1
|
Saecker RM, Mueller AU, Malone B, Chen J, Budell WC, Dandey VP, Maruthi K, Mendez JH, Molina N, Eng ET, Yen LY, Potter CS, Carragher B, Darst SA. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. Nat Struct Mol Biol 2024; 31:1778-1788. [PMID: 38951624 PMCID: PMC11821292 DOI: 10.1038/s41594-024-01349-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 06/06/2024] [Indexed: 07/03/2024]
Abstract
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAPs), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, here we use time-resolved cryogenic electron microscopy (cryo-EM) to capture four intermediates populated 120 ms or 500 ms after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed that the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As the nt-strand 'read-out' extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating that yet unknown conformational changes complete RPo formation in subsequent steps. Given that these events likely describe DNA opening at many bacterial promoters, this study provides insights into how DNA sequence regulates steps of RPo formation.
Collapse
Affiliation(s)
- Ruth M Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Andreas U Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Memorial Sloan Kettering Cancer Center, Sloan Kettering Institute, New York, NY, USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
- Laboratory of Host-Pathogen Biology, The Rockefeller University, New York, NY, USA
| | - William C Budell
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Venkata P Dandey
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- National Institute of Environmental Health Sciences, Durham, NC, USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Joshua H Mendez
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Laura Y Yen
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
| | - Clinton S Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Chan Zuckerberg Imaging Institute, San Francisco, CA, USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY, USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
- Chan Zuckerberg Imaging Institute, San Francisco, CA, USA
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY, USA.
| |
Collapse
|
2
|
Lu X, Ni P, Suarez-Meade P, Ma Y, Forrest EN, Wang G, Wang Y, Quiñones-Hinojosa A, Gerstein M, Jiang YH. Transcriptional determinism and stochasticity contribute to the complexity of autism-associated SHANK family genes. Cell Rep 2024; 43:114376. [PMID: 38900637 PMCID: PMC11328446 DOI: 10.1016/j.celrep.2024.114376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 05/08/2024] [Accepted: 05/31/2024] [Indexed: 06/22/2024] Open
Abstract
Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3-mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We apply an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in humans and mice. We unexpectedly discover an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts are altered in Shank3-mutant mice and postmortem brain tissues from individuals with autism spectrum disorder. The enhanced SHANK3 transcriptome significantly improves the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest that both deterministic and stochastic transcription of the genome is associated with SHANK family genes.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Pengyu Ni
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA
| | | | - Yu Ma
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | - Emily Niemitz Forrest
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Guilin Wang
- Keck Microarray Shared Resource, Yale University School of Medicine, New Haven, CT 06520, USA
| | - Yi Wang
- Department of Neurology, Children's Hospital of Fudan University, Shanghai 201102, China
| | | | - Mark Gerstein
- Program in Computational Biology and Bioinformatics, Yale University, New Haven, CT 06520, USA; Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520, USA; Department of Computer Science, Yale University, New Haven, CT 06520, USA; Department of Statistics and Data Science, Yale University, New Haven, CT 06520, USA; Department of Biomedical Informatics & Data Science, Yale University, New Haven, CT 06520, USA
| | - Yong-Hui Jiang
- Department of Genetics, Yale University School of Medicine, New Haven, CT 06520, USA; Neuroscience, Yale University School of Medicine, New Haven, CT 06520, USA; Pediatrics, Yale University School of Medicine, New Haven, CT 06520, USA.
| |
Collapse
|
3
|
Tarău D, Grünberger F, Pilsl M, Reichelt R, Heiß F, König S, Urlaub H, Hausner W, Engel C, Grohmann D. Structural basis of archaeal RNA polymerase transcription elongation and Spt4/5 recruitment. Nucleic Acids Res 2024; 52:6017-6035. [PMID: 38709902 PMCID: PMC11162788 DOI: 10.1093/nar/gkae282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 05/08/2024] Open
Abstract
Archaeal transcription is carried out by a multi-subunit RNA polymerase (RNAP) that is highly homologous in structure and function to eukaryotic RNAP II. Among the set of basal transcription factors, only Spt5 is found in all domains of life, but Spt5 has been shaped during evolution, which is also reflected in the heterodimerization of Spt5 with Spt4 in Archaea and Eukaryotes. To unravel the mechanistic basis of Spt4/5 function in Archaea, we performed structure-function analyses using the archaeal transcriptional machinery of Pyrococcus furiosus (Pfu). We report single-particle cryo-electron microscopy reconstructions of apo RNAP and the archaeal elongation complex (EC) in the absence and presence of Spt4/5. Surprisingly, Pfu Spt4/5 also binds the RNAP in the absence of nucleic acids in a distinct super-contracted conformation. We show that the RNAP clamp/stalk module exhibits conformational flexibility in the apo state of RNAP and that the enzyme contracts upon EC formation or Spt4/5 engagement. We furthermore identified a contact of the Spt5-NGN domain with the DNA duplex that stabilizes the upstream boundary of the transcription bubble and impacts Spt4/5 activity in vitro. This study, therefore, provides the structural basis for Spt4/5 function in archaeal transcription and reveals a potential role beyond the well-described support of elongation.
Collapse
Affiliation(s)
- Daniela Tarău
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Felix Grünberger
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Michael Pilsl
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Robert Reichelt
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Florian Heiß
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Sabine König
- Bioanalytic Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytic Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, 37077 Göttingen, Germany
- Department of Clinical Chemistry, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Winfried Hausner
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
| | - Christoph Engel
- Regensburg Center for Biochemistry (RCB), Structural Biochemistry Group, University of Regensburg, Regensburg, Germany
| | - Dina Grohmann
- Institute of Microbiology & Archaea Centre, Single-Molecule Biochemistry Lab, University of Regensburg, 93053 Regensburg, Germany
- Regensburg Center for Biochemistry (RCB), University of Regensburg, 93053 Regensburg, Germany
| |
Collapse
|
4
|
Bu F, Wang X, Li M, Ma L, Wang C, Hu Y, Cao Z, Liu B. Cryo-EM Structure of Porphyromonas gingivalis RNA Polymerase. J Mol Biol 2024; 436:168568. [PMID: 38583515 DOI: 10.1016/j.jmb.2024.168568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
Porphyromonas gingivalis, an anaerobic CFB (Cytophaga, Fusobacterium, and Bacteroides) group bacterium, is the keystone pathogen of periodontitis and has been implicated in various systemic diseases. Increased antibiotic resistance and lack of effective antibiotics necessitate a search for new intervention strategies. Here we report a 3.5 Å resolution cryo-EM structure of P. gingivalis RNA polymerase (RNAP). The structure displays new structural features in its ω subunit and multiple domains in β and β' subunits, which differ from their counterparts in other bacterial RNAPs. Superimpositions with E. coli RNAP holoenzyme and initiation complex further suggest that its ω subunit may contact the σ4 domain, thereby possibly contributing to the assembly and stabilization of initiation complexes. In addition to revealing the unique features of P. gingivalis RNAP, our work offers a framework for future studies of transcription regulation in this important pathogen, as well as for structure-based drug development.
Collapse
Affiliation(s)
- Fan Bu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA
| | - Xiaoxuan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengke Li
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China
| | - Li Ma
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Chuan Wang
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yangbo Hu
- State Key Laboratory of Virology, Wuhan Institute of Virology, Center for Biosafety Mega-Science, Chinese Academy of Sciences, Wuhan, China.
| | - Zhengguo Cao
- State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST KLOS) & Key Laboratory of Oral Biomedicine Ministry of Education (KLOBME), School & Hospital of Stomatology, Wuhan University, Wuhan, China; Department of Periodontology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Bin Liu
- Section of Transcription & Gene Regulation, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
5
|
Lu X, Ni P, Suarez-Meade P, Ma Y, Forrest EN, Wang G, Wang Y, Quiñones-Hinojosa A, Gerstein M, Jiang YH. Transcriptional Determinism and Stochasticity Contribute to the Complexity of Autism Associated SHANK Family Genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.18.585480. [PMID: 38562714 PMCID: PMC10983920 DOI: 10.1101/2024.03.18.585480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Precision of transcription is critical because transcriptional dysregulation is disease causing. Traditional methods of transcriptional profiling are inadequate to elucidate the full spectrum of the transcriptome, particularly for longer and less abundant mRNAs. SHANK3 is one of the most common autism causative genes. Twenty-four Shank3 mutant animal lines have been developed for autism modeling. However, their preclinical validity has been questioned due to incomplete Shank3 transcript structure. We applied an integrative approach combining cDNA-capture and long-read sequencing to profile the SHANK3 transcriptome in human and mice. We unexpectedly discovered an extremely complex SHANK3 transcriptome. Specific SHANK3 transcripts were altered in Shank3 mutant mice and postmortem brains tissues from individuals with ASD. The enhanced SHANK3 transcriptome significantly improved the detection rate for potential deleterious variants from genomics studies of neuropsychiatric disorders. Our findings suggest the stochastic transcription of genome associated with SHANK family genes.
