1
|
Liu H, Zhuo C, Gao J, Zeng C, Zhao Y. AI-integrated network for RNA complex structure and dynamic prediction. BIOPHYSICS REVIEWS 2024; 5:041304. [PMID: 39512332 PMCID: PMC11540444 DOI: 10.1063/5.0237319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/15/2024] [Indexed: 11/15/2024]
Abstract
RNA complexes are essential components in many cellular processes. The functions of these complexes are linked to their tertiary structures, which are shaped by detailed interface information, such as binding sites, interface contact, and dynamic conformational changes. Network-based approaches have been widely used to analyze RNA complex structures. With their roots in the graph theory, these methods have a long history of providing insight into the static and dynamic properties of RNA molecules. These approaches have been effective in identifying functional binding sites and analyzing the dynamic behavior of RNA complexes. Recently, the advent of artificial intelligence (AI) has brought transformative changes to the field. These technologies have been increasingly applied to studying RNA complex structures, providing new avenues for understanding the complex interactions within RNA complexes. By integrating AI with traditional network analysis methods, researchers can build more accurate models of RNA complex structures, predict their dynamic behaviors, and even design RNA-based inhibitors. In this review, we introduce the integration of network-based methodologies with AI techniques to enhance the understanding of RNA complex structures. We examine how these advanced computational tools can be used to model and analyze the detailed interface information and dynamic behaviors of RNA molecules. Additionally, we explore the potential future directions of how AI-integrated networks can aid in the modeling and analyzing RNA complex structures.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chen Zhuo
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Jiaming Gao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Chengwei Zeng
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan 430079, China
| |
Collapse
|
2
|
Paul JW, Muratcioğlu S, Kuriyan J. A fluorescence-based sensor for calibrated measurement of protein kinase stability in live cells. Protein Sci 2024; 33:e5023. [PMID: 38801214 PMCID: PMC11129626 DOI: 10.1002/pro.5023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/22/2024] [Accepted: 05/02/2024] [Indexed: 05/29/2024]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of signaling proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We determine the expression levels of protein kinases by monitoring the fluorescence of fluorescent proteins fused to those kinases, normalized to that of co-expressed reference fluorescent proteins. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 and Src-homology 3 domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell BiologyUniversity of CaliforniaBerkeleyCaliforniaUSA
- California Institute for Quantitative Bioscience (QB3)University of CaliforniaBerkeleyCaliforniaUSA
| | - Serena Muratcioğlu
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
| | - John Kuriyan
- Department of BiochemistryVanderbilt University School of MedicineNashvilleTennesseeUSA
- Department of ChemistryVanderbilt UniversityNashvilleTennesseeUSA
| |
Collapse
|
3
|
Moon DO. Deciphering the Role of BCAR3 in Cancer Progression: Gene Regulation, Signal Transduction, and Therapeutic Implications. Cancers (Basel) 2024; 16:1674. [PMID: 38730626 PMCID: PMC11083344 DOI: 10.3390/cancers16091674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 04/24/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
This review comprehensively explores the gene BCAR3, detailing its regulation at the gene, mRNA, and protein structure levels, and delineating its multifunctional roles in cellular signaling within cancer contexts. The discussion covers BCAR3's involvement in integrin signaling and its impact on cancer cell migration, its capability to induce anti-estrogen resistance, and its significant functions in cell cycle regulation. Further highlighted is BCAR3's modulation of immune responses within the tumor microenvironment, a novel area of interest that holds potential for innovative cancer therapies. Looking forward, this review outlines essential future research directions focusing on transcription factor binding studies, isoform-specific expression profiling, therapeutic targeting of BCAR3, and its role in immune cell function. Each segment builds towards a holistic understanding of BCAR3's operational mechanisms, presenting a critical evaluation of its therapeutic potential in oncology. This synthesis aims to not only extend current knowledge but also catalyze further research that could pivotally influence the development of targeted cancer treatments.
Collapse
Affiliation(s)
- Dong Oh Moon
- Department of Biology Education, Daegu University, 201 Daegudae-ro, Gyeongsan-si 38453, Gyeongsangbuk-do, Republic of Korea
| |
Collapse
|
4
|
Chen L, Qian Z, Zheng Y, Zhang J, Sun J, Zhou C, Xiao H. Structural analysis of PTPN21 reveals a dominant-negative effect of the FERM domain on its phosphatase activity. SCIENCE ADVANCES 2024; 10:eadi7404. [PMID: 38416831 PMCID: PMC10901363 DOI: 10.1126/sciadv.adi7404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 01/24/2024] [Indexed: 03/01/2024]
Abstract
PTPN21 belongs to the four-point-one, ezrin, radixin, moesin (FERM) domain-containing protein tyrosine phosphatases (PTP) and plays important roles in cytoskeleton-associated cellular processes like cell adhesion, motility, and cargo transport. Because of the presence of a WPE loop instead of a WPD loop in the phosphatase domain, it is often considered to lack phosphatase activity. However, many of PTPN21's biological functions require its catalytic activity. To reconcile these findings, we have determined the structures of individual PTPN21 FERM, PTP domains, and a complex between FERM-PTP. Combined with biochemical analysis, we have found that PTPN21 PTP is weakly active and is autoinhibited by association with its FERM domain. Disruption of FERM-PTP interaction results in enhanced ERK activation. The oncogenic HPV18 E7 protein binds to PTP at the same location as PTPN21 FERM, indicating that it may act by displacing the FERM domain from PTP. Our results provide mechanistic insight into PTPN21 and benefit functional studies of PTPN21-mediated processes.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Zijun Qian
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Yuyuan Zheng
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Jie Zhang
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| | - Jie Sun
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Chun Zhou
- Department of Pathology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
- School of Public Health, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310058, China
| | - Haowen Xiao
- Department of Hematology of Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310016, China
| |
Collapse
|
5
|
Nam K, Shao Y, Major DT, Wolf-Watz M. Perspectives on Computational Enzyme Modeling: From Mechanisms to Design and Drug Development. ACS OMEGA 2024; 9:7393-7412. [PMID: 38405524 PMCID: PMC10883025 DOI: 10.1021/acsomega.3c09084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/27/2024]
Abstract
Understanding enzyme mechanisms is essential for unraveling the complex molecular machinery of life. In this review, we survey the field of computational enzymology, highlighting key principles governing enzyme mechanisms and discussing ongoing challenges and promising advances. Over the years, computer simulations have become indispensable in the study of enzyme mechanisms, with the integration of experimental and computational exploration now established as a holistic approach to gain deep insights into enzymatic catalysis. Numerous studies have demonstrated the power of computer simulations in characterizing reaction pathways, transition states, substrate selectivity, product distribution, and dynamic conformational changes for various enzymes. Nevertheless, significant challenges remain in investigating the mechanisms of complex multistep reactions, large-scale conformational changes, and allosteric regulation. Beyond mechanistic studies, computational enzyme modeling has emerged as an essential tool for computer-aided enzyme design and the rational discovery of covalent drugs for targeted therapies. Overall, enzyme design/engineering and covalent drug development can greatly benefit from our understanding of the detailed mechanisms of enzymes, such as protein dynamics, entropy contributions, and allostery, as revealed by computational studies. Such a convergence of different research approaches is expected to continue, creating synergies in enzyme research. This review, by outlining the ever-expanding field of enzyme research, aims to provide guidance for future research directions and facilitate new developments in this important and evolving field.
Collapse
Affiliation(s)
- Kwangho Nam
- Department
of Chemistry and Biochemistry, University
of Texas at Arlington, Arlington, Texas 76019, United States
| | - Yihan Shao
- Department
of Chemistry and Biochemistry, University
of Oklahoma, Norman, Oklahoma 73019-5251, United States
| | - Dan T. Major
- Department
of Chemistry and Institute for Nanotechnology & Advanced Materials, Bar-Ilan University, Ramat-Gan 52900, Israel
| | | |
Collapse
|
6
|
El-Tanani M, Nsairat H, Matalka II, Lee YF, Rizzo M, Aljabali AA, Mishra V, Mishra Y, Hromić-Jahjefendić A, Tambuwala MM. The impact of the BCR-ABL oncogene in the pathology and treatment of chronic myeloid leukemia. Pathol Res Pract 2024; 254:155161. [PMID: 38280275 DOI: 10.1016/j.prp.2024.155161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 01/16/2024] [Accepted: 01/18/2024] [Indexed: 01/29/2024]
Abstract
Chronic Myeloid Leukemia (CML) is characterized by chromosomal aberrations involving the fusion of the BCR and ABL genes on chromosome 22, resulting from a reciprocal translocation between chromosomes 9 and 22. This fusion gives rise to the oncogenic BCR-ABL, an aberrant tyrosine kinase identified as Abl protein. The Abl protein intricately regulates the cell cycle by phosphorylating protein tyrosine residues through diverse signaling pathways. In CML, the BCR-ABL fusion protein disrupts the first exon of Abl, leading to sustained activation of tyrosine kinase and resistance to deactivation mechanisms. Pharmacological interventions, such as imatinib, effectively target BCR-ABL's tyrosine kinase activity by binding near the active site, disrupting ATP binding, and inhibiting downstream protein phosphorylation. Nevertheless, the emergence of resistance, often attributed to cap structure mutations, poses a challenge to imatinib efficacy. Current research endeavours are directed towards overcoming resistance and investigating innovative therapeutic strategies. This article offers a comprehensive analysis of the structural attributes of BCR-ABL, emphasizing its pivotal role as a biomarker and therapeutic target in CML. It underscores the imperative for ongoing research to refine treatment modalities and enhance overall outcomes in managing CML.
