, Trim40-deficient male mice are highly resistant to dextran sulfate sodium (DSS)-induced colitis. Our findings highlight that aberrant upregulation of TRIM40, which is epigenetically silenced under healthy conditions, drives IBD by subverting cortical actin formation and exacerbating epithelial barrier dysfunction.
Collapse
|
49
|
Zhou M, Ma Y, Chiang CC, Rock EC, Luker KE, Luker GD, Chen YC. High-Throughput Cellular Heterogeneity Analysis in Cell Migration at the Single-Cell Level. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206754. [PMID: 36449634 PMCID: PMC9908848 DOI: 10.1002/smll.202206754] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Indexed: 06/17/2023]
Abstract
Cancer cell migration represents an essential step toward metastasis and cancer deaths. However, conventional drug discovery focuses on cytotoxic and growth-inhibiting compounds rather than inhibitors of migration. Drug screening assays generally measure the average response of many cells, masking distinct cell populations that drive metastasis and resist treatments. Here, this work presents a high-throughput microfluidic cell migration platform that coordinates robotic liquid handling and computer vision for rapidly quantifying individual cellular motility. Using this innovative technology, 172 compounds were tested and a surprisingly low correlation between migration and growth inhibition was found. Notably, many compounds were found to inhibit migration of most cells while leaving fast-moving subpopulations unaffected. This work further pinpoints synergistic drug combinations, including Bortezomib and Danirixin, to stop fast-moving cells. To explain the observed cell behaviors, single-cell morphological and molecular analysis were performed. These studies establish a novel technology to identify promising migration inhibitors for cancer treatment and relevant applications.
Collapse
Affiliation(s)
- Mengli Zhou
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Xiangya Hospital, Central South University, Changsha, Hunan, 410008, China
| | - Yushu Ma
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Chun-Cheng Chiang
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| | - Edwin C. Rock
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
| | - Kathryn E. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
| | - Gary D. Luker
- Center for Molecular Imaging, Department of Radiology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Microbiology and Immunology, University of Michigan, 109 Zina Pitcher Place, Ann Arbor, MI 48109-2200, USA
- Department of Biomedical Engineering, University of Michigan, 2200 Bonisteel, Blvd. Ann Arbor, MI 48109-2099, USA
| | - Yu-Chih Chen
- UPMC Hillman Cancer Center, University of Pittsburgh, 5115 Centre Ave, Pittsburgh, PA 15232, USA
- Department of Computational and Systems Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
- Department of Bioengineering, Swanson School of Engineering, University of Pittsburgh, 3700 O’Hara Street, Pittsburgh, PA 15260, USA
- CMU-Pitt Ph.D. Program in Computational Biology, University of Pittsburgh, 3420 Forbes Avenue, Pittsburgh, PA 15260, USA
| |
Collapse
|
50
|
Rosa JB, Nassman KY, Sagasti A. Sensory axons induce epithelial lipid microdomain remodeling and determine the distribution of junctions in the epidermis. Mol Biol Cell 2023; 34:ar5. [PMID: 36322392 PMCID: PMC9816649 DOI: 10.1091/mbc.e22-09-0396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 12/23/2022] Open
Abstract
Epithelial cell properties are determined by the polarized distribution of membrane lipids, the cytoskeleton, and adhesive junctions. Epithelia are often profusely innervated, but little work has addressed how neurites affect epithelial organization. We previously found that basal keratinocytes in the zebrafish epidermis enclose axons in ensheathment channels sealed by autotypic junctions. Here we characterized how axons remodel cell membranes, the cytoskeleton, and junctions in basal keratinocytes. At the apical surface of basal keratinocytes, axons organized lipid microdomains quantitatively enriched in reporters for PI(4,5)P2 and liquid-ordered (Lo) membranes. Lipid microdomains supported the formation of cadherin-enriched, F-actin protrusions, which wrapped around axons, likely initiating ensheathment. In the absence of axons, cadherin-enriched microdomains formed on basal cells but did not organize into contiguous domains. Instead, these isolated domains formed heterotypic junctions with periderm cells, a distinct epithelial cell type. Thus, axon endings dramatically remodel polarized epithelial components and regulate epidermal adhesion.
Collapse
Affiliation(s)
- Jeffrey B. Rosa
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Khaled Y. Nassman
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| | - Alvaro Sagasti
- Department of Molecular, Cell and Developmental Biology and Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
| |
Collapse
|