Collapse
Affiliation(s)
- Xiaona Lu
- Department of Genetics, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Pengyu Ni
- Biomedical Informatics & Data Science, Yale University School of Medicine New Haven, CT, 06520 USA
| | | | - Yu Ma
- Department of Neurology, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | | | - Guilin Wang
- Yale Center for Genome Analysis, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Yi Wang
- Department of Neurology, Children’s Hospital of Fudan University, Shanghai, 201102 China
| | | | - Mark Gerstein
- Biomedical Informatics & Data Science, Yale University School of Medicine New Haven, CT, 06520 USA
- Yale Center for Genome Analysis, Yale University School of Medicine New Haven, CT, 06520 USA
| | - Yong-hui Jiang
- Department of Genetics, Yale University School of Medicine New Haven, CT, 06520 USA
- Neuroscienc, Yale University School of Medicine New Haven, CT, 06520 USA
- Pediatrics, Yale University School of Medicine New Haven, CT, 06520 USA
| |
Collapse
|
6
|
Saecker RM, Mueller AU, Malone B, Chen J, Budell WC, Dandey VP, Maruthi K, Mendez JH, Molina N, Eng ET, Yen LY, Potter CS, Carragher B, Darst SA. Early intermediates in bacterial RNA polymerase promoter melting visualized by time-resolved cryo-electron microscopy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.13.584744. [PMID: 38559232 PMCID: PMC10979975 DOI: 10.1101/2024.03.13.584744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
During formation of the transcription-competent open complex (RPo) by bacterial RNA polymerases (RNAP), transient intermediates pile up before overcoming a rate-limiting step. Structural descriptions of these interconversions in real time are unavailable. To address this gap, time-resolved cryo-electron microscopy (cryo-EM) was used to capture four intermediates populated 120 or 500 milliseconds (ms) after mixing Escherichia coli σ70-RNAP and the λPR promoter. Cryo-EM snapshots revealed the upstream edge of the transcription bubble unpairs rapidly, followed by stepwise insertion of two conserved nontemplate strand (nt-strand) bases into RNAP pockets. As nt-strand "read-out" extends, the RNAP clamp closes, expelling an inhibitory σ70 domain from the active-site cleft. The template strand is fully unpaired by 120 ms but remains dynamic, indicating yet unknown conformational changes load it in subsequent steps. Because these events likely describe DNA opening at many bacterial promoters, this study provides needed insights into how DNA sequence regulates steps of RPo formation.
Collapse
Affiliation(s)
- Ruth M. Saecker
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Andreas U. Mueller
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Brandon Malone
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - William C. Budell
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Venkata P. Dandey
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Kashyap Maruthi
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Joshua H. Mendez
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Nina Molina
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| | - Edward T. Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Laura Y. Yen
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
| | - Clinton S. Potter
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Bridget Carragher
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York, NY USA
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY USA
| | - Seth A. Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, NY 10065 USA
| |
Collapse
|
7
|
Kang JY, Llewellyn E, Chen J, Olinares PDB, Brewer J, Chait BT, Campbell EA, Darst SA. Structural basis for transcription complex disruption by the Mfd translocase. eLife 2021; 10:62117. [PMID: 33480355 PMCID: PMC7864632 DOI: 10.7554/elife.62117] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 01/21/2021] [Indexed: 12/30/2022] Open
Abstract
Transcription-coupled repair (TCR) is a sub-pathway of nucleotide excision repair (NER) that preferentially removes lesions from the template-strand (t-strand) that stall RNA polymerase (RNAP) elongation complexes (ECs). Mfd mediates TCR in bacteria by removing the stalled RNAP concealing the lesion and recruiting Uvr(A)BC. We used cryo-electron microscopy to visualize Mfd engaging with a stalled EC and attempting to dislodge the RNAP. We visualized seven distinct Mfd-EC complexes in both ATP and ADP-bound states. The structures explain how Mfd is remodeled from its repressed conformation, how the UvrA-interacting surface of Mfd is hidden during most of the remodeling process to prevent premature engagement with the NER pathway, how Mfd alters the RNAP conformation to facilitate disassembly, and how Mfd forms a processive translocation complex after dislodging the RNAP. Our results reveal an elaborate mechanism for how Mfd kinetically discriminates paused from stalled ECs and disassembles stalled ECs to initiate TCR.
Collapse
Affiliation(s)
- Jin Young Kang
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Eliza Llewellyn
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - James Chen
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Paul Dominic B Olinares
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Joshua Brewer
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Brian T Chait
- Laboratory of Mass Spectrometry and Gaseous Ion Chemistry, The Rockefeller University, New York, United States
| | - Elizabeth A Campbell
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| | - Seth A Darst
- Laboratory of Molecular Biophysics, The Rockefeller University, New York, United States
| |
Collapse
|
8
|
Duchi D, Mazumder A, Malinen AM, Ebright RH, Kapanidis AN. The RNA polymerase clamp interconverts dynamically among three states and is stabilized in a partly closed state by ppGpp. Nucleic Acids Res 2018; 46:7284-7295. [PMID: 29878276 PMCID: PMC6101503 DOI: 10.1093/nar/gky482] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Revised: 05/09/2018] [Accepted: 05/16/2018] [Indexed: 02/06/2023] Open
Abstract
RNA polymerase (RNAP) contains a mobile structural module, the 'clamp,' that forms one wall of the RNAP active-center cleft and that has been linked to crucial aspects of the transcription cycle, including promoter melting, transcription elongation complex stability, transcription pausing, and transcription termination. Using single-molecule FRET on surface-immobilized RNAP molecules, we show that the clamp in RNAP holoenzyme populates three distinct conformational states and interconvert between these states on the 0.1-1 s time-scale. Similar studies confirm that the RNAP clamp is closed in open complex (RPO) and in initial transcribing complexes (RPITC), including paused initial transcribing complexes, and show that, in these complexes, the clamp does not exhibit dynamic behaviour. We also show that, the stringent-response alarmone ppGpp, which reprograms transcription during amino acid starvation stress, selectively stabilizes the partly-closed-clamp state and prevents clamp opening; these results raise the possibility that ppGpp controls promoter opening by modulating clamp dynamics.
Collapse
Affiliation(s)
- Diego Duchi
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Abhishek Mazumder
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
- Waksman Institute of Microbiology and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Anssi M Malinen
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Richard H Ebright
- Waksman Institute of Microbiology and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Achillefs N Kapanidis
- Biological Physics Research Group, Clarendon Laboratory, Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| |
Collapse
|
9
|
Lin W, Das K, Degen D, Mazumder A, Duchi D, Wang D, Ebright YW, Ebright RY, Sineva E, Gigliotti M, Srivastava A, Mandal S, Jiang Y, Liu Y, Yin R, Zhang Z, Eng ET, Thomas D, Donadio S, Zhang H, Zhang C, Kapanidis AN, Ebright RH. Structural Basis of Transcription Inhibition by Fidaxomicin (Lipiarmycin A3). Mol Cell 2018; 70:60-71.e15. [PMID: 29606590 PMCID: PMC6205224 DOI: 10.1016/j.molcel.2018.02.026] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 02/14/2018] [Accepted: 02/23/2018] [Indexed: 12/16/2022]
Abstract
Fidaxomicin is an antibacterial drug in clinical use for treatment of Clostridium difficile diarrhea. The active ingredient of fidaxomicin, lipiarmycin A3 (Lpm), functions by inhibiting bacterial RNA polymerase (RNAP). Here we report a cryo-EM structure of Mycobacterium tuberculosis RNAP holoenzyme in complex with Lpm at 3.5-Å resolution. The structure shows that Lpm binds at the base of the RNAP "clamp." The structure exhibits an open conformation of the RNAP clamp, suggesting that Lpm traps an open-clamp state. Single-molecule fluorescence resonance energy transfer experiments confirm that Lpm traps an open-clamp state and define effects of Lpm on clamp dynamics. We suggest that Lpm inhibits transcription by trapping an open-clamp state, preventing simultaneous interaction with promoter -10 and -35 elements. The results account for the absence of cross-resistance between Lpm and other RNAP inhibitors, account for structure-activity relationships of Lpm derivatives, and enable structure-based design of improved Lpm derivatives.