Collapse
MESH Headings
- Humans
- Imatinib Mesylate/therapeutic use
- Imatinib Mesylate/pharmacology
- Genes, abl
- Pyrimidines/therapeutic use
- Piperazines/therapeutic use
- Benzamides/pharmacology
- Benzamides/therapeutic use
- Drug Resistance, Neoplasm/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/genetics
- Leukemia, Myelogenous, Chronic, BCR-ABL Positive/metabolism
- Fusion Proteins, bcr-abl/genetics
- Fusion Proteins, bcr-abl/metabolism
- Fusion Proteins, bcr-abl/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Protein Kinase Inhibitors/pharmacology
Collapse
Affiliation(s)
- Mohamed El-Tanani
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan.
| | - Hamdi Nsairat
- Pharmacological and Diagnostic Research Center, Faculty of Pharmacy, Al-Ahliyya Amman University, Amman 19328, Jordan
| | - Ismail I Matalka
- Ras Al Khaimah Medical and Health Sciences University, United Arab Emirates; Department of Pathology and Microbiology, Faculty of Medicine, Jordan University of Science and Technology, Irbid 22110, Jordan
| | - Yin Fai Lee
- Neuroscience, Psychology & Behaviour, College of Life Sciences, University of Leicester, Leicester LE1 9HN, UK; School of Life Sciences, Faculty of Science and Engineering, Anglia Ruskin University, Cambridge CB1 1PT, UK
| | - Manfredi Rizzo
- Department of Health Promotion, Mother and Childcare, Internal Medicine and Medical Specialties, School of Medicine, University of Palermo, Palermo, Italy
| | - Alaa A Aljabali
- Department of Pharmaceutics and Pharmaceutical Technology, Yarmouk University, Irbid 21163, Jordan
| | - Vijay Mishra
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Yachana Mishra
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Altijana Hromić-Jahjefendić
- Department of Genetics and Bioengineering, Faculty of Engineering and Natural Sciences, International University of Sarajevo, Hrasnicka cesta 15, Sarajevo 71000, Bosnia and Herzegovina
| | - Murtaza M Tambuwala
- College of Pharmacy, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah, United Arab Emirates; Lincoln Medical School, University of Lincoln, Brayford Pool Campus, Lincoln LN6 7TS, UK.
| |
Collapse
|
7
|
Paul JW, Muratcioğlu S, Kuriyan J. A Fluorescence-Based Sensor for Calibrated Measurement of Protein Kinase Stability in Live Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.07.570636. [PMID: 38106090 PMCID: PMC10723428 DOI: 10.1101/2023.12.07.570636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Oncogenic mutations can destabilize signaling proteins, resulting in increased or unregulated activity. Thus, there is considerable interest in mapping the relationship between mutations and the stability of proteins, to better understand the consequences of oncogenic mutations and potentially inform the development of new therapeutics. Here, we develop a tool to study protein-kinase stability in live mammalian cells and the effects of the HSP90 chaperone system on the stability of these kinases. We monitor the fluorescence of kinases fused to a fluorescent protein relative to that of a co-expressed reference fluorescent protein. We used this tool to study the dependence of Src- and Raf-family kinases on the HSP90 system. We demonstrate that this sensor reports on destabilization induced by oncogenic mutations in these kinases. We also show that Src-homology 2 (SH2) and Src-homology 3 (SH3) domains, which are required for autoinhibition of Src-family kinases, stabilize these kinase domains in the cell. Our expression-calibrated sensor enables the facile characterization of the effects of mutations and small-molecule drugs on protein-kinase stability.
Collapse
Affiliation(s)
- Joseph W. Paul
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720 USA
- California Institute for Quantitative Bioscience (QB3), University of California, Berkeley, CA, 94720 USA
| | - Serena Muratcioğlu
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
| | - John Kuriyan
- Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN, 37232 USA
- Department of Chemistry, Vanderbilt University, Nashville, TN, 37240 USA
| |
Collapse
|
8
|
Liu H, Jian Y, Hou J, Zeng C, Zhao Y. RNet: a network strategy to predict RNA binding preferences. Brief Bioinform 2023; 25:bbad482. [PMID: 38145947 PMCID: PMC10749790 DOI: 10.1093/bib/bbad482] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/27/2023] Open
Abstract
Determining the RNA binding preferences remains challenging because of the bottleneck of the binding interactions accompanied by subtle RNA flexibility. Typically, designing RNA inhibitors involves screening thousands of potential candidates for binding. Accurate binding site information can increase the number of successful hits even with few candidates. There are two main issues regarding RNA binding preference: binding site prediction and binding dynamical behavior prediction. Here, we propose one interpretable network-based approach, RNet, to acquire precise binding site and binding dynamical behavior information. RNetsite employs a machine learning-based network decomposition algorithm to predict RNA binding sites by analyzing the local and global network properties. Our research focuses on large RNAs with 3D structures without considering smaller regulatory RNAs, which are too small and dynamic. Our study shows that RNetsite outperforms existing methods, achieving precision values as high as 0.701 on TE18 and 0.788 on RB9 tests. In addition, RNetsite demonstrates remarkable robustness regarding perturbations in RNA structures. We also developed RNetdyn, a distance-based dynamical graph algorithm, to characterize the interface dynamical behavior consequences upon inhibitor binding. The simulation testing of competitive inhibitors indicates that RNetdyn outperforms the traditional method by 30%. The benchmark testing results demonstrate that RNet is highly accurate and robust. Our interpretable network algorithms can assist in predicting RNA binding preferences and accelerating RNA inhibitor design, providing valuable insights to the RNA research community.
Collapse
Affiliation(s)
- Haoquan Liu
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| | - Yiren Jian
- Department of Computer Science, Dartmouth College, Hanover, NH 03755, USA
| | - Jinxuan Hou
- Department of Thyroid and Breast Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Chen Zeng
- Department of Physics, The George Washington University, Washington, DC 20052, USA
| | - Yunjie Zhao
- Institute of Biophysics and Department of Physics, Central China Normal University, Wuhan, 430079, China
| |
Collapse
|
9
|
Rahimi M, Taghdir M, Abasi Joozdani F. Dynamozones are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease. Sci Rep 2023; 13:14179. [PMID: 37648682 PMCID: PMC10469195 DOI: 10.1038/s41598-023-40818-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 08/17/2023] [Indexed: 09/01/2023] Open
Abstract
Proteins are not static but are flexible molecules that can adopt many different conformations. The HIV-1 protease is an important target for the development of therapies to treat AIDS, due to its critical role in the viral life cycle. We investigated several dynamics studies on the HIV-1 protease families to illustrate the significance of examining the dynamic behaviors and molecular motions for an entire understanding of their dynamics-structure-function relationships. Using computer simulations and principal component analysis approaches, the dynamics data obtained revealed that: (i) The flap regions are the most obvious sign of the evolution of conformational dynamics in HIV-1 protease; (ii) There are dynamic structural regions in some proteins that contribute to the biological function and allostery of proteins via appropriate flexibility. These regions are a clear sign of the evolution of conformational dynamics of proteins, which we call dynamozones. The flap regions are one of the most important dynamozones members that are critical for HIV-1 protease function. Due to the existence of other members of dynamozones in different proteins, we propose to consider dynamozones as a footprint of the evolution of the conformational dynamics of proteins.
Collapse
Affiliation(s)
- Mohammad Rahimi
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran
| | - Majid Taghdir
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran.
| | - Farzane Abasi Joozdani
- Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115_111, Iran
| |
Collapse
|
10
|
Maldonado H, Leyton L. CSK-mediated signalling by integrins in cancer. Front Cell Dev Biol 2023; 11:1214787. [PMID: 37519303 PMCID: PMC10382208 DOI: 10.3389/fcell.2023.1214787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/19/2023] [Indexed: 08/01/2023] Open
Abstract
Cancer progression and metastasis are processes heavily controlled by the integrin receptor family. Integrins are cell adhesion molecules that constitute the central components of mechanosensing complexes called focal adhesions, which connect the extracellular environment with the cell interior. Focal adhesions act as key players in cancer progression by regulating biological processes, such as cell migration, invasion, proliferation, and survival. Src family kinases (SFKs) can interplay with integrins and their downstream effectors. SFKs also integrate extracellular cues sensed by integrins and growth factor receptors (GFR), transducing them to coordinate metastasis and cell survival in cancer. The non-receptor tyrosine kinase CSK is a well-known SFK member that suppresses SFK activity by phosphorylating its specific negative regulatory loop (C-terminal Y527 residue). Consequently, CSK may play a pivotal role in tumour progression and suppression by inhibiting SFK oncogenic effects in several cancer types. Remarkably, CSK can localise near focal adhesions when SFKs are activated and even interact with focal adhesion components, such as phosphorylated FAK and Paxillin, among others, suggesting that CSK may regulate focal adhesion dynamics and structure. Even though SFK oncogenic signalling has been extensively described before, the specific role of CSK and its crosstalk with integrins in cancer progression, for example, in mechanosensing, remain veiled. Here, we review how CSK, by regulating SFKs, can regulate integrin signalling, and focus on recent discoveries of mechanotransduction. We additionally examine the cross talk of integrins and GFR as well as the membrane availability of these receptors in cancer. We also explore new pharmaceutical approaches to these signalling pathways and analyse them as future therapeutic targets.
Collapse
Affiliation(s)
- Horacio Maldonado
- Receptor Dynamics in Cancer Laboratory, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| | - Lisette Leyton
- Cellular Communication Laboratory, Programa de Biología Celular y Molecular, Center for Studies on Exercise, Metabolism and Cancer (CEMC), Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Santiago, Chile
- Advanced Center for Chronic Diseases (ACCDiS), Faculty of Chemical and Pharmaceutical Sciences and Faculty of Medicine, Universidad de Chile, Santiago, Chile
| |
Collapse
|
11
|
Nguyen V, Ahler E, Sitko KA, Stephany JJ, Maly DJ, Fowler DM. Molecular determinants of Hsp90 dependence of Src kinase revealed by deep mutational scanning. Protein Sci 2023; 32:e4656. [PMID: 37167432 PMCID: PMC10273359 DOI: 10.1002/pro.4656] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 05/05/2023] [Accepted: 05/10/2023] [Indexed: 05/13/2023]
Abstract
Hsp90 is a molecular chaperone involved in the refolding and activation of numerous protein substrates referred to as clients. While the molecular determinants of Hsp90 client specificity are poorly understood and limited to a handful of client proteins, strong clients are thought to be destabilized and conformationally extended. Here, we measured the phosphotransferase activity of 3929 variants of the tyrosine kinase Src in both the presence and absence of an Hsp90 inhibitor. We identified 84 previously unknown functionally dependent client variants. Unexpectedly, many destabilized or extended variants were not functionally dependent on Hsp90. Instead, functionally dependent client variants were clustered in the αF pocket and β1-β2 strand regions of Src, which have yet to be described in driving Hsp90 dependence. Hsp90 dependence was also strongly correlated with kinase activity. We found that a combination of activation, global extension, and general conformational flexibility, primarily induced by variants at the αF pocket and β1-β2 strands, was necessary to render Src functionally dependent on Hsp90. Moreover, the degree of activation and flexibility required to transform Src into a functionally dependent client varied with variant location, suggesting that a combination of regulatory domain disengagement and catalytic domain flexibility are required for chaperone dependence. Thus, by studying the chaperone dependence of a massive number of variants, we highlight factors driving Hsp90 client specificity and propose a model of chaperone-kinase interactions.