Collapse
Affiliation(s)
- Wei Lin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kalyan Das
- Rega Institute and Department of Microbiology and Immunology, KU Leuven, 3000 Leuven, Belgium.
| | - David Degen
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Abhishek Mazumder
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Diego Duchi
- Department of Physics, University of Oxford, Oxford OX1 3PU, UK
| | - Dongye Wang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yon W Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Richard Y Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Elena Sineva
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Matthew Gigliotti
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Aashish Srivastava
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Sukhendu Mandal
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yi Jiang
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Yu Liu
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Ruiheng Yin
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Zhening Zhang
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Edward T Eng
- The National Resource for Automated Molecular Microscopy, Simons Electron Microscopy Center, New York Structural Biology Center, New York NY 10027, USA
| | - Dennis Thomas
- Center for Integrative Proteomics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Haibo Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Changsheng Zhang
- South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | | | - Richard H Ebright
- Waksman Institute and Department of Chemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
10
|
Zhang N, Schäfer J, Sharma A, Rayner L, Zhang X, Tuma R, Stockley P, Buck M. Mutations in RNA Polymerase Bridge Helix and Switch Regions Affect Active-Site Networks and Transcript-Assisted Hydrolysis. J Mol Biol 2015; 427:3516-3526. [PMID: 26365052 PMCID: PMC4641871 DOI: 10.1016/j.jmb.2015.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 09/02/2015] [Accepted: 09/03/2015] [Indexed: 11/21/2022]
Abstract
In bacterial RNA polymerase (RNAP), the bridge helix and switch regions form an intricate network with the catalytic active centre and the main channel. These interactions are important for catalysis, hydrolysis and clamp domain movement. By targeting conserved residues in Escherichia coli RNAP, we are able to show that functions of these regions are differentially required during σ70-dependent and the contrasting σ54-dependent transcription activations and thus potentially underlie the key mechanistic differences between the two transcription paradigms. We further demonstrate that the transcription factor DksA directly regulates σ54-dependent activation both positively and negatively. This finding is consistent with the observed impacts of DksA on σ70-dependent promoters. DksA does not seem to significantly affect RNAP binding to a pre-melted promoter DNA but affects extensively activity at the stage of initial RNA synthesis on σ54-regulated promoters. Strikingly, removal of the σ54 Region I is sufficient to invert the action of DksA (from stimulation to inhibition or vice versa) at two test promoters. The RNAP mutants we generated also show a strong propensity to backtrack. These mutants increase the rate of transcript-hydrolysis cleavage to a level comparable to that seen in the Thermus aquaticus RNAP even in the absence of a non-complementary nucleotide. These novel phenotypes imply an important function of the bridge helix and switch regions as an anti-backtracking ratchet and an RNA hydrolysis regulator. The bridge helix and switch regions form an intricate network in RNAP. The σ70 and σ54 transcription systems differentially use this interaction network. Transcription factor DksA and σ54 Region I also contribute to this network. Disruption of this network enhances backtracking and intrinsic RNA hydrolysis.
Collapse
Affiliation(s)
- Nan Zhang
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| | - Jorrit Schäfer
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Amit Sharma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Lucy Rayner
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Xiaodong Zhang
- Division of Macromolecular Structure and Function, Imperial College London, Exhibition Road, London SW7 2AZ, United Kingdom
| | - Roman Tuma
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Peter Stockley
- Astbury Centre for Structural Molecular Biology, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Martin Buck
- Division of Cell and Molecular Biology, Imperial College London, Sir Alexander Fleming Building, Exhibition Road, London SW7 2AZ, United Kingdom.
| |
Collapse
|
11
|
Rifampicin-resistance, rpoB polymorphism and RNA polymerase genetic engineering. J Biotechnol 2015; 202:60-77. [DOI: 10.1016/j.jbiotec.2014.11.024] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 11/22/2014] [Accepted: 11/26/2014] [Indexed: 01/22/2023]
|
12
|
In situ footprinting of E. coli transcription elongation complex with chloroacetaldehyde. Methods Mol Biol 2015. [PMID: 25665567 DOI: 10.1007/978-1-4939-2392-2_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
The structure and dynamics of Escherichia coli transcription elongation complex are now well documented. However, most of the studies have been conducted in vitro and frequently under artificial conditions that facilitate the biochemical characterization of the complex. Thus, little is known about relevance of these results for the regulatory aspects of transcription elongation inside the cell. Here, we describe the use of a single-strand-specific probe chloroacetaldehyde for in situ footprinting of E. coli elongation complex temporarily halted by a protein roadblock. The method provides valuable information on the dynamic features of transcriptionally engaged RNA polymerase within the cellular environment.
Collapse
|
13
|
Mekler V, Minakhin L, Borukhov S, Mustaev A, Severinov K. Coupling of downstream RNA polymerase-promoter interactions with formation of catalytically competent transcription initiation complex. J Mol Biol 2014; 426:3973-3984. [PMID: 25311862 DOI: 10.1016/j.jmb.2014.10.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2014] [Revised: 10/05/2014] [Accepted: 10/06/2014] [Indexed: 01/22/2023]
Abstract
Bacterial RNA polymerase (RNAP) makes extensive contacts with duplex DNA downstream of the transcription bubble in initiation and elongation complexes. We investigated the role of downstream interactions in formation of catalytically competent transcription initiation complex by measuring initiation activity of stable RNAP complexes with model promoter DNA fragments whose downstream ends extend from +3 to +21 relative to the transcription start site at +1. We found that DNA downstream of position +6 does not play a significant role in transcription initiation when RNAP-promoter interactions upstream of the transcription start site are strong and promoter melting region is AT rich. Further shortening of downstream DNA dramatically reduces efficiency of transcription initiation. The boundary of minimal downstream DNA duplex needed for efficient transcription initiation shifted further away from the catalytic center upon increasing the GC content of promoter melting region or in the presence of bacterial stringent response regulators DksA and ppGpp. These results indicate that the strength of RNAP-downstream DNA interactions has to reach a certain threshold to retain the catalytically competent conformation of the initiation complex and that establishment of contacts between RNAP and downstream DNA can be coupled with promoter melting. The data further suggest that RNAP interactions with DNA immediately downstream of the transcription bubble are particularly important for initiation of transcription. We hypothesize that these active center-proximal contacts stabilize the DNA template strand in the active center cleft and/or position the RNAP clamp domain to allow RNA synthesis.
Collapse
Affiliation(s)
- Vladimir Mekler
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA.
| | - Leonid Minakhin
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA
| | - Sergei Borukhov
- Rowan University School of Osteopathic Medicine, Stratford, NJ 08084, USA
| | - Arkady Mustaev
- Public Health Research Institute Center, New Jersey Medical School, Department of Microbiology and Molecular Genetics, University of Medicine and Dentistry of New Jersey, NJ 07103, USA
| | - Konstantin Severinov
- Waksman Institute of Microbiology, Rutgers, The State University of New Jersey, NJ 08854, USA; Department of Biochemistry and Molecular Biology, Rutgers, The State University of New Jersey, Piscataway, NJ 08854, USA; Institutes of Gene Biology and Molecular Genetics, Russian Academy of Sciences, Leninsky Avenue, 14, 119991 Moscow, Russia.
| |
Collapse
|
14
|
Tomar SK, Artsimovitch I. NusG-Spt5 proteins-Universal tools for transcription modification and communication. Chem Rev 2013; 113:8604-19. [PMID: 23638618 PMCID: PMC4259564 DOI: 10.1021/cr400064k] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Sushil Kumar Tomar
- Department of Microbiology and The Center for RNA Biology, The Ohio State University , Columbus, Ohio 43210, United States
| | | |
Collapse
|
15
|
Wiesler SC, Burrows PC, Buck M. A dual switch controls bacterial enhancer-dependent transcription. Nucleic Acids Res 2012; 40:10878-92. [PMID: 22965125 PMCID: PMC3505966 DOI: 10.1093/nar/gks844] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2012] [Revised: 08/13/2012] [Accepted: 08/13/2012] [Indexed: 12/31/2022] Open
Abstract
Bacterial RNA polymerases (RNAPs) are targets for antibiotics. Myxopyronin binds to the RNAP switch regions to block structural rearrangements needed for formation of open promoter complexes. Bacterial RNAPs containing the major variant σ(54) factor are activated by enhancer-binding proteins (bEBPs) and transcribe genes whose products are needed in pathogenicity and stress responses. We show that (i) enhancer-dependent RNAPs help Escherichia coli to survive in the presence of myxopyronin, (ii) enhancer-dependent RNAPs partially resist inhibition by myxopyronin and (iii) ATP hydrolysis catalysed by bEBPs is obligatory for functional interaction of the RNAP switch regions with the transcription start site. We demonstrate that enhancer-dependent promoters contain two barriers to full DNA opening, allowing tight regulation of transcription initiation. bEBPs engage in a dual switch to (i) allow propagation of nucleated DNA melting from an upstream DNA fork junction and (ii) complete the formation of the transcription bubble and downstream DNA fork junction at the RNA synthesis start site, resulting in switch region-dependent RNAP clamp closure and open promoter complex formation.
Collapse
Affiliation(s)
- Simone C. Wiesler
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| | | | - Martin Buck
- Department of Life Sciences, Imperial College London, Sir Alexander Fleming Building, London SW7 2AZ, UK
| |
Collapse
|
16
|
Chakraborty A, Wang D, Ebright YW, Korlann Y, Kortkhonjia E, Kim T, Chowdhury S, Wigneshweraraj S, Irschik H, Jansen R, Nixon BT, Knight J, Weiss S, Ebright RH. Opening and closing of the bacterial RNA polymerase clamp. Science 2012; 337:591-5. [PMID: 22859489 DOI: 10.1126/science.1218716] [Citation(s) in RCA: 174] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Using single-molecule fluorescence resonance energy transfer, we have defined bacterial RNA polymerase (RNAP) clamp conformation at each step in transcription initiation and elongation. We find that the clamp predominantly is open in free RNAP and early intermediates in transcription initiation but closes upon formation of a catalytically competent transcription initiation complex and remains closed during initial transcription and transcription elongation. We show that four RNAP inhibitors interfere with clamp opening. We propose that clamp opening allows DNA to be loaded into and unwound in the RNAP active-center cleft, that DNA loading and unwinding trigger clamp closure, and that clamp closure accounts for the high stability of initiation complexes and the high stability and processivity of elongation complexes.
Collapse
Affiliation(s)
- Anirban Chakraborty
- Howard Hughes Medical Institute, Waksman Institute, and Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, NJ 08854, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Sevostyanova A, Belogurov GA, Mooney RA, Landick R, Artsimovitch I. The β subunit gate loop is required for RNA polymerase modification by RfaH and NusG. Mol Cell 2012; 43:253-62. [PMID: 21777814 DOI: 10.1016/j.molcel.2011.05.026] [Citation(s) in RCA: 90] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 02/25/2011] [Accepted: 05/16/2011] [Indexed: 10/18/2022]
Abstract
In all organisms, RNA polymerase (RNAP) relies on accessory factors to complete synthesis of long RNAs. These factors increase RNAP processivity by reducing pausing and termination, but their molecular mechanisms remain incompletely understood. We identify the β gate loop as an RNAP element required for antipausing activity of a bacterial virulence factor RfaH, a member of the universally conserved NusG family. Interactions with the gate loop are necessary for suppression of pausing and termination by RfaH, but are dispensable for RfaH binding to RNAP mediated by the β' clamp helices. We hypothesize that upon binding to the clamp helices and the gate loop RfaH bridges the gap across the DNA channel, stabilizing RNAP contacts with nucleic acid and disfavoring isomerization into a paused state. We show that contacts with the gate loop are also required for antipausing by NusG and propose that most NusG homologs use similar mechanisms to increase RNAP processivity.
Collapse
Affiliation(s)
- Anastasia Sevostyanova
- Department of Microbiology and the RNA Group, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
18
|
Peters JM, Vangeloff AD, Landick R. Bacterial transcription terminators: the RNA 3'-end chronicles. J Mol Biol 2011; 412:793-813. [PMID: 21439297 PMCID: PMC3622210 DOI: 10.1016/j.jmb.2011.03.036] [Citation(s) in RCA: 242] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2011] [Revised: 03/14/2011] [Accepted: 03/16/2011] [Indexed: 01/01/2023]
Abstract
The process of transcription termination is essential to proper expression of bacterial genes and, in many cases, to the regulation of bacterial gene expression. Two types of bacterial transcriptional terminators are known to control gene expression. Intrinsic terminators dissociate transcription complexes without the assistance of auxiliary factors. Rho-dependent terminators are sites of dissociation mediated by an RNA helicase called Rho. Despite decades of study, the molecular mechanisms of both intrinsic and Rho-dependent termination remain uncertain in key details. Most knowledge is based on the study of a small number of model terminators. The extent of sequence diversity among functional terminators and the extent of mechanistic variation as a function of sequence diversity are largely unknown. In this review, we consider the current state of knowledge about bacterial termination mechanisms and the relationship between terminator sequence and steps in the termination mechanism.
Collapse
Affiliation(s)
- Jason M. Peters
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Abbey D. Vangeloff
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
| | - Robert Landick
- Department of Biochemistry, University of Wisconsin, Madison, WI 53706, USA
- Department of Bacteriology, University of Wisconsin, Madison, WI 53706, USA
| |
Collapse
|
19
|
Rabhi M, Rahmouni AR, Boudvillain M. Transcription Termination Factor Rho: A Ring-Shaped RNA Helicase from Bacteria. RNA HELICASES 2010. [DOI: 10.1039/9781849732215-00243] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Makhlouf Rabhi
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
- Ecole doctorale Sciences et Technologies, Université d’Orléans France
| | - A. Rachid Rahmouni
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| | - Marc Boudvillain
- Centre de Biophysique Moléculaire (UPR4301) CNRS rue Charles Sadron 45071 Orléans cedex 2 France
| |
Collapse
|
20
|
Transcript Slippage and Recoding. RECODING: EXPANSION OF DECODING RULES ENRICHES GENE EXPRESSION 2010. [DOI: 10.1007/978-0-387-89382-2_19] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
21
|
In vivo dynamics of intracistronic transcriptional polarity. J Mol Biol 2008; 385:733-47. [PMID: 19059415 DOI: 10.1016/j.jmb.2008.11.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2008] [Revised: 11/09/2008] [Accepted: 11/12/2008] [Indexed: 11/24/2022]
Abstract
Transcriptional polarity occurs in Escherichia coli when cryptic Rho-dependent transcription terminators become activated as a consequence of reduced translation. Increased spacing between RNA polymerase and the leading ribosome allows the transcription termination factor Rho to bind to mRNA, migrate to the RNA polymerase, and induce termination. Transcriptional polarity results in decreased synthesis of inefficiently translated mRNAs and, therefore, in decreased expression not only of downstream genes in the same operon (intercistronic polarity) but also of the cistron in which termination occurs (intracistronic polarity). To quantitatively measure the effect of different levels of translation on intracistronic transcription termination, the polarity-prone lacZ reporter gene was fused to a range of mutated ribosome binding sites, repressed to different degrees by local RNA structure. The results show that polarity gradually increases with decreasing frequency of translational initiation, as expected. Closer analysis, with the help of a newly developed kinetic model, reveals that efficient intracistronic termination requires very low translational initiation frequencies. This finding is unexpected because Rho is a relatively small protein that binds rapidly to its RNA target, but it appears to be true also for other examples of transcriptional polarity reported in the literature. The conclusion must be that polarity is more complex than just an increased exposure of the Rho binding site as the spacing between the polymerase and the leading ribosome becomes larger. Biological consequences and possible mechanisms are discussed.
Collapse
|
22
|
Lewis DEA, Komissarova N, Le P, Kashlev M, Adhya S. DNA sequences in gal operon override transcription elongation blocks. J Mol Biol 2008; 382:843-58. [PMID: 18691599 PMCID: PMC2632883 DOI: 10.1016/j.jmb.2008.07.060] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/12/2008] [Accepted: 07/23/2008] [Indexed: 12/01/2022]
Abstract
The DNA loop that represses transcription from galactose (gal) promoters is infrequently formed in stationary-phase cells because the concentration of the loop architectural protein HU is significantly low at that state, resulting in expression of the operon in the absence of the gal inducer D-galactose. Unexpectedly, transcription from the gal promoters under these conditions overrides physical block because of the presence of the Gal repressor bound to an internal operator (O(I)) located downstream of the promoters. We have shown here that although a stretch of pyrimidine residues (UUCU) in the RNA:DNA hybrid located immediately upstream of O(I) weakens the RNA:DNA hybrid and favors RNA polymerase (RNAP) pausing and backtracking, a stretch of purines (GAGAG) in the RNA present immediately upstream of the pause sequence in the hybrid acts as an antipause element by stabilizing the RNA:DNA duplex and preventing backtracking. This facilitates forward translocation of RNAP, including overriding of the DNA-bound Gal repressor barrier at O(I). When the GAGAG sequence is separated from the pyrimidine sequence by a 5-bp DNA insertion, RNAP backtracking is favored from a weak hybrid to a more stable hybrid. RNAP backtracking is sensitive to Gre factors, D-galactose, and antisense oligonucleotides. The ability of a native DNA sequence to override transcription elongation blocks in the gal operon uncovers a previously unknown way of regulating gal metabolism in Escherichia coli. It also explains the synthesis of gal enzymes in the absence of inducer for biosynthetic reactions.