Collapse
Affiliation(s)
- Vanessa Nguyen
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
| | - Ethan Ahler
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Katherine A. Sitko
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Jason J. Stephany
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| | - Dustin J. Maly
- Department of ChemistryUniversity of WashingtonSeattleWashingtonUSA
| | - Douglas M. Fowler
- Department of BioengineeringUniversity of WashingtonSeattleWashingtonUSA
- Department of Genome SciencesUniversity of WashingtonSeattleWashingtonUSA
| |
Collapse
|
12
|
Wang X, Wang B, Li F, Li X, Guo T, Gao Y, Wang D, Huang W. The c-Src/LIST Positive Feedback Loop Sustains Tumor Progression and Chemoresistance. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2300115. [PMID: 37156751 PMCID: PMC10369257 DOI: 10.1002/advs.202300115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/03/2023] [Indexed: 05/10/2023]
Abstract
Chemotherapy resistance and treatment failure hinder clinical cancer treatment. Src, the first mammalian proto-oncogene to be discovered, is a valuable anti-cancer therapeutic target. Although several c-Src inhibitors have reached the clinical stage, drug resistance remains a challenge during treatment. Herein, a positive feedback loop between a previously uncharacterized long non-coding RNA (lncRNA), which the authors renamed lncRNA-inducing c-Src tumor-promoting function (LIST), and c-Src is uncovered. LIST directly binds to and regulates the Y530 phosphorylation activity of c-Src. As a c-Src agonist, LIST promotes tumor chemoresistance and progression in vitro and in vivo in multiple cancer types. c-Src can positively regulate LIST transcription by activating the NF-κB signaling pathway and then recruiting the P65 transcription factor to the LIST promoter. Interestingly, the LIST/c-Src interaction is associated with evolutionary new variations of c-Src. It is proposed that the human-specific LIST/c-Src axis renders an extra layer of control over c-Src activity. Additionally, the LIST/c-Src axis is of high physiological relevance in cancer and may be a valuable prognostic biomarker and potential therapeutic target.
Collapse
Affiliation(s)
- Xianteng Wang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Bing Wang
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Fang Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
| | - Xingkai Li
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Ting Guo
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| | - Yushun Gao
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijing100021China
- Department of Thoracic SurgeryNational Cancer Center/National Clinical Research Center for Cancer/Hebei Cancer HospitalChinese Academy of Medical SciencesLangfang065001China
| | - Dawei Wang
- Department of Thoracic SurgeryChifeng Municipal HospitalChifeng024000China
| | - Weiren Huang
- Department of UrologyShenzhen Institute of Translational MedicineShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityGuangdong Key Laboratory for Biomedical Measurements and Ultrasound ImagingNational‐Regional Key Technology Engineering Laboratory for Medical UltrasoundSchool of Biomedical EngineeringShenzhen University Medical schoolShenzhen518060China
- Shenzhen Institute of Synthetic BiologyShenzhen Institutes of Advanced TechnologyChinese Academy of SciencesShenzhen518055China
- Guangdong Key Laboratory of Systems Biology and Synthetic Biology for Urogenital TumorsShenzhen Second People's HospitalThe First Affiliated Hospital of Shenzhen UniversityShenzhen518035China
| |
Collapse
|
13
|
Gul M, Navid A, Rashid S. Structural basis of constitutive c-Src kinase activity due to R175L and W118A mutations. J Biomol Struct Dyn 2023; 41:634-645. [PMID: 34854354 DOI: 10.1080/07391102.2021.2010600] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Cellular Src (c-Src) belongs to a non-receptor membrane-associated tyrosine kinase family that plays essential roles in cellular processes. Growing evidence suggests that R175L and W118A mutations in SH2/SH3 domains of c-Src functionally inactivate these domains leading to constitutive activation of kinase domain (KD). Here we modeled c-SrcR175L, c-SrcW118A and c-SrcW118A+R175L structures by inducing phosphorylation at Y416 or Y527, respectively to characterize the comparative dynamics in the active versus inactive states through molecular dynamics simulation assay. We observed more conformational readjustments in c-Srcopen than its close variants. In particular, C-terminal tail residues of c-SrcW118A-open and c-SrcW118A+R175L-open demonstrate significantly higher transitions. The cross-correlation analysis revealed an anticorrelation behavior in the motion of KD with respect to SH2, SH3 and the linker region of SrcW118A+R175L-open, while in c-SrcWT-open, SH2 and SH3 domains were anticorrelated, while KD and C-terminal tail motions were correlated. Due to these conformational differences, c-Src open forms exhibited lower interaction between pY527 and SH2 domain. Through detailed structural analysis, we observed a uniform myristate binding cavity in c-SrcWT-open, while the myristoyl pockets of mutant forms were deformed. We propose that constitutive activation of mutant Src forms may presumably be achieved by the prolonged membrane binding due to unusual conformations of C-terminal and myristoyl switch residues that may result in a higher dephosphorylation rate at pY527 in the myristoylated c-Src. Thus, our study establishes novel clues to decipher the constitutive activation status of c-Src in response to known mutations that may help in devising novel therapeutic strategies for cancer metastasis treatment.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mehreen Gul
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Ahmad Navid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| | - Sajid Rashid
- National Center for Bioinformatics, Quaid-i-Azam University, Islamabad, Pakistan
| |
Collapse
|
14
|
Fyn nanoclustering requires switching to an open conformation and is enhanced by FTLD-Tau biomolecular condensates. Mol Psychiatry 2023; 28:946-962. [PMID: 36258016 PMCID: PMC9908554 DOI: 10.1038/s41380-022-01825-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/08/2022]
Abstract
Fyn is a Src kinase that controls critical signalling cascades and has been implicated in learning and memory. Postsynaptic enrichment of Fyn underpins synaptotoxicity in dementias such as Alzheimer's disease and frontotemporal lobar degeneration with Tau pathology (FTLD-Tau). The FLTD P301L mutant Tau is associated with a higher propensity to undergo liquid-liquid phase separation (LLPS) and form biomolecular condensates. Expression of P301L mutant Tau promotes aberrant trapping of Fyn in nanoclusters within hippocampal dendrites by an unknown mechanism. Here, we used single-particle tracking photoactivated localisation microscopy to demonstrate that the opening of Fyn into its primed conformation promotes its nanoclustering in dendrites leading to increased Fyn/ERK/S6 downstream signalling. Preventing the auto-inhibitory closed conformation of Fyn through phospho-inhibition or through perturbation of its SH3 domain increased Fyn's nanoscale trapping, whereas inhibition of the catalytic domain had no impact. By combining pharmacological and genetic approaches, we demonstrate that P301L Tau enhanced both Fyn nanoclustering and Fyn/ERK/S6 signalling via its ability to form biomolecular condensates. Together, our findings demonstrate that Fyn alternates between a closed and an open conformation, the latter being enzymatically active and clustered. Furthermore, pathogenic immobilisation of Fyn relies on the ability of P301L Tau to form biomolecular condensates, thus highlighting the critical importance of LLPS in controlling nanoclustering and downstream intracellular signalling events.
Collapse
|
15
|
Weigle AT, Feng J, Shukla D. Thirty years of molecular dynamics simulations on posttranslational modifications of proteins. Phys Chem Chem Phys 2022; 24:26371-26397. [PMID: 36285789 PMCID: PMC9704509 DOI: 10.1039/d2cp02883b] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2023]
Abstract
Posttranslational modifications (PTMs) are an integral component to how cells respond to perturbation. While experimental advances have enabled improved PTM identification capabilities, the same throughput for characterizing how structural changes caused by PTMs equate to altered physiological function has not been maintained. In this Perspective, we cover the history of computational modeling and molecular dynamics simulations which have characterized the structural implications of PTMs. We distinguish results from different molecular dynamics studies based upon the timescales simulated and analysis approaches used for PTM characterization. Lastly, we offer insights into how opportunities for modern research efforts on in silico PTM characterization may proceed given current state-of-the-art computing capabilities and methodological advancements.
Collapse
Affiliation(s)
- Austin T Weigle
- Department of Chemistry, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Jiangyan Feng
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | - Diwakar Shukla
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Center for Biophysics and Quantitative Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA.
| |
Collapse
|
16
|
Protein Tyrosine Kinase 6 regulates activation of SRC kinase. J Biol Chem 2022; 298:102584. [DOI: 10.1016/j.jbc.2022.102584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 09/23/2022] [Accepted: 09/25/2022] [Indexed: 11/07/2022] Open
|
17
|
Bilbrough T, Piemontese E, Seitz O. Dissecting the role of protein phosphorylation: a chemical biology toolbox. Chem Soc Rev 2022; 51:5691-5730. [PMID: 35726784 DOI: 10.1039/d1cs00991e] [Citation(s) in RCA: 112] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Protein phosphorylation is a crucial regulator of protein and cellular function, yet, despite identifying an enormous number of phosphorylation sites, the role of most is still unclear. Each phosphoform, the particular combination of phosphorylations, of a protein has distinct and diverse biological consequences. Aberrant phosphorylation is implicated in the development of many diseases. To investigate their function, access to defined protein phosphoforms is essential. Materials obtained from cells often are complex mixtures. Recombinant methods can provide access to defined phosphoforms if site-specifically acting kinases are known, but the methods fail to provide homogenous material when several amino acid side chains compete for phosphorylation. Chemical and chemoenzymatic synthesis has provided an invaluable toolbox to enable access to previously unreachable phosphoforms of proteins. In this review, we selected important tools that enable access to homogeneously phosphorylated protein and discuss examples that demonstrate how they can be applied. Firstly, we discuss the synthesis of phosphopeptides and proteins through chemical and enzymatic means and their advantages and limitations. Secondly, we showcase illustrative examples that applied these tools to answer biological questions pertaining to proteins involved in signal transduction, control of transcription, neurodegenerative diseases and aggregation, apoptosis and autophagy, and transmembrane proteins. We discuss the opportunities and challenges in the field.
Collapse
Affiliation(s)
- Tim Bilbrough
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Emanuele Piemontese
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| | - Oliver Seitz
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489 Berlin, Germany.
| |
Collapse
|
18
|
Wan J, Zhao X, Liu J, Chen K, Li C. Src kinase mediates coelomocytes phagocytosis via interacting with focal adhesion kinase in Vibrio splendidus challenged Apostichopus japonicus. FISH & SHELLFISH IMMUNOLOGY 2022; 124:411-420. [PMID: 35462003 DOI: 10.1016/j.fsi.2022.04.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Immune cells have many efficient ways to participate in the host immunity, including phagocytosis, which is an important pathway to eliminate pathogens. Only β-integrin-mediated phagocytosis pathways have been confirmed in Apostichopus japonicus. The Src family kinases (SFKs), a class of non-receptor tyrosine kinases plays an important role in the regulation of phagocytic signals in invertebrates. However, the SFK-mediated phagocytic mechanism is largely unknown in A. japonicus. In this study, a novel SFK homologue (AjSrc) with a conservative SH3 domain, an SH2 domain, and a tyrosine kinase domain was identified from A. japonicus. Both gene and protein expression of AjSrc and phosphorylation levels increased under Vibrio splendidus challenged, reaching the highest level at 24 h. Knock-down of AjSrc could depress coelomocytes' phagocytosis by 25% compared to the control group. To better understand the mechanism of AjSrc-mediated phagocytosis, focal adhesion kinase (FAK) was identified by a Co-immunoprecipitation experiment to be verified as an interactive protein of AjSrc. The phagocytosis rates of coelomocytes were decreased by 33% and 37% in AjFAK and AjSrc + AjFAK interference groups compared with the control group, respectively. Furthermore, the phosphorylation level of AjFAK was increased and reached the maximum level at 24 h post V. splendidus infection, as the same as that of AjSrc. Our results suggested that AjSrc could mediate V. splendidus-induced coelomocytes' phagocytosis via interacting with AjFAK and co-phosphorylation. This study enriched the mechanism of phagocytosis in echinoderm and provided the new theoretical foundation for disease control of sea cucumber.