Collapse
Affiliation(s)
- Dale E A Lewis
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892-4264, USA.
| | | | | | | | | |
Collapse
|
23
|
Toulokhonov I, Zhang J, Palangat M, Landick R. A Central Role of the RNA Polymerase Trigger Loop in Active-Site Rearrangement during Transcriptional Pausing. Mol Cell 2007; 27:406-19. [PMID: 17679091 DOI: 10.1016/j.molcel.2007.06.008] [Citation(s) in RCA: 176] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 05/10/2007] [Accepted: 06/06/2007] [Indexed: 11/15/2022]
Abstract
Transcriptional pausing by RNA polymerase is an underlying event in the regulation of transcript elongation, yet the physical changes in the transcribing complex that create the initially paused conformation remain poorly understood. We report that this nonbacktracked elemental pause results from an active-site rearrangement whose signature includes a trigger-loop conformation positioned near the RNA 3' nucleotide and a conformation of betaDloopII that allows fraying of the RNA 3' nucleotide away from the DNA template. During nucleotide addition, trigger-loop movements or folding appears to assist NTP-stimulated translocation and to be crucial for catalysis. At a pause, the trigger loop directly contributes to the paused conformation, apparently by restriction of its movement or folding, whereas a previously postulated unfolding of the bridge helix does not. This trigger-loop-centric model can explain many properties of transcriptional pausing.
Collapse
|
24
|
Kyzer S, Ha KS, Landick R, Palangat M. Direct versus limited-step reconstitution reveals key features of an RNA hairpin-stabilized paused transcription complex. J Biol Chem 2007; 282:19020-8. [PMID: 17502377 DOI: 10.1074/jbc.m701483200] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have identified minimal nucleic acid scaffolds capable of reconstituting hairpin-stabilized paused transcription complexes when incubated with RNAP either directly or in a limited step reconstitution assay. Direct reconstitution was achieved using a 29-nucleotide (nt) RNA whose 3'-proximal 9-10 nt pair to template DNA within an 11-nt noncomplementary bubble of a 39-bp duplex DNA; the 5'-proximal 18 nt of RNA forms the his pause RNA hairpin. Limited-step reconstitution was achieved on the same DNAs using a 27-nt RNA that can be 3'-labeled during reconstitution and then extended 2 nt past the pause site to assay transcriptional pausing. Paused complexes formed by either method recapitulated key features of a promoter-initiated, hairpin-stabilized paused complex, including a slow rate of pause escape, resistance to transcript cleavage and pyrophosphorolysis, and enhancement of pausing by the elongation factor NusA. These findings establish that RNA upstream from the pause hairpin and pyrophosphate are not essential for pausing and for NusA action. Reconstitution of the his paused transcription complex provides a valuable tool for future studies of protein-nucleic interactions involved in transcriptional pausing.
Collapse
Affiliation(s)
- Scotty Kyzer
- Department of Biomolecular Chemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | |
Collapse
|
25
|
López N, Franze-Fernández MT. A single stem-loop structure in Tacaribe arenavirus intergenic region is essential for transcription termination but is not required for a correct initiation of transcription and replication. Virus Res 2006; 124:237-44. [PMID: 17125871 DOI: 10.1016/j.virusres.2006.10.007] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2006] [Revised: 08/17/2006] [Accepted: 10/20/2006] [Indexed: 10/23/2022]
Abstract
The genome of Tacaribe virus (TV), prototype of the New World arenaviruses, comprises two RNA segments each encoding two proteins in an ambisense orientation separated by an intergenic region (IGR). We used a TV minireplicon system to investigate the nature of the IGR structures required for transcription termination. We show that efficient generation of subgenomic (SG) RNAs is related to a single hairpin structure comprising a stem with variable numbers of uninterrupted base pairs and stabilized by high DeltaG values. The low ability of highly stable hairpin structures comprising bulged stems to support SG RNA synthesis suggested the importance of hairpin configuration for transcription termination. Neither the sequences downstream nor those upstream from the hairpin played a role in SG RNA accumulation. We also show that independently of the IGR structure the unencapsidated mRNAs contained short stretches of nontemplated bases at their 5' ends which are capped, whereas the 5' ends of the nucleocapsid-associated antiminigenomes contained an uncapped extra residue. The results support the conclusions that: (i) transcription termination in TV is related to a structural element that is independent of sequence and (ii) the transcription termination signal is not required for a correct initiation of transcription and replication.
Collapse
Affiliation(s)
- Nora López
- Centro de Virología Animal (CEVAN), Consejo Nacional de Investigaciones Científicas (CONICET), Serrano 669, C1414DEM Buenos Aires, Argentina.
| | | |
Collapse
|
26
|
Tadigotla VR, Maoiléidigh DÓ, Sengupta AM, Epshtein V, Ebright RH, Nudler E, Ruckenstein AE. Thermodynamic and kinetic modeling of transcriptional pausing. Proc Natl Acad Sci U S A 2006; 103:4439-44. [PMID: 16537373 PMCID: PMC1450190 DOI: 10.1073/pnas.0600508103] [Citation(s) in RCA: 83] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2005] [Indexed: 11/18/2022] Open
Abstract
We present a statistical mechanics approach for the prediction of backtracked pauses in bacterial transcription elongation derived from structural models of the transcription elongation complex (EC). Our algorithm is based on the thermodynamic stability of the EC along the DNA template calculated from the sequence-dependent free energy of DNA-DNA, DNA-RNA, and RNA-RNA base pairing associated with (i) the translocational and size fluctuations of the transcription bubble; (ii) changes in the associated DNA-RNA hybrid; and (iii) changes in the cotranscriptional RNA secondary structure upstream of the RNA exit channel. The calculations involve no adjustable parameters except for a cutoff used to discriminate paused from nonpaused complexes. When applied to 100 experimental pauses in transcription elongation by Escherichia coli RNA polymerase on 10 DNA templates, the approach produces statistically significant results. We also present a kinetic model for the rate of recovery of backtracked paused complexes. A crucial ingredient of our model is the incorporation of kinetic barriers to backtracking resulting from steric clashes of EC with the cotranscriptionally generated RNA secondary structure, an aspect not included explicitly in previous attempts at modeling the transcription elongation process.
Collapse
Affiliation(s)
| | | | - Anirvan M. Sengupta
- *BioMaPS Institute for Quantitative Biology
- Department of Physics and Astronomy
| | - Vitaly Epshtein
- Department of Biochemistry, New York University Medical Center, New York, NY 10016
| | - Richard H. Ebright
- *BioMaPS Institute for Quantitative Biology
- Department of Chemistry and Chemical Biology, and
- Howard Hughes Medical Institute and Waksman Institute, Rutgers, The State University of New Jersey, Piscataway, NJ 08854; and
| | - Evgeny Nudler
- Department of Biochemistry, New York University Medical Center, New York, NY 10016
| | | |
Collapse
|
27
|
Ederth J, Mooney RA, Isaksson LA, Landick R. Functional Interplay between the Jaw Domain of Bacterial RNA Polymerase and Allele-specific Residues in the Product RNA-binding Pocket. J Mol Biol 2006; 356:1163-79. [PMID: 16405998 DOI: 10.1016/j.jmb.2005.11.080] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2005] [Revised: 11/22/2005] [Accepted: 11/23/2005] [Indexed: 11/23/2022]
Abstract
Bacterial RNA polymerase (RNAP) is a complex molecular machine in which the network of interacting parts and their movements, including contacts to nascent RNA and the DNA template, are at best partially understood. The jaw domain is a part of RNAP that makes a key contact to duplex DNA as it enters the enzyme from downstream and also contacts two other parts of RNAP, the trigger loop, which lies in the RNAP secondary channel, and a sequence insertion in the Escherichia coli RNAP trigger loop that forms an external domain and also contacts downstream DNA. Deletion of the jaw domain causes defects in transcriptional pausing and in bacterial growth. We report here that these defects can be partially corrected by a limited set of substitutions in a distant part of RNAP, the product RNA-binding pocket. The product RNA-binding pocket binds nascent RNA upstream of the active site and is the binding site for the RNAP inhibitor rifampicin when RNA is absent. These substitutions have little effect on transcript elongation between pause sites and actually exacerbate jaw-deletion defects in transcription initiation, suggesting that the pausing defects may be principally responsible for the in vivo phenotype of the jaw deletion. We suggest that the counteracting effects on pausing of the alterations in the jaw and the product RNA binding site may be mediated either by effects on translocation or via allosteric communication to the RNAP active site.
Collapse
Affiliation(s)
- Josefine Ederth
- Department of Genetics Microbiology & Toxicology, Stockholm University, SE-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|
28
|
Kalogeraki VS, Tornaletti S, Cooper PK, Hanawalt PC. Comparative TFIIS-mediated transcript cleavage by mammalian RNA polymerase II arrested at a lesion in different transcription systems. DNA Repair (Amst) 2006; 4:1075-87. [PMID: 16046193 DOI: 10.1016/j.dnarep.2005.05.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2005] [Revised: 05/17/2005] [Accepted: 05/18/2005] [Indexed: 11/26/2022]
Abstract
Upon prolonged arrest at a cyclobutane pyrimidine dimer (CPD), RNAPII can reverse-translocate, misaligning the 3'-end of the RNA from its active site. Transcription factor SII (TFIIS) is required for cleavage of the disengaged 3'-end and restoration of its correct positioning. We have previously shown in vitro that when RNAPII is arrested at a CPD, TFIIS-induced cleavage results in shortened transcripts. Here, we hypothesized that the pattern of transcript cleavage does not depend solely upon TFIIS itself, but also on some other general transcription factors (GTFs) and/or their effects on RNAPII. To test this hypothesis we compared three in vitro transcription systems which differ with respect to the mode of initiation and the requirement for GTFs. The first consisted of RNAPII and GTFs from rat liver, and required a eukaryotic promoter for initiation. The other two supported transcription in the absence of any GTFs or promoter sequences. In each case, a CPD on the transcribed strand was a complete block for RNAPII translocation. However, the effect of TFIIS on transcript cleavage varied. In the promoter-initiated system, distinct transcripts up to about 20 nucleotides shorter than the uncleaved original one were produced. In the other two systems, the transcripts were degraded nearly completely. Introduction of GTFs partially interfered with cleavage, but failed to reproduce the pattern of transcript lengths observed with the promoter-initiated system. Our results suggest that the extent of TFIIS-mediated transcript cleavage is a well-orchestrated process, depending upon other factors (or their effects on RNAPII), in addition to TFIIS itself.
Collapse
Affiliation(s)
- Virginia S Kalogeraki
- Department of Biological Sciences, Stanford University, 371 Serra MAll, Stanford, CA 94305-5020, USA
| | | | | | | |
Collapse
|
29
|
Kegler C, Gerth K, Müller R. Establishment of a real-time PCR protocol for expression studies of secondary metabolite biosynthetic gene clusters in the G/C-rich myxobacterium Sorangium cellulosum So ce56. J Biotechnol 2006; 121:201-12. [PMID: 16324759 DOI: 10.1016/j.jbiotec.2005.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2005] [Revised: 09/22/2005] [Accepted: 10/10/2005] [Indexed: 10/25/2022]
Abstract
In the attempt to establish a reliable real-time PCR protocol for transcriptional analysis of secondary metabolism in Sorangium cellulosum strain So ce56, a RNA extraction method and a reverse transcription protocol was developed. In order to validate chivosazol or etnangien gene cluster transcripts as good candidates to develop the real-time PCR protocol, stability measurements of the transcripts were performed proving both transcripts to be very stable. The chivosazol biosynthetic gene cluster was taken as the test case to evaluate the special problems arising from the large size of the transcripts and the high G/C-content of the encoding DNA. A set of primer pairs targeting the presumed 90 kbp chivosazol transcript at different positions was employed. The production rate of chivosazol was compared to the transcription of the operon in time course experiments revealing that during the logarithmic growth phase transcription is maximally induced and levels out during the stationary phase. Some deviations in transcript numbers could be measured depending on the primer pair used, but cross-evaluation strengthened the notion that the measured numbers reflect the whole transcript quantities and the in vivo level. Finally, a putative promoter located between chiA and chiB was examined by using the developed real-time PCR protocol.
Collapse
Affiliation(s)
- Carsten Kegler
- Pharmaceutical Biotechnology, Saarland University, P.O. Box 151150, D-66041 Saarbrücken, Germany
| | | | | |
Collapse
|
30
|
Toulmé F, Mosrin-Huaman C, Artsimovitch I, Rahmouni AR. Transcriptional pausing in vivo: a nascent RNA hairpin restricts lateral movements of RNA polymerase in both forward and reverse directions. J Mol Biol 2005; 351:39-51. [PMID: 15993420 DOI: 10.1016/j.jmb.2005.05.052] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2005] [Revised: 05/12/2005] [Accepted: 05/23/2005] [Indexed: 11/24/2022]
Abstract
Transcriptional pausing by RNA polymerase has been the subject of extensive investigations in vitro, yet little is known about its occurrence and significance in vivo. The transient nature of the pausing events makes them difficult to observe inside the cell, whereas their studies in vitro by classical biochemical methods are usually conducted under non-physiological conditions that increase the pause duration. Here, we have used an Escherichia coli system in which several RNA polymerase molecules transcribing in tandem traverse a pausing sequence while approaching a protein roadblock. The in vivo DNA footprinting and RNA 3' end mapping of the elongation complexes are consistent with a dynamic view of the pausing event, during which RNA polymerase first loses its lateral stability and slides backward, and is subsequently rescued from extended backtracking and stabilized at the pause site by a nascent RNA hairpin. Our results show also that the folding of the hairpin provides an assisting force that promotes forward translocation of a trailing polymerase under a strained configuration by balancing the opposing force created by a steric clash with a leading elongation complex.
Collapse
Affiliation(s)
- Francine Toulmé
- Centre de Biophysique Moléculaire, UPR 4301 du CNRS, rue Charles Sadron, 45071 Orléans cédex 2, France
| | | | | | | |
Collapse
|
31
|
Kulbachinskiy A, Feklistov A, Krasheninnikov I, Goldfarb A, Nikiforov V. Aptamers to Escherichia coli core RNA polymerase that sense its interaction with rifampicin, sigma-subunit and GreB. ACTA ACUST UNITED AC 2005; 271:4921-31. [PMID: 15606780 DOI: 10.1111/j.1432-1033.2004.04461.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Bacterial RNA polymerase (RNAP) is the central enzyme of gene expression that is responsible for the synthesis of all types of cellular RNAs. The process of transcription is accompanied by complex structural rearrangements of RNAP. Despite the recent progress in structural studies of RNAP, detailed mechanisms of conformational changes of RNAP that occur at different stages of transcription remain unknown. The goal of this work was to obtain novel ligands to RNAP which would target different epitopes of the enzyme and serve as specific probes to study the mechanism of transcription and conformational flexibility of RNAP. Using in vitro selection methods, we obtained 13 classes of ssDNA aptamers against Escherichia coli core RNAP. The minimal nucleic acid scaffold (an oligonucleotide construct imitating DNA and RNA in elongation complex), rifampicin and the sigma70-subunit inhibited binding of the aptamers to RNAP core but did not affect the dissociation rate of preformed RNAP-aptamer complexes. We argue that these ligands sterically block access of the aptamers to their binding sites within the main RNAP channel. In contrast, transcript cleavage factor GreB increased the rate of dissociation of preformed RNAP-aptamer complexes. This suggested that GreB that binds RNAP outside the main channel actively disrupts RNAP-aptamer complexes by inducing conformational changes in the channel. We propose that the aptamers obtained in this work will be useful for studying the interactions of RNAP with various ligands and regulatory factors and for investigating the conformational flexibility of the enzyme.
Collapse
|
32
|
Abstract
During the last decade, chimeric RNA-DNA oligonucleotides (RDOs) and single-stranded oligodeoxynucleotides have been used to make permanent and specific sequence changes in the genome, with the ultimate goal of curing human genetic disorders caused by mutations. There have been large variations observed in the rate of gene repair in these studies. This has been due, at least in part, to the lack of standardized assay conditions and the paucity of mechanistic studies in the early developmental stages. Previously, it was proposed that strand pairing is the rate-limiting step and mismatch DNA repair is involved in the gene repair process. We propose an alternative model, in which an oligonucleotide is assimilated to the target DNA during active transcription, leading to formation of a transient D-loop. The trafficking of RNA polymerase is interrupted by the D-loop, and the stalled RNA polymerase complex may signal for recruitment of DNA repair proteins, including transcription-coupled DNA repair and nucleotide-excision repair. Thus, oligonucleotides can be considered as a class of DNA-damaging agents that cause a transient but major structural change in DNA. Understanding of the recognition and repair pathways to process this unusual DNA structure may have relevance in physiologic processes, transcription, and DNA replication.
Collapse
Affiliation(s)
- Olga Igoucheva
- Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Jefferson Medical College, Philadelphia, PA 19107, USA
| | | | | |
Collapse
|
33
|
Kireeva ML, Hancock B, Cremona GH, Walter W, Studitsky VM, Kashlev M. Nature of the nucleosomal barrier to RNA polymerase II. Mol Cell 2005; 18:97-108. [PMID: 15808512 DOI: 10.1016/j.molcel.2005.02.027] [Citation(s) in RCA: 187] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2004] [Revised: 01/20/2005] [Accepted: 02/23/2005] [Indexed: 11/16/2022]
Abstract
In the cell, RNA polymerase II (pol II) efficiently transcribes DNA packaged into nucleosomes, but in vitro encounters with the nucleosomes induce catalytic inactivation (arrest) of the pol II core enzyme. To determine potential mechanisms making nucleosomes transparent to transcription in vivo, we analyzed the nature of the nucleosome-induced arrest. We found that the arrests have been detected mostly at positions of strong intrinsic pause sites of DNA. The transient pausing makes pol II vulnerable to arrest, which involves backtracking of the elongation complex for a considerable distance on DNA. The histone-DNA contacts reestablished in front of pol II stabilize backtracked conformation of the polymerase. In agreement with this mechanism, blocking of backtracking prevents nucleosome-induced arrest. Transcript cleavage factor TFIIS reactivates the backtracked complexes and promotes pol II transcription through the nucleosome. Our findings establish the crucial role of elongation factors that suppress pol II pausing and backtracking for transcription in the context of chromatin.