Collapse
Affiliation(s)
- Junjie Wan
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Xuelin Zhao
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| | - Jiqing Liu
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Kaiyu Chen
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China
| | - Chenghua Li
- State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo, 315211, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, PR China; State-Province Joint Laboratory of Marine Biotechnology and Engineering, Ningbo University, Ningbo, 315211, PR China.
| |
Collapse
|
19
|
Kato G. Regulatory Roles of the N-Terminal Intrinsically Disordered Region of Modular Src. Int J Mol Sci 2022; 23:2241. [PMID: 35216357 PMCID: PMC8874404 DOI: 10.3390/ijms23042241] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/15/2022] [Accepted: 02/15/2022] [Indexed: 11/17/2022] Open
Abstract
Src, the prototype of Src family kinases (SFKs), is a modular protein consisting of SH4 (SH4) and unique (UD) domains in an N-terminal intrinsically disordered region (IDR), and SH3, SH2, and kinase (KD) folded domains conserved among SFKs. Src functions as a pleiotropic signaling hub in proliferating and post-mitotic cells, and it is related to cancer and neurological diseases. However, its regulatory mechanism is unclear because the existing canonical model is derived from crystallographic analyses of folded constructs lacking the IDR. This work reviews nuclear magnetic resonance analyses of partially structured lipid-binding segments in the flexible UD and the fuzzy intramolecular complex (FIMC) comprising IDR and SH3 domains, which interacts with lipid membranes and proteins. Furthermore, recently determined IDR-related Src characteristics are discussed, including dimerization, SH4/KD intramolecular fastener bundling of folded domains, and the sorting of adhesive structures. Finally, the modulatory roles of IDR phosphorylation in Src activities involving the FIMC are explored. The new regulatory roles of IDRs are integrated with the canonical model to elucidate the functions of full-length Src. This review presents new aspects of Src regulation, and provides a future direction for studies on the structure and function of Src, and their implications for pathological processes.
Collapse
Affiliation(s)
- Goro Kato
- Laboratory of Biological Chemistry, Center for Medical Education and Sciences, University of Yamanashi, 1110 Shimokato, Chuo 409-3898, Yamanashi, Japan
| |
Collapse
|
20
|
Mu J, Zhou J, Gong Q, Xu Q. An allosteric regulation mechanism of Arabidopsis Serine/Threonine kinase 1 (SIK1) through phosphorylation. Comput Struct Biotechnol J 2022; 20:368-379. [PMID: 35035789 PMCID: PMC8749016 DOI: 10.1016/j.csbj.2021.12.033] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 12/23/2021] [Accepted: 12/23/2021] [Indexed: 11/21/2022] Open
Abstract
The Arabidopsis Serine/Threonine Kinase 1 (SIK1) is a Sterile 20 (STE20)/Hippo orthologue that is also categorized as a Mitogen-Activated Protein Kinase Kinase Kinase Kinase (MAP4K). Like its animal and fungi orthologues, SIK1 is required for cell cycle exit, cell expansion, polarity establishment, as well as pathogenic response. The catalytic activity of SIK1, like other MAPKs, is presumably regulated by its phosphorylation states. Since no crystal structure for SIK1 has been reported yet, we built structural models for SIK1 kinase domain in different phosphorylation states with different pocket conformation to see how this kinase may be regulated. Using computational structural biology methods, we outlined a conduction path in which a phosphorylation site on the A-loop regulates the catalytic activity of SIK1 by controlling the closing or opening of the catalytic pocket at the G-loop. Furthermore, with analyses on the dynamic motions and in vitro kinase assay, we confirmed that three key residues in this conduction path, Lys278, Glu295, and Arg370, are indeed important for the kinase activity of SIK1. Since these residues are conserved in all STE20 kinases examined, the regulatory mechanism that we discovered may be common in STE20 kinases.
Collapse
|
21
|
Celebi M, Inan T, Kurkcuoglu O, Akten ED. Potential allosteric sites captured in glycolytic enzymes via residue-based network models: Phosphofructokinase, glyceraldehyde-3-phosphate dehydrogenase and pyruvate kinase. Biophys Chem 2021; 280:106701. [PMID: 34736071 DOI: 10.1016/j.bpc.2021.106701] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 01/05/2023]
Abstract
Likelihood of new allosteric sites for glycolytic enzymes, phosphofructokinase (PFK), glyceraldehyde-3-phosphate dehydrogenase (GADPH) and pyruvate kinase (PK) was evaluated for bacterial, parasitic and human species. Allosteric effect of a ligand binding at a site was revealed on the basis of low-frequency normal modes via Cα-harmonic residue network model. In bacterial PFK, perturbation of the proposed allosteric site outperformed the known allosteric one, producing a high amount of stabilization or reduced dynamics, on all catalytic regions. Another proposed allosteric spot at the dimer interface in parasitic PFK exhibited major stabilization effect on catalytic regions. In parasitic GADPH, the most desired allosteric response was observed upon perturbation of its tunnel region which incorporated key residues for functional regulation. Proposed allosteric site in bacterial PK produced a satisfactory allosteric response on all catalytic regions, whereas in human and parasitic PKs, a partial inhibition was observed. Residue network model based solely on contact topology identified the 'hub residues' with high betweenness tracing plausible allosteric communication pathways between distant functional sites. For both bacterial PFK and PK, proposed sites accommodated hub residues twice as much as the known allosteric site. Tunnel region in parasitic GADPH with the strongest allosteric effect among species, incorporated the highest number of hub residues. These results clearly suggest a one-to-one correspondence between the degree of allosteric effect and the number of hub residues in that perturbation site, which increases the likelihood of its allosteric nature.
Collapse
Affiliation(s)
- Metehan Celebi
- Graduate Program of Computational Biology and Bioinformatics, Graduate School of Science and Engineering, Kadir Has University, Istanbul, Turkey
| | - Tugce Inan
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ozge Kurkcuoglu
- Department of Chemical Engineering, Istanbul Technical University, Istanbul, Turkey
| | - Ebru Demet Akten
- Department of Bioinformatics and Genetics, Faculty of Engineering and Natural Sciences, Kadir Has University, Istanbul, Turkey.
| |
Collapse
|
22
|
Zhang X, Xu H, Bi X, Hou G, Liu A, Zhao Y, Wang G, Cao X. Src acts as the target of matrine to inhibit the proliferation of cancer cells by regulating phosphorylation signaling pathways. Cell Death Dis 2021; 12:931. [PMID: 34642304 PMCID: PMC8511016 DOI: 10.1038/s41419-021-04221-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Revised: 09/15/2021] [Accepted: 09/28/2021] [Indexed: 12/12/2022]
Abstract
Studies have shown that matrine has antitumor activity against many types of cancers. However, the direct target in cancer cells of its anticancer effect has not been identified. The purpose of this study was to find the molecular target of matrine to inhibit the proliferation of cancer cells and explore its mechanism of action. Herein we showed that matrine inhibited the proliferation of cancer in vitro and in vivo. Pull-down assay with matrine-amino coupling resins and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS) identified Src as the target of matrine. Cellular thermal shift assay (CETSA) and drug affinity responsive target stability (DARTS) provided solid evidences that matrine directly bound to Src. Bioinformatics prediction and pull-down experiment demonstrated that Src kinase domain was required for its interaction with matrine and Ala392 in the kinase domain participated in matrine-Src interaction. Intriguingly, matrine was proven to inhibit Src kinase activity in a non-ATP-competitive manner by blocking the autophosphorylation of Tyr419 in Src kinase domain. Matrine down-regulated the phosphorylation levels of MAPK/ERK, JAK2/STAT3, and PI3K/Akt signaling pathways via targeting Src. Collectively, matrine targeted Src, inhibited its kinase activity, and down-regulated its downstream MAPK/ERK, JAK2/STAT3, and PI3K/Akt phosphorylation signaling pathways to inhibit the proliferation of cancer cells.
Collapse
Affiliation(s)
- Xi Zhang
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
- School of Pharmacy, Xinxiang Medical University, Xinxiang, 453003, Henan, China
| | - Hui Xu
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Xiaoyang Bi
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Guoqing Hou
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Andong Liu
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Youyun Zhao
- Department of Clinical Laboratory, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, 430073, China
| | - Guoping Wang
- Department of Pathology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
- Institute of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Xuan Cao
- Department of Medical Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
23
|
Thomas T, Roux B. TYROSINE KINASES: COMPLEX MOLECULAR SYSTEMS CHALLENGING COMPUTATIONAL METHODOLOGIES. THE EUROPEAN PHYSICAL JOURNAL. B 2021; 94:203. [PMID: 36524055 PMCID: PMC9749240 DOI: 10.1140/epjb/s10051-021-00207-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 09/14/2021] [Indexed: 05/28/2023]
Abstract
Classical molecular dynamics (MD) simulations based on atomic models play an increasingly important role in a wide range of applications in physics, biology, and chemistry. Nonetheless, generating genuine knowledge about biological systems using MD simulations remains challenging. Protein tyrosine kinases are important cellular signaling enzymes that regulate cell growth, proliferation, metabolism, differentiation, and migration. Due to the large conformational changes and long timescales involved in their function, these kinases present particularly challenging problems to modern computational and theoretical frameworks aimed at elucidating the dynamics of complex biomolecular systems. Markov state models have achieved limited success in tackling the broader conformational ensemble and biased methods are often employed to examine specific long timescale events. Recent advances in machine learning continue to push the limitations of current methodologies and provide notable improvements when integrated with the existing frameworks. A broad perspective is drawn from a critical review of recent studies.
Collapse
|
24
|
Abstract
Effective regulation of immune-cell activation is critical for ensuring that the immune response, and inflammation generated for the purpose of pathogen elimination, are limited in space and time to minimize tissue damage. Autoimmune disease can occur when immunoreceptor signaling is dysregulated, leading to unrestrained inflammation and organ damage. Conversely, tumors can coopt the tissue healing and immunosuppressive functions of hematopoietic cells to promote metastasis and evade therapy. The Src-family kinase Lyn is an essential regulator of immunoreceptor signaling, initiating both proinflammatory and suppressive signaling pathways in myeloid immune cells (eg, neutrophils, dendritic cells, monocytes, macrophages) and in B lymphocytes. Defects in Lyn signaling are implicated in autoimmune disease, but mechanisms by which Lyn, expressed along with a battery of other Src-family kinases, may uniquely direct both positive and negative signaling remain incompletely defined. This review describes our current understanding of the activating and inhibitory contributions of Lyn to immunoreceptor signaling and how these processes contribute to myeloid and B-cell function. We also highlight recent work suggesting that the 2 proteins generated by alternative splicing of lyn, LynA and LynB, differentially regulate both immune and cancer-cell signaling. These principles may also extend to other Lyn-expressing cells, such as neuronal and endocrine cells. Unraveling the common and cell-specific aspects of Lyn function could lead to new approaches to therapeutically target dysregulated pathways in pathologies ranging from autoimmune and neurogenerative disease to cancer.