Collapse
Affiliation(s)
- Maria L Kireeva
- NCI Center for Cancer Research, Frederick, Maryland 21702, USA
| | | | | | | | | | | |
Collapse
|
34
|
Abstract
We report here that phased runs of adenines and thymines are very frequent in the neighborhood of 3' of the coding regions of Escherichia coli and Bacillus subtilis. These findings suggest that the DNA curvature could affect transcription termination either directly, through contacts with RNA polymerase, or indirectly, via contacts with some regulatory proteins.
Collapse
Affiliation(s)
- S Hosid
- Institute of Evolution, University of Haifa, Haifa 31905, Israel
| | | |
Collapse
|
35
|
Scicchitano DA, Olesnicky EC, Dimitri A. Transcription and DNA adducts: what happens when the message gets cut off? DNA Repair (Amst) 2005; 3:1537-48. [PMID: 15474416 DOI: 10.1016/j.dnarep.2004.06.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2004] [Indexed: 01/18/2023]
Abstract
DNA damage located within a gene's transcription unit can cause RNA polymerase to stall at the modified site, resulting in a truncated transcript, or progress past, producing full-length RNA. However, it is not immediately apparent why some lesions pose strong barriers to elongation while others do not. Studies using site-specifically damaged DNA templates have demonstrated that a wide range of lesions can impede the progress of elongating transcription complexes. The collected results of this work provide evidence for the idea that subtle structural elements can influence how an RNA polymerase behaves when it encounters a DNA adduct during elongation. These elements include: (1) the ability of the RNA polymerase active site to accommodate the damaged base; (2) the size and shape of the adduct, which includes the specific modified base; (3) the stereochemistry of the adduct; (4) the base incorporated into the growing transcript; and (5) the local DNA sequence.
Collapse
Affiliation(s)
- David A Scicchitano
- Department of Biology, New York University, 1009 Silver Center, 100 Washington Square East, New York, NY 10003, USA.
| | | | | |
Collapse
|
36
|
Palangat M, Hittinger CT, Landick R. Downstream DNA selectively affects a paused conformation of human RNA polymerase II. J Mol Biol 2004; 341:429-42. [PMID: 15276834 DOI: 10.1016/j.jmb.2004.06.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2004] [Revised: 05/25/2004] [Accepted: 06/03/2004] [Indexed: 11/17/2022]
Abstract
Transcriptional pausing by human RNA polymerase II (RNAPII) in the HIV-1 LTR is caused principally by a weak RNA:DNA hybrid that allows rearrangement of reactive or catalytic groups in the enzyme's active site. This rearrangement creates a transiently paused state called the unactivated intermediate that can backtrack into a more long-lived paused species. We report that three different regions of the not-yet-transcribed DNA just downstream of the pause site affect the duration of the HIV-1 pause, and also can influence pause formation. Downstream DNA in at least one region, a T-tract from +5 to +8, increases pause duration by specifically affecting the unactivated intermediate, without corresponding effects on the active or backtracked states. We suggest this effect depends on RNAPII-modulated DNA plasticity and speculate it is mediated by the "trigger loop" thought to participate in RNAP's catalytic cycle. These findings provide a new framework for understanding downstream DNA effects on RNAP.
Collapse
Affiliation(s)
- Murali Palangat
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI 53706, USA
| | | | | |
Collapse
|
37
|
Dole S, Nagarajavel V, Schnetz K. The histone-like nucleoid structuring protein H-NS represses the Escherichia coli bgl operon downstream of the promoter. Mol Microbiol 2004; 52:589-600. [PMID: 15066043 DOI: 10.1111/j.1365-2958.2004.04001.x] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Specificity of repression by the histone-like nucleoid structuring protein and pleiotropic regulator, H-NS, is exceptionally high in case of the Escherichia coli bgl (beta-glucoside) operon. Here we present evidence that H-NS represses the operon at two levels. The binding of H-NS to an upstream silencer results in an approximately threefold repression of the catabolite gene regulator protein (CRP) dependent bgl promoter. In addition, H-NS binds to a silencer region located approximately 600-700 base pairs downstream of the promoter, within the coding region of first gene, bglG, resulting in a approximately sevenfold further decrease of expression. Repression by H-NS at the downstream silencer requires termination factor Rho and is reduced by translation of the bglG mRNA, but is independent of the promoter. This suggests that H-NS induces polarity of transcription by acting as a roadblock to the elongating RNA polymerase. The control of the bgl operon by H-NS at two levels results in a highly specific repression.
Collapse
Affiliation(s)
- Sudhanshu Dole
- Institute for Genetics, University Cologne,Weyertal 121, 50931 Cologne, Germany
| | | | | |
Collapse
|
38
|
Johnson L, Liu S, Gershon PD. Molecular flexibility and discontinuous translocation of a non-templated polymerase. J Mol Biol 2004; 337:843-56. [PMID: 15033355 DOI: 10.1016/j.jmb.2004.01.058] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2003] [Revised: 01/23/2004] [Accepted: 01/23/2004] [Indexed: 11/18/2022]
Abstract
Little is known regarding the translocation of non-templated nucleic acid polymerases with respect to single-stranded primers. VP55, the vaccinia virus poly(A) polymerase, translocates as it processively adds a approximately 3-7 adenylate tail to primers possessing only three ribouridylate residues (as an (rU)(2)-N(15)-rU motif), and a approximately 25-30 adenylate tail to primers that are more U-rich. Here, three models were addressed for the translocation of VP55 with respect to its primer, namely: (a) rigid protein/rigid nucleic acid; (b) flexible protein/rigid nucleic acid; (c) rigid protein/flexible nucleic acid. Analysis of free and covalently VP55-attached primers favored either (b) or a version of (c) incorporating a passive steric block, and suggested two regions of relative motion between polymerase and primer. Inclusion of a 6nt uridylate-rich patch at the primer 3' end switched the polymerase from approximately 3-7 nt to approximately 25-30 nt tail addition without affecting initial binding affinity. By synthesizing this patch as a (rU/dC) pool, discontinuous polymerase movements could be detected.
Collapse
Affiliation(s)
- L Johnson
- Department of Medical Biochemistry and Genetics, Institute of Biosciences and Technology, Texas A and M University System Health Science Center, Houston, TX 77030, USA
| | | | | |
Collapse
|
39
|
Kolakofsky D, Le Mercier P, Iseni F, Garcin D. Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology 2004; 318:463-73. [PMID: 15015496 DOI: 10.1016/j.virol.2003.10.031] [Citation(s) in RCA: 77] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
mRNA synthesis from nonsegmented negative-strand RNA virus (NNV) genomes is unique in tht the genome RNA is embedded in an N protein assembly (the nucleocapsid) and the viral RNA polymerase does not dissociate from the template after release of each mRNA, but rather scans the genome RNA for the next gene-start site. A revised model for NNV RNA synthesis is presented, in which RNA polymerase scanning plays a prominent role. Polymerase scanning of the template is known to occur as the viral transcriptase negotiates gene junctions without falling off the template.
Collapse
Affiliation(s)
- Daniel Kolakofsky
- Department of Genetics and Microbiology, University of Geneva School of Medicine, Switzerland.
| | | | | | | |
Collapse
|
40
|
Neuman KC, Abbondanzieri EA, Landick R, Gelles J, Block SM. Ubiquitous transcriptional pausing is independent of RNA polymerase backtracking. Cell 2004; 115:437-47. [PMID: 14622598 DOI: 10.1016/s0092-8674(03)00845-6] [Citation(s) in RCA: 246] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RNA polymerase (RNAP) transcribes DNA discontinuously, with periods of rapid nucleotide addition punctuated by frequent pauses. We investigated the mechanism of transcription by measuring the effect of both hindering and assisting forces on the translocation of single Escherichia coli transcription elongation complexes, using an optical trapping apparatus that allows for the detection of pauses as short as one second. We found that the vast majority of pauses are brief (1-6 s at 21 degrees C, 1 mM NTPs), and that the probability of pausing at any particular position on a DNA template is low and fairly constant. Neither the probability nor the duration of these ubiquitous pauses was affected by hindering or assisting loads, establishing that they do not result from the backtracking of RNAP along the DNA template. We propose instead that they are caused by a structural rearrangement within the enzyme.