Collapse
Affiliation(s)
- Ben F Brian
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Current Affiliation: Current affiliation for B.F.B.: Division of Immunology & Pathogenesis, Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA
| | - Tanya S Freedman
- Department of Pharmacology, University of Minnesota, Minneapolis, MN, USA
- Center for Immunology, University of Minnesota, Minneapolis, MN, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
- Center for Autoimmune Diseases Research, University of Minnesota, Minneapolis, MN, USA
- Correspondence: Tanya S. Freedman, PhD, University of Minnesota Twin Cities Campus: University of Minnesota, 6-120 Jackson Hall, 321 Church St. S.E., Minneapolis, MN 55455, USA. E-mail:
| |
Collapse
|
25
|
Ravikumar A, de Brevern AG, Srinivasan N. Conformational Strain Indicated by Ramachandran Angles for the Protein Backbone Is Only Weakly Related to the Flexibility. J Phys Chem B 2021; 125:2597-2606. [PMID: 33666418 DOI: 10.1021/acs.jpcb.1c00168] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Studies on energy associated with free dipeptides have shown that conformers with unfavorable (ϕ,ψ) torsion angles have higher energy compared to conformers with favorable (ϕ,ψ) angles. It is expected that higher energy confers higher dynamics and flexibility to that part of the protein. Here, we explore a potential relationship between conformational strain in a residue due to unfavorable (ϕ,ψ) angles and its flexibility and dynamics in the context of protein structures. We compared flexibility of strained and relaxed residues, which are recognized based on outlier/allowed and favorable (ϕ,ψ) angles respectively, using normal-mode analysis (NMA). We also performed in-depth analysis on flexibility and dynamics at catalytic residues in protein kinases, which exhibit different strain status in different kinase structures using NMA and molecular dynamics simulations. We underline that strain of a residue, as defined by backbone torsion angles, is almost unrelated to the flexibility and dynamics associated with it. Even the overall trend observed among all high-resolution structures in which relaxed residues tend to have slightly higher flexibility than strained residues is counterintuitive. Consequently, we propose that identifying strained residues based on (ϕ,ψ) values is not an effective way to recognize energetic strain in protein structures.
Collapse
Affiliation(s)
- Ashraya Ravikumar
- Molecular Biophysics Unit, Indian Institute of Science, Bengaluru, India, 560012
| | - Alexandre G de Brevern
- INSERM, U 1134, DSIMB, Paris F-75739, France.,University of Paris, Paris F-75739, France.,Institut National de la Transfusion Sanguine (INTS), Paris F-75739, France.,Laboratoire d'Excellence GR-Ex, Paris F-75739, France
| | | |
Collapse
|
26
|
Li W, Gu X, Liu C, Shi Y, Wang P, Zhang N, Wu R, Leng L, Xie B, Song C, Li M. A synergetic effect of BARD1 mutations on tumorigenesis. Nat Commun 2021; 12:1243. [PMID: 33623049 PMCID: PMC7902612 DOI: 10.1038/s41467-021-21519-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 01/28/2021] [Indexed: 12/19/2022] Open
Abstract
To date, a large number of mutations have been screened from breast and ovarian cancer patients. However, most of them are classified into benign or unidentified alterations due to their undetectable phenotypes. Whether and how they could cause tumors remains unknown, and this significantly limits diagnosis and therapy. Here, in a study of a family with hereditary breast and ovarian cancer, we find that two BARD1 mutations, P24S and R378S, simultaneously exist in cis in surviving cancer patients. Neither of the single mutations causes a functional change, but together they synergetically impair the DNA damage response and lead to tumors in vitro and in vivo. Thus, our report not only demonstrates that BARD1 defects account for tumorigenesis but also uncovers the potential risk of synergetic effects between the large number of cis mutations in individual genes in the human genome.
Collapse
Affiliation(s)
- Wenjing Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Xiaoyang Gu
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China
| | - Chunhong Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Yanyan Shi
- Research Center of Clinical Epidemiology, Peking University Third Hospital, Beijing, China
| | - Pan Wang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Na Zhang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Rui Wu
- Department of Pathology, Peking University Third Hospital, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Liang Leng
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, China Academy of Chinese Medical Sciences, Institute of Chinese Materia Medica, Beijing, China
| | - Bingteng Xie
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China
| | - Chen Song
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Mo Li
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology (Peking University Third Hospital), Beijing, China.
| |
Collapse
|
27
|
Zhao J, Mohan N, Nussinov R, Ma B, Wu WJ. Trastuzumab Blocks the Receiver Function of HER2 Leading to the Population Shifts of HER2-Containing Homodimers and Heterodimers. Antibodies (Basel) 2021; 10:7. [PMID: 33557368 PMCID: PMC7931022 DOI: 10.3390/antib10010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/15/2021] [Accepted: 01/27/2021] [Indexed: 11/16/2022] Open
Abstract
HER2, a member of the Erythroblastosis Protein B/Human Epidermal Growth Factor Receptor (ErbB/HER) family of receptor tyrosine kinase, is overexpressed in 20~30% of human breast cancers. Trastuzumab, a HER2-targeted therapeutic monoclonal antibody, was developed to interfere with the homodimerization of HER2 in HER2-overexpressing breast cancer cells, which attenuates HER2-mediated signaling. Trastuzumab binds to the domain IV of the HER2 extracellular domain and does not directly block the dimerization interface of HER2-HER2 molecules. The three-dimensional structures of the tyrosine kinase domains of ErbB/HER family receptors show asymmetrical packing of the two monomers with distinct conformations. One monomer functions as an activator, whereas the other acts as a receiver. Once activated, the receiver monomer phosphorylates the activator or other proteins. Interestingly, in our previous work, we found that the binding of trastuzumab induced phosphorylation of HER2 with the phosphorylation pattern of HER2 that is different from that mediated by epidermal growth factor (EGF) in human epidermal growth factor receptor 2 (HER2)-positive breast cancer. Binding of trastuzumab to HER2 promoted an allosteric effect of HER2, in both tyrosine kinase domain and ectodomain of HER2 although details of allosteric regulation were missing. In this study, we utilized molecular dynamics (MD) simulations to model the allosteric consequences of trastuzumab binding to HER2 homodimers and heterodimers, along with the apo forms as controls. We focused on the conformational changes of HER2 in its monomeric and dimeric forms. The data indicated the apparent dual role of trastuzumab as an antagonist and an agonist. The molecular details of the simulation provide an atomic level description and molecular insight into the action of HER2-targeted antibody therapeutics.
Collapse
Affiliation(s)
- Jun Zhao
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA;
- Interagency Oncology Task Force (IOTF) Fellowship: Oncology Product Research/Review Fellow, National Cancer Institute, Bethesda, MD 20892, USA
| | - Nishant Mohan
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA;
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; (R.N.)
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702, USA; (R.N.)
| | - Wen Jin Wu
- Division of Biotechnology Review and Research 1, Office of Biotechnology Products, Office of Pharmaceutical Quality, Center for Drug Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Avenue, Silver Spring, MD 20993, USA;
| |
Collapse
|
28
|
Kerjouan A, Boyault C, Oddou C, Hiriart-Bryant E, Grichine A, Kraut A, Pezet M, Balland M, Faurobert E, Bonnet I, Coute Y, Fourcade B, Albiges-Rizo C, Destaing O. Control of SRC molecular dynamics encodes distinct cytoskeletal responses by specifying signaling pathway usage. J Cell Sci 2021; 134:237349. [PMID: 33495358 DOI: 10.1242/jcs.254599] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 11/13/2020] [Indexed: 01/23/2023] Open
Abstract
Upon activation by different transmembrane receptors, the same signaling protein can induce distinct cellular responses. A way to decipher the mechanisms of such pleiotropic signaling activity is to directly manipulate the decision-making activity that supports the selection between distinct cellular responses. We developed an optogenetic probe (optoSRC) to control SRC signaling, an example of a pleiotropic signaling node, and we demonstrated its ability to generate different acto-adhesive structures (lamellipodia or invadosomes) upon distinct spatio-temporal control of SRC kinase activity. The occurrence of each acto-adhesive structure was simply dictated by the dynamics of optoSRC nanoclusters in adhesive sites, which were dependent on the SH3 and Unique domains of the protein. The different decision-making events regulated by optoSRC dynamics induced distinct downstream signaling pathways, which we characterized using time-resolved proteomic and network analyses. Collectively, by manipulating the molecular mobility of SRC kinase activity, these experiments reveal the pleiotropy-encoding mechanism of SRC signaling.
Collapse
Affiliation(s)
- Adèle Kerjouan
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Cyril Boyault
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Christiane Oddou
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Edwige Hiriart-Bryant
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Alexei Grichine
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | | | - Mylène Pezet
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Martial Balland
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Eva Faurobert
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Isabelle Bonnet
- Laboratoire Physico-Chimie Curie, Institut Curie, PSL Research University, Sorbonne University, UMR 168, 75005 Paris, France
| | - Yohann Coute
- Laboratoire EDYP, BIG-BGE, CEA, 38054 Grenoble, France
| | - Bertrand Fourcade
- Laboratoire Interdisciplinaire de Physique (Liphy), Université Grenoble Alpes, CNRS, 38000, 38402 Saint-Martin-d'Héres, France
| | - Corinne Albiges-Rizo
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| | - Olivier Destaing
- Institute for Advanced Biosciences, Centre de Recherche Université Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, 38706 La Tronche, France
| |
Collapse
|
29
|
Fang L, Vilas-Boas J, Chakraborty S, Potter ZE, Register AC, Seeliger MA, Maly DJ. How ATP-Competitive Inhibitors Allosterically Modulate Tyrosine Kinases That Contain a Src-like Regulatory Architecture. ACS Chem Biol 2020; 15:2005-2016. [PMID: 32479050 DOI: 10.1021/acschembio.0c00429] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Small molecule kinase inhibitors that stabilize distinct ATP binding site conformations can differentially modulate the global conformation of Src-family kinases (SFKs). However, it is unclear which specific ATP binding site contacts are responsible for modulating the global conformation of SFKs and whether these inhibitor-mediated allosteric effects generalize to other tyrosine kinases. Here, we describe the development of chemical probes that allow us to deconvolute which features in the ATP binding site are responsible for the allosteric modulation of the global conformation of Src. We find that the ability of an inhibitor to modulate the global conformation of Src's regulatory domain-catalytic domain module relies mainly on the influence it has on the conformation of a structural element called helix αC. Furthermore, by developing a set of orthogonal probes that target a drug-sensitized Src variant, we show that stabilizing Src's helix αC in an active conformation is sufficient to promote a Src-mediated, phosphotransferase-independent alteration in cell morphology. Finally, we report that ATP-competitive, conformation-selective inhibitors can influence the global conformation of tyrosine kinases beyond the SFKs, suggesting that the allosteric networks we observe in Src are conserved in kinases that have a similar regulatory architecture. Our study highlights that an ATP-competitive inhibitor's interactions with helix αC can have a major influence on the global conformation of some tyrosine kinases.
Collapse
Affiliation(s)
| | - Jessica Vilas-Boas
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | | | | | | | - Markus A. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, Stony Brook, New York 11794-8651, United States
| | | |
Collapse
|
30
|
Huang L, Wright M, Yang S, Blachowicz L, Makowski L, Roux B. Glycine substitution in SH3-SH2 connector of Hck tyrosine kinase causes population shift from assembled to disassembled state. Biochim Biophys Acta Gen Subj 2020; 1864:129604. [PMID: 32224253 PMCID: PMC7366498 DOI: 10.1016/j.bbagen.2020.129604] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/29/2020] [Accepted: 03/19/2020] [Indexed: 11/21/2022]
Abstract
A combination of small angle X-ray scattering (SAXS) and molecular dynamics (MD) simulations based on a coarse grained model is used to examine the effect of glycine substitutions in the short connector between the SH3 and SH2 domains of Hck, a member of the Src-family kinases. It has been shown previously that the activity of cSrc kinase is upregulated by substitution of 3 residues by glycine in the SH3-SH2 connector. Here, analysis of SAXS data indicates that the population of Hck in the disassembled state increases from 25% in the wild type kinase to 76% in the glycine mutant. This is consistent with the results of free energy perturbation calculations showing that the mutation in the connector shifts the equilibrium from the assembled to the disassembled state. This study supports the notion that the SH3-SH2 connector helps to regulate the activity of tyrosine kinases by shifting the population of the active state of the multidomain protein independent of C-terminal phosphorylation.
Collapse
Affiliation(s)
- Lei Huang
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Michelle Wright
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Sichun Yang
- Center for Proteomics and Department of Pharmacology, Case Western Reserve University, Cleveland, OH 44106, United States of America
| | - Lydia Blachowicz
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America
| | - Lee Makowski
- Department of Chemistry and Chemical Biology, Northeastern University, Boston, MA 02115, United States of America
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, University of Chicago, 929 East 57th Street, Chicago, IL 60637, United States of America; Biosciences Division, Argonne National Laboratory, Argonne, IL 60439, United States of America.
| |
Collapse
|
31
|
Mukherjee A, Singh R, Udayan S, Biswas S, Reddy PP, Manmadhan S, George G, Kumar S, Das R, Rao BM, Gulyani A. A Fyn biosensor reveals pulsatile, spatially localized kinase activity and signaling crosstalk in live mammalian cells. eLife 2020; 9:50571. [PMID: 32017701 PMCID: PMC7000222 DOI: 10.7554/elife.50571] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 01/08/2020] [Indexed: 12/14/2022] Open
Abstract
Cell behavior is controlled through spatio-temporally localized protein activity. Despite unique and often contradictory roles played by Src-family-kinases (SFKs) in regulating cell physiology, activity patterns of individual SFKs have remained elusive. Here, we report a biosensor for specifically visualizing active conformation of SFK-Fyn in live cells. We deployed combinatorial library screening to isolate a binding-protein (F29) targeting activated Fyn. Nuclear-magnetic-resonance (NMR) analysis provides the structural basis of F29 specificity for Fyn over homologous SFKs. Using F29, we engineered a sensitive, minimally-perturbing fluorescence-resonance-energy-transfer (FRET) biosensor (FynSensor) that reveals cellular Fyn activity to be spatially localized, pulsatile and sensitive to adhesion/integrin signaling. Strikingly, growth factor stimulation further enhanced Fyn activity in pre-activated intracellular zones. However, inhibition of focal-adhesion-kinase activity not only attenuates Fyn activity, but abolishes growth-factor modulation. FynSensor imaging uncovers spatially organized, sensitized signaling clusters, direct crosstalk between integrin and growth-factor-signaling, and clarifies how compartmentalized Src-kinase activity may drive cell fate.
Collapse
Affiliation(s)
- Ananya Mukherjee
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India.,SASTRA University, Thanjavur, India
| | - Randhir Singh
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sreeram Udayan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Sayan Biswas
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | | | - Saumya Manmadhan
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Geen George
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Shilpa Kumar
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| | - Ranabir Das
- National Centre for Biological Sciences, Bangalore, India
| | - Balaji M Rao
- North Carolina State University, Raleigh, United States
| | - Akash Gulyani
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, India
| |
Collapse
|
32
|
Wu Z, Liu H, Xu L, Chen HF, Feng Y. Algorithm-based coevolution network identification reveals key functional residues of the α/β hydrolase subfamilies. FASEB J 2020; 34:1983-1995. [PMID: 31907985 DOI: 10.1096/fj.201900948rr] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 10/02/2019] [Accepted: 10/21/2019] [Indexed: 11/11/2022]
Abstract
Covariant residues identified by computational algorithms have provided new insights into enzyme evolutionary routes. However, the reliability and accuracy of routine statistical coupling analysis (SCA) are unable to satisfy the needs of protein engineering because SCA depends only on sequence information. Here, we set up a new SCA algorithm, SCA.SIM, by integrating structure information and MD simulation data. The more reliable covariant residues with high-quality scores are obtained from sequence alignment weighted by residual movement for eight related subfamilies, belonging to α/β hydrolase family, with Candida antarctica lipase B (CALB). The 38 predicted covariant residues are tested for function by high-throughput quantitative evaluation in combination with activity and thermostability assays of a mutant library and deep sequencing. Based on the landscapes of both activity and thermostability, most mutants play key roles in catalysis, and some mutants gain 2.4- to 6-fold increase in half-life at 50°C and 9- to 12-fold improvement in catalytic efficiency. The activity of double mutants for A225F/T103A is higher than those of A225F and T103A which means that SCA.SIM method might be useful for identifying the allosteric coupling. The SCA.SIM algorithm can be used for protein coevolution and enzyme engineering research.
Collapse
Affiliation(s)
- Zhiyun Wu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hao Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Lishi Xu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hai-Feng Chen
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.,Shanghai Center for Bioinformation Technology, Shanghai, China
| | - Yan Feng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic and Developmental Sciences, National Experimental Teaching Center for Life Sciences and Biotechnology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
33
|
Röhm S, Krämer A, Knapp S. Function, Structure and Topology of Protein Kinases. PROTEINKINASE INHIBITORS 2020. [DOI: 10.1007/7355_2020_97] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
34
|
Pond MP, Eells R, Treece BW, Heinrich F, Lösche M, Roux B. Membrane Anchoring of Hck Kinase via the Intrinsically Disordered SH4-U and Length Scale Associated with Subcellular Localization. J Mol Biol 2019; 432:2985-2997. [PMID: 31877324 DOI: 10.1016/j.jmb.2019.11.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 11/22/2019] [Accepted: 11/25/2019] [Indexed: 12/21/2022]
Abstract
Src family kinases (SFKs) are a group of nonreceptor tyrosine kinases that are characterized by their involvement in critical signal transduction pathways. SFKs are often found attached to membranes, but little is known about the conformation of the protein in this environment. Here, solution nuclear magnetic resonance (NMR), neutron reflectometry (NR), and molecular dynamics (MD) simulations were employed to study the membrane interactions of the intrinsically disordered SH4 and Unique domains of the Src family kinase Hck. Through development of a procedure to combine the information from the different techniques, we were able produce a first-of-its-kind atomically detailed structural ensemble of a membrane-bound intrinsically disordered protein. Evaluation of the model demonstrated its consistency with previous work and provided insight into how SFK Unique domains act to differentiate the family members from one another. Fortuitously, the position of the ensemble on the membrane allowed the model to be combined with configurations of the multidomain Hck kinase previously determined from small-angle solution X-ray scattering to produce full-length models of membrane-anchored Hck. The resulting models allowed us to estimate that the kinase active site is positioned about 65 ± 35 Å away from the membrane surface, offering the first estimations of the length scale associated with the concept of SFK subcellular localization.
Collapse
Affiliation(s)
- Matthew P Pond
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, IL, 60637, USA
| | - Rebecca Eells
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Bradley W Treece
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA
| | - Frank Heinrich
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for Neutron Research, NIST, Gaithersburg, MD, 20899, USA
| | - Mathias Lösche
- Department of Physics, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Department of Biomedical Engineering, Carnegie Mellon University, Pittsburgh, PA, 15213, USA; Center for Neutron Research, NIST, Gaithersburg, MD, 20899, USA
| | - Benoît Roux
- Department of Biochemistry and Molecular Biology, Gordon Center for Integrative Science, University of Chicago, Chicago, IL, 60637, USA.
| |
Collapse
|
35
|
Dynamic regulatory features of the protein tyrosine kinases. Biochem Soc Trans 2019; 47:1101-1116. [PMID: 31395755 DOI: 10.1042/bst20180590] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/15/2019] [Accepted: 07/17/2019] [Indexed: 12/20/2022]
Abstract
The SRC, Abelson murine leukemia viral oncogene homolog 1, TEC and C-terminal SRC Kinase families of non-receptor tyrosine kinases (collectively the Src module kinases) mediate an array of cellular signaling processes and are therapeutic targets in many disease states. Crystal structures of Src modules kinases provide valuable insights into the regulatory mechanisms that control activation and generate a framework from which drug discovery can advance. The conformational ensembles visited by these multidomain kinases in solution are also key features of the regulatory machinery controlling catalytic activity. Measurement of dynamic motions within kinases substantially augments information derived from crystal structures. In this review, we focus on a body of work that has transformed our understanding of non-receptor tyrosine kinase regulation from a static view to one that incorporates how fluctuations in conformational ensembles and dynamic motions influence activation status. Regulatory dynamic networks are often shared across and between kinase families while specific dynamic behavior distinguishes unique regulatory mechanisms for select kinases. Moreover, intrinsically dynamic regions of kinases likely play important regulatory roles that have only been partially explored. Since there is clear precedence that kinase inhibitors can exploit specific dynamic features, continued efforts to define conformational ensembles and dynamic allostery will be key to combating drug resistance and devising alternate treatments for kinase-associated diseases.