Collapse
Affiliation(s)
- Keir C Neuman
- Department of Biological Sciences, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
41
|
Toulokhonov I, Landick R. The flap domain is required for pause RNA hairpin inhibition of catalysis by RNA polymerase and can modulate intrinsic termination. Mol Cell 2004; 12:1125-36. [PMID: 14636572 DOI: 10.1016/s1097-2765(03)00439-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Bacterial RNA polymerase (RNAP) responds to formation of RNA secondary structures (hairpins) in newly synthesized RNA. Depending on the spacing of the hairpin from the RNA 3' end and the intervening RNA sequence, the hairpin can prolong pausing or cause transcriptional termination. At the his pause site, the pause hairpin contacts a flexible domain on RNAP called the flap, which forms a critical part of a hairpin-interaction site on the enzyme. We report that pause hairpin-flap interaction stabilizes an inhibited configuration of RNAP's active site without changing RNAP's translocation register. The distal part of the flap (the flap tip) is required for the hairpin to affect the active site, but not for hairpin formation. In contrast, the flap tip is not required for intrinsic termination, but can modulate it at suboptimal termination signals.
Collapse
|
42
|
Affiliation(s)
- Patrick Cramer
- Institute of Biochemistry and Gene Center, University of Munich, 81377 Munich, Germany
| |
Collapse
|
43
|
Tolić-Nørrelykke SF, Engh AM, Landick R, Gelles J. Diversity in the rates of transcript elongation by single RNA polymerase molecules. J Biol Chem 2003; 279:3292-9. [PMID: 14604986 DOI: 10.1074/jbc.m310290200] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Single-molecule measurements of the activities of a variety of enzymes show that rates of catalysis may vary markedly between different molecules in putatively homogeneous enzyme preparations. We measured the rate at which purified Escherichia coli RNA polymerase moves along a approximately 2650-bp DNA during transcript elongation in vitro at 0.5 mm nucleoside triphosphates. Individual molecules of a specifically biotinated RNA polymerase derivative were tagged with 199-nm diameter avidin-coated polystyrene beads; enzyme movement along a surface-linked DNA molecule was monitored by observing changes in bead Brownian motion by light microscopy. The DNA was derived from a naturally occurring transcription unit and was selected for the absence of regulatory sequences that induce lengthy pausing or termination of transcription. With rare exceptions, individual enzyme molecules moved at a constant velocity throughout the transcription reaction; the distribution of velocities across a population of 140 molecules was unimodal and was well fit by a Gaussian. However, the width of the Gaussian, sigma = 6.7 bp/s, was considerably larger than the precision of the velocity measurement (1 bp/s). The observations show that different transcription complexes have differences in catalytic rate (and thus differences in structure) that persist for thousands of catalytic turnovers. These differences may provide a parsimonious explanation for the complex transcription kinetics observed in bulk solution.
Collapse
|
44
|
Walter W, Kireeva ML, Studitsky VM, Kashlev M. Bacterial polymerase and yeast polymerase II use similar mechanisms for transcription through nucleosomes. J Biol Chem 2003; 278:36148-56. [PMID: 12851391 DOI: 10.1074/jbc.m305647200] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have previously shown that nucleosomes act as a strong barrier to yeast RNA polymerase II (Pol II) in vitro and that transcription through the nucleosome results in the loss of an H2A/H2B dimer. Here, we demonstrate that Escherichia coli RNA polymerase (RNAP), which never encounters chromatin in vivo, behaves similarly to Pol II in all aspects of transcription through the nucleosome in vitro. The nucleosome-specific pausing pattern of RNAP is comparable with that of Pol II. At physiological ionic strength or lower, the nucleosome blocks RNAP progression along the template, but this barrier can be relieved at higher ionic strength. Transcription through the nucleosome by RNAP results in the loss of an H2A/H2B dimer, and the histones that remain in the hexasome retain their original positions on the DNA. The results were similar for elongation complexes that were assembled from components (oligonucleotides and RNAP) and elongation complexes obtained by initiation from the promoter. The data suggest that eukaryotic Pol II and E. coli RNAP utilize very similar mechanisms for transcription through the nucleosome. Thus, bacterial RNAP can be used as a suitable model system to study general aspects of chromatin transcription by Pol II. Furthermore, the data argue that the general elongation properties of polymerases may determine the mechanism used for transcription through the nucleosome.
Collapse
Affiliation(s)
- Wendy Walter
- Department of Biochemistry and Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | | | | | |
Collapse
|
45
|
Stelzl U, Zengel JM, Tovbina M, Walker M, Nierhaus KH, Lindahl L, Patel DJ. RNA-structural mimicry in Escherichia coli ribosomal protein L4-dependent regulation of the S10 operon. J Biol Chem 2003; 278:28237-45. [PMID: 12738792 PMCID: PMC4692380 DOI: 10.1074/jbc.m302651200] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Ribosomal protein L4 regulates the 11-gene S10 operon in Escherichia coli by acting, in concert with transcription factor NusA, to cause premature transcription termination at a Rho-independent termination site in the leader sequence. This process presumably involves L4 interaction with the leader mRNA. Here, we report direct, specific, and independent binding of ribosomal protein L4 to the S10 mRNA leader in vitro. Most of the binding energy is contributed by a small hairpin structure within the leader region, but a 64-nucleotide sequence is required for the bona fide interaction. Binding to the S10 leader mRNA is competed by the 23 S rRNA L4 binding site. Although the secondary structures of the mRNA and rRNA binding sites appear different, phosphorothioate footprinting of the L4-RNA complexes reveals close structural similarity in three dimensions. Mutational analysis of the mRNA binding site is compatible with the structural model. In vitro binding of L4 induces structural changes of the S10 leader RNA, providing a first clue for how protein L4 may provoke transcription termination.
Collapse
MESH Headings
- 5' Untranslated Regions/metabolism
- Amino Acid Sequence
- Base Sequence
- Binding Sites
- Binding, Competitive
- Collodion/pharmacology
- DNA Mutational Analysis
- Dose-Response Relationship, Drug
- Escherichia coli/metabolism
- Gene Expression Regulation, Enzymologic
- Iodine/pharmacology
- Models, Molecular
- Molecular Sequence Data
- Nucleic Acid Conformation
- Phylogeny
- Protein Binding
- Protein Structure, Secondary
- RNA, Messenger/metabolism
- RNA, Ribosomal, 23S/metabolism
- Ribosomal Proteins/chemistry
- Ribosomal Proteins/metabolism
- Sequence Homology, Amino Acid
- Transcription, Genetic
Collapse
Affiliation(s)
- Ulrich Stelzl
- Memorial Sloan Kettering Cancer Center, Cellular Biochemistry and Biophysics Program, New York, New York 10021, USA.
| | | | | | | | | | | | | |
Collapse
|
46
|
Schwartz A, Rahmouni AR, Boudvillain M. The functional anatomy of an intrinsic transcription terminator. EMBO J 2003; 22:3385-94. [PMID: 12840000 PMCID: PMC165636 DOI: 10.1093/emboj/cdg310] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
To induce dissociation of the transcription elongation complex, a typical intrinsic terminator forms a G.C-rich hairpin structure upstream from a U-rich run of approximately eight nucleotides that define the transcript 3' end. Here, we have adapted the nucleotide analog interference mapping (NAIM) approach to identify the critical RNA atoms and functional groups of an intrinsic terminator during transcription with T7 RNA polymerase. The results show that discrete components within the lower half of the hairpin stem form transient termination-specific contacts with the RNA polymerase. Moreover, disruption of interactions with backbone components of the transcript region hybridized to the DNA template favors termination. Importantly, comparative NAIM of termination events occurring at consecutive positions revealed overlapping but distinct sets of functionally important residues. Altogether, the data identify a collection of RNA terminator components, interactions and spacing constraints that govern efficient transcript release. The results also suggest specific architectural rearrangements of the transcription complex that may participate in allosteric control of intrinsic transcription termination.
Collapse
Affiliation(s)
- Annie Schwartz
- Centre de Biophysique Moléculaire, CNRS, rue Charles Sadron, 45071 Orléans cedex 2, France
| | | | | |
Collapse
|
47
|
Pal M, Luse DS. The initiation-elongation transition: lateral mobility of RNA in RNA polymerase II complexes is greatly reduced at +8/+9 and absent by +23. Proc Natl Acad Sci U S A 2003; 100:5700-5. [PMID: 12719526 PMCID: PMC156264 DOI: 10.1073/pnas.1037057100] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
RNA polymerase II transcription complexes stalled shortly after initiation over a repetitive segment of the template can undergo efficient transcript slippage, during which the 3' end of the RNA slides upstream and then re-pairs with the template, allowing transcription to continue. In the present study, we have used transcript slippage as an assay to identify possible structural transitions that occur as the polymerase passes from the initiation to the elongation phase of transcription. We reasoned