Collapse
|
36
|
Boczek EE, Luo Q, Dehling M, Röpke M, Mader SL, Seidl A, Kaila VRI, Buchner J. Autophosphorylation activates c-Src kinase through global structural rearrangements. J Biol Chem 2019; 294:13186-13197. [PMID: 31331936 DOI: 10.1074/jbc.ra119.008199] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 07/15/2019] [Indexed: 11/06/2022] Open
Abstract
The prototypical kinase c-Src plays an important role in numerous signal transduction pathways, where its activity is tightly regulated by two phosphorylation events. Phosphorylation at a specific tyrosine by C-terminal Src kinase inactivates c-Src, whereas autophosphorylation is essential for the c-Src activation process. However, the structural consequences of the autophosphorylation process still remain elusive. Here we investigate how the structural landscape of c-Src is shaped by nucleotide binding and phosphorylation of Tyr416 using biochemical experiments, hydrogen/deuterium exchange MS, and atomistic molecular simulations. We show that the initial steps of kinase activation involve large rearrangements in domain orientation. The kinase domain is highly dynamic and has strong cross-talk with the regulatory domains, which are displaced by autophosphorylation. Although the regulatory domains become more flexible and detach from the kinase domain because of autophosphorylation, the kinase domain gains rigidity, leading to stabilization of the ATP binding site and a 4-fold increase in enzymatic activity. Our combined results provide a molecular framework of the central steps in c-Src kinase regulation process with possible implications for understanding general kinase activation mechanisms.
Collapse
Affiliation(s)
- Edgar E Boczek
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany; Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | - Qi Luo
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany; Soft Matter Research Center and Department of Chemistry, Zhejiang University, Zhejiang Sheng 310027, China
| | - Marco Dehling
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany; Novartis Biologics Technical Development and Manufacturing, Sandoz Biopharmaceuticals, Hexal AG, 82041 Oberhaching, Germany
| | - Michael Röpke
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Sophie L Mader
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany
| | - Andreas Seidl
- Novartis Biologics Technical Development and Manufacturing, Sandoz Biopharmaceuticals, Hexal AG, 82041 Oberhaching, Germany
| | - Ville R I Kaila
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany.
| | - Johannes Buchner
- Center for Integrated Protein Science, Department Chemie, Technische Universität München, 85748 Garching, Germany.
| |
Collapse
|
37
|
Agius MP, Ko KS, Johnson TK, Kwarcinski FE, Phadke S, Lachacz EJ, Soellner MB. Selective Proteolysis to Study the Global Conformation and Regulatory Mechanisms of c-Src Kinase. ACS Chem Biol 2019; 14:1556-1563. [PMID: 31287657 PMCID: PMC7254491 DOI: 10.1021/acschembio.9b00306] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Protein kinase pathways are traditionally mapped by monitoring downstream phosphorylation. Meanwhile, the noncatalytic functions of protein kinases remain under-appreciated as critical components of kinase signaling. c-Src is a protein kinase known to have noncatalytic signaling function important in healthy and disease cell signaling. Large conformational changes in the regulatory domains regulate c-Src's noncatalytic functions. Herein, we demonstrate that changes in the global conformation of c-Src can be monitored using a selective proteolysis methodology. Further, we use this methodology to investigate changes in the global conformation of several clinical and nonclinical mutations of c-Src. Significantly, we identify a novel activating mutation observed clinically, W121R, that can escape down-regulation mechanisms. Our methodology can be expanded to monitor the global conformation of other tyrosine kinases, including c-Abl, and represents an important tool toward the elucidation of the noncatalytic functions of protein kinases.
Collapse
Affiliation(s)
- Michael P. Agius
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | - Kristin S. Ko
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| | - Taylor K. Johnson
- Department of Medicinal Chemistry, University of Michigan, Ann Arbor, MI
| | | | - Sameer Phadke
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Eric J. Lachacz
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
| | - Matthew B. Soellner
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI
- Department of Chemistry, University of Michigan, Ann Arbor, MI
| |
Collapse
|
38
|
Chakraborty S, Inukai T, Fang L, Golkowski M, Maly DJ. Targeting Dynamic ATP-Binding Site Features Allows Discrimination between Highly Homologous Protein Kinases. ACS Chem Biol 2019; 14:1249-1259. [PMID: 31038916 DOI: 10.1021/acschembio.9b00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
ATP-competitive inhibitors that demonstrate exquisite selectivity for specific members of the human kinome have been developed. Despite this success, the identification of highly selective inhibitors is still very challenging, and it is often not possible to rationally engineer selectivity between the ATP-binding sites of kinases, especially among closely related family members. Src-family kinases (SFKs) are a highly homologous family of eight multidomain, nonreceptor tyrosine kinases that play general and specialized roles in numerous cellular processes. The high sequence and functional similarities between SFK members make it hard to rationalize how selectivity can be gained with inhibitors that target the ATP-binding site. Here, we describe the development of a series of inhibitors that are highly selective for the ATP-binding sites of the SFKs Lyn and Hck over other SFKs. By biochemically characterizing how these selective ATP-competitive inhibitors allosterically influence the global conformation of SFKs, we demonstrate that they most likely interact with a binding pocket created by the movement of the conformationally flexible helix αC in the ATP-binding site. With a series of sequence swap experiments, we show that sensitivity to this class of selective inhibitors is due to the identity of residues that control the conformational flexibility of helix αC rather than any specific ATP-binding site interactions. Thus, the ATP-binding sites of highly homologous kinases can be discriminated by targeting heterogeneity within conformationally flexible regions.
Collapse
Affiliation(s)
| | - Takayuki Inukai
- Medicinal Chemistry Research Laboratories, Ono Pharmaceutical Company, Ltd., 3-1-1 Sakurai, Shimamoto, Mishima, Osaka 618-8585, Japan
| | | | | | | |
Collapse
|
39
|
Discovery of processive catalysis by an exo-hydrolase with a pocket-shaped active site. Nat Commun 2019; 10:2222. [PMID: 31110237 PMCID: PMC6527550 DOI: 10.1038/s41467-019-09691-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 03/22/2019] [Indexed: 11/08/2022] Open
Abstract
Substrates associate and products dissociate from enzyme catalytic sites rapidly, which hampers investigations of their trajectories. The high-resolution structure of the native Hordeum exo-hydrolase HvExoI isolated from seedlings reveals that non-covalently trapped glucose forms a stable enzyme-product complex. Here, we report that the alkyl β-d-glucoside and methyl 6-thio-β-gentiobioside substrate analogues perfused in crystalline HvExoI bind across the catalytic site after they displace glucose, while methyl 2-thio-β-sophoroside attaches nearby. Structural analyses and multi-scale molecular modelling of nanoscale reactant movements in HvExoI reveal that upon productive binding of incoming substrates, the glucose product modifies its binding patterns and evokes the formation of a transient lateral cavity, which serves as a conduit for glucose departure to allow for the next catalytic round. This path enables substrate-product assisted processive catalysis through multiple hydrolytic events without HvExoI losing contact with oligo- or polymeric substrates. We anticipate that such enzyme plasticity could be prevalent among exo-hydrolases. Enzyme substrates and products often diffuse too rapidly to assess the catalytic implications of these movements. Here, the authors characterise the structural basis of product and substrate diffusion for an exo-hydrolase and discover a substrate-product assisted processive catalytic mechanism.
Collapse
|
40
|
Berndt S, Gurevich VV, Iverson TM. Crystal structure of the SH3 domain of human Lyn non-receptor tyrosine kinase. PLoS One 2019; 14:e0215140. [PMID: 30969999 PMCID: PMC6457566 DOI: 10.1371/journal.pone.0215140] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/27/2019] [Indexed: 01/07/2023] Open
Abstract
Lyn kinase (Lck/Yes related novel protein tyrosine kinase) belongs to the family of Src-related non-receptor tyrosine kinases. Consistent with physiological roles in cell growth and proliferation, aberrant function of Lyn is associated with various forms of cancer, including leukemia, breast cancer and melanoma. Here, we determine a 1.3 Å resolution crystal structure of the polyproline-binding SH3 regulatory domain of human Lyn kinase, which adopts a five-stranded β-barrel fold. Mapping of cancer-associated point mutations onto this structure reveals that these amino acid substitutions are distributed throughout the SH3 domain and may affect Lyn kinase function distinctly.
Collapse
Affiliation(s)
- Sandra Berndt
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - Vsevolod V. Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
| | - T. M. Iverson
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States of America
- Department of Biochemistry, Vanderbilt University, Nashville, TN, United States of America
- Vanderbilt Institute of Chemical Biology, Nashville, TN, United States of America
- Center for Structural Biology, Nashville, TN, United States of America
| |
Collapse
|
41
|
A Combined Approach Reveals a Regulatory Mechanism Coupling Src's Kinase Activity, Localization, and Phosphotransferase-Independent Functions. Mol Cell 2019; 74:393-408.e20. [PMID: 30956043 DOI: 10.1016/j.molcel.2019.02.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/20/2018] [Accepted: 01/31/2019] [Indexed: 02/06/2023]
Abstract
Multiple layers of regulation modulate the activity and localization of protein kinases. However, many details of kinase regulation remain incompletely understood. Here, we apply saturation mutagenesis and a chemical genetic method for allosterically modulating kinase global conformation to Src kinase, providing insight into known regulatory mechanisms and revealing a previously undiscovered interaction between Src's SH4 and catalytic domains. Abrogation of this interaction increased phosphotransferase activity, promoted membrane association, and provoked phosphotransferase-independent alterations in cell morphology. Thus, Src's SH4 domain serves as an intramolecular regulator coupling catalytic activity, global conformation, and localization, as well as mediating a phosphotransferase-independent function. Sequence conservation suggests that the SH4 domain regulatory interaction exists in other Src-family kinases. Our combined approach's ability to reveal a regulatory mechanism in one of the best-studied kinases suggests that it could be applied broadly to provide insight into kinase structure, regulation, and function.
Collapse
|
42
|
Koudelková L, Pataki AC, Tolde O, Pavlik V, Nobis M, Gemperle J, Anderson K, Brábek J, Rosel D. Novel FRET-Based Src Biosensor Reveals Mechanisms of Src Activation and Its Dynamics in Focal Adhesions. Cell Chem Biol 2019; 26:255-268.e4. [DOI: 10.1016/j.chembiol.2018.10.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/12/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022]
|
43
|
Zhao J, Nussinov R, Ma B. Antigen binding allosterically promotes Fc receptor recognition. MAbs 2019; 11:58-74. [PMID: 30212263 PMCID: PMC6343797 DOI: 10.1080/19420862.2018.1522178] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 08/10/2018] [Accepted: 09/04/2018] [Indexed: 12/11/2022] Open
Abstract
A key question in immunology is whether antigen recognition and Fc receptor (FcR) binding are allosterically linked. This question is also relevant for therapeutic antibody design. Antibody Fab and Fc domains are connected by flexible unstructured hinge region. Fc chains have conserved glycosylation sites at Asn297, with each conjugated to a core heptasaccharide and forming biantennary Fc glycan. The glycans modulate the Fc conformations and functions. It is well known that the antibody Fab and Fc domains and glycan affect antibody activity, but whether these elements act independently or synergistically is still uncertain. We simulated four antibody complexes: free antibody, antigen-bound antibody, FcR-bound antibody, and an antigen-antibody-FcR complex. We found that, in the antibody's "T/Y" conformation, the glycans, and the Fc domain all respond to antigen binding, with the antibody population shifting to two dominant clusters, both with the Fc-receptor binding site open. The simulations reveal that the Fc-glycan-receptor complexes also segregate into two conformational clusters, one corresponding to the antigen-free antibody-FcR baseline binding, and the other with an antigen-enhanced antibody-FcR interaction. Our study confirmed allosteric communications in antibody-antigen recognition and following FcR activation. Even though we observed allosteric communications through the IgG domains, the most important mechanism that we observed is the communication via population shift, stimulated by antigen binding and propagating to influence FcR recognition.
Collapse
Affiliation(s)
- Jun Zhao
- Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| | - Ruth Nussinov
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Buyong Ma
- Basic Science Program, Leidos Biomedical Research, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, Maryland, USA
| |
Collapse
|
44
|
Inhibitory mechanism of 5-bromo-3-indoleacetic acid for non-structural-3 helicase hepatitis C virus with dynamics correlation network analysis. Comput Biol Chem 2018; 77:167-177. [DOI: 10.1016/j.compbiolchem.2018.10.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 09/03/2018] [Accepted: 10/06/2018] [Indexed: 01/20/2023]
|
45
|
Shah NH, Amacher JF, Nocka LM, Kuriyan J. The Src module: an ancient scaffold in the evolution of cytoplasmic tyrosine kinases. Crit Rev Biochem Mol Biol 2018; 53:535-563. [PMID: 30183386 PMCID: PMC6328253 DOI: 10.1080/10409238.2018.1495173] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Tyrosine kinases were first discovered as the protein products of viral oncogenes. We now know that this large family of metazoan enzymes includes nearly one hundred structurally diverse members. Tyrosine kinases are broadly classified into two groups: the transmembrane receptor tyrosine kinases, which sense extracellular stimuli, and the cytoplasmic tyrosine kinases, which contain modular ligand-binding domains and propagate intracellular signals. Several families of cytoplasmic tyrosine kinases have in common a core architecture, the "Src module," composed of a Src-homology 3 (SH3) domain, a Src-homology 2 (SH2) domain, and a kinase domain. Each of these families is defined by additional elaborations on this core architecture. Structural, functional, and evolutionary studies have revealed a unifying set of principles underlying the activity and regulation of tyrosine kinases built on the Src module. The discovery of these conserved properties has shaped our knowledge of the workings of protein kinases in general, and it has had important implications for our understanding of kinase dysregulation in disease and the development of effective kinase-targeted therapies.
Collapse
Affiliation(s)
- Neel H. Shah
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Jeanine F. Amacher
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - Laura M. Nocka
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
| | - John Kuriyan
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- Department of Chemistry, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute, University of California, Berkeley, CA, USA
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| |
Collapse
|
46
|
Kieken F, Loth K, van Nuland N, Tompa P, Lenaerts T. Chemical shift assignments of the partially deuterated Fyn SH2-SH3 domain. BIOMOLECULAR NMR ASSIGNMENTS 2018; 12:117-122. [PMID: 29224116 DOI: 10.1007/s12104-017-9792-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Accepted: 11/28/2017] [Indexed: 06/07/2023]
Abstract
Src Homology 2 and 3 (SH2 and SH3) are two key protein interaction modules involved in regulating the activity of many proteins such as tyrosine kinases and phosphatases by respective recognition of phosphotyrosine and proline-rich regions. In the Src family kinases, the inactive state of the protein is the direct result of the interaction of the SH2 and the SH3 domain with intra-molecular regions, leading to a closed structure incompetent with substrate modification. Here, we report the 1H, 15N and 13C backbone- and side-chain chemical shift assignments of the partially deuterated Fyn SH3-SH2 domain and structural differences between tandem and single domains. The BMRB accession number is 27165.
Collapse
Affiliation(s)
- Fabien Kieken
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussel, Belgium
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Boulevard du Triomphe, CP 263, 1050, Brussels, Belgium
| | - Karine Loth
- Centre de Biophysique Moléculaire, Centre National de la Recherche Scientifique (CNRS) UPR 4301, Université d'Orléans, rue Charles Sadron, 45071, Orléans Cedex 2, France
- Collegium Sciences et Techniques, Université d'Orléans, rue de Chartres, 45100, Orléans, France
| | - Nico van Nuland
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussel, Belgium
| | - Peter Tompa
- Structural Biology Brussels, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussel, Belgium
- Center for Structural Biology, VIB, Pleinlaan 2, 1050, Brussel, Belgium
| | - Tom Lenaerts
- AI-lab, Vakgroep Computerwetenschappen, Vrije Universiteit Brussel, Pleinlaan 2, 1050, Brussels, Belgium.
- Interuniversity Institute of Bioinformatics in Brussels (IB2), ULB-VUB, La Plaine Campus, Boulevard du Triomphe, CP 263, 1050, Brussels, Belgium.
- MLG, Départment d'Informatique, Université Libre de Bruxelles, Boulevard du Triomphe, CP 212, 1050, Brussels, Belgium.
| |
Collapse
|
47
|
Zheng M, Zhao J, Cui C, Fu Z, Li X, Liu X, Ding X, Tan X, Li F, Luo X, Chen K, Jiang H. Computational chemical biology and drug design: Facilitating protein structure, function, and modulation studies. Med Res Rev 2018; 38:914-950. [DOI: 10.1002/med.21483] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 12/13/2017] [Accepted: 12/15/2017] [Indexed: 12/12/2022]
Affiliation(s)
- Mingyue Zheng
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Jihui Zhao
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Chen Cui
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Zunyun Fu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Xutong Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Xiaohong Liu
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- School of Life Science and Technology; ShanghaiTech University; Shanghai China
| | - Xiaoyu Ding
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Xiaoqin Tan
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Fei Li
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- Department of Chemistry, College of Sciences; Shanghai University; Shanghai China
| | - Xiaomin Luo
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| | - Kaixian Chen
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
- School of Life Science and Technology; ShanghaiTech University; Shanghai China
| | - Hualiang Jiang
- State Key Laboratory of Drug Research, Drug Discovery and Design Center, Shanghai Institute of Materia Medica; Chinese Academy of Sciences; Shanghai China
| |
Collapse
|
48
|
Survey of solution dynamics in Src kinase reveals allosteric cross talk between the ligand binding and regulatory sites. Nat Commun 2017; 8:2160. [PMID: 29255153 PMCID: PMC5735167 DOI: 10.1038/s41467-017-02240-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
The catalytic domain of protein tyrosine kinases can interconvert between active and inactive conformations in response to regulatory inputs. We recently demonstrated that Src kinase features an allosteric network that couples substrate-binding sites. However, the extent of conformational and dynamic changes that are propagated throughout the kinase domain remains poorly understood. Here, we monitor by NMR the effect of conformationally selective inhibitors on kinase backbone dynamics. We find that inhibitor binding and activation loop autophosphorylation induces dynamic changes across the entire kinase. We identify a highly conserved amino acid, Gly449, that is necessary for Src activation. Finally, we show for the first time how the SH3–SH2 domains perturb the dynamics of the kinase domain in the context of the full length protein. We provide experimental support for long-range communication in Src kinase that leads to the relative stabilization of active or inactive conformations and modulation of substrate affinity. Src is a prototypical signaling non-receptor protein tyrosine kinase that interconverts between distinct conformations. Here the authors use variants of the kinase-inhibitor dasatinib to define three specific conformational states of the Src kinase and shed insight on the effect of conformation-specific inhibitors on Src dynamics.
Collapse
|
49
|
von Raußendorf F, de Ruiter A, Leonard TA. A switch in nucleotide affinity governs activation of the Src and Tec family kinases. Sci Rep 2017; 7:17405. [PMID: 29234112 PMCID: PMC5727165 DOI: 10.1038/s41598-017-17703-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 11/29/2017] [Indexed: 11/10/2022] Open
Abstract
The Tec kinases, closely related to Src family kinases, are essential for lymphocyte function in the adaptive immune system. Whilst the Src and Abl kinases are regulated by tail phosphorylation and N-terminal myristoylation respectively, the Tec kinases are notable for the absence of either regulatory element. We have found that the inactive conformations of the Tec kinase Itk and Src preferentially bind ADP over ATP, stabilising both proteins. We demonstrate that Itk adopts the same conformation as Src and that the autoinhibited conformation of Src is independent of its C-terminal tail. Allosteric activation of both Itk and Src depends critically on the disruption of a conserved hydrophobic stack that accompanies regulatory domain displacement. We show that a conformational switch permits the exchange of ADP for ATP, leading to efficient autophosphorylation and full activation. In summary, we propose a universal mechanism for the activation and autoinhibition of the Src and Tec kinases.
Collapse
Affiliation(s)
- Freia von Raußendorf
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria
| | - Anita de Ruiter
- Institute of Molecular Modeling and Simulation, University of Natural Resources and Life Sciences (BOKU), 1190, Vienna, Austria
| | - Thomas A Leonard
- Department of Structural and Computational Biology, Max F. Perutz Laboratories (MFPL), Campus Vienna Biocenter 5, 1030, Vienna, Austria.
- Department of Medical Biochemistry, Medical University of Vienna, 1090, Vienna, Austria.
| |
Collapse
|
50
|
Katoh K. Activation of Rho-kinase and focal adhesion kinase regulates the organization of stress fibers and focal adhesions in the central part of fibroblasts. PeerJ 2017; 5:e4063. [PMID: 29158989 PMCID: PMC5694213 DOI: 10.7717/peerj.4063] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 10/29/2017] [Indexed: 12/12/2022] Open
Abstract
Specific regulation and activation of focal adhesion kinase (FAK) are thought to be important for focal adhesion formation, and activation of Rho-kinase has been suggested to play a role in determining the effects of FAK on the formation of stress fibers and focal adhesions. To clarify the role of FAK in stress fiber formation and focal adhesion organization, the author examined the formation of new stress fibers and focal adhesions by activation of Rho-kinase in FAK knockout (FAK–/–) fibroblasts. FAK–/– cells were elliptical in shape, and showed reduced numbers of stress fibers and focal adhesions in the central part of the cells along with large focal adhesions in the peripheral regions. Activation of Rho-kinase in FAK–/– cells transiently increased the actin filaments in the cell center, but these did not form typical thick stress fibers. Moreover, only plaque-like structures as the origins of newly formed focal adhesions were observed in the center of the cell. Furthermore, introduction of an exogenous GFP-labeled FAK gene into FAK–/– cells resulted in increased numbers of stress fibers and focal adhesions in the center of the cells, which showed typical fibroblast morphology. These results indicated that FAK plays an important role in the formation of stress fibers and focal adhesions as well as in regulation of cell shape and morphology with the activation of Rho-kinase.
Collapse
Affiliation(s)
- Kazuo Katoh
- Laboratory of Human Anatomy and Cell Biology, Faculty of Health Sciences, Tsukuba University of Technology, Tsukuba-city, Ibaraki, Japan
| |
Collapse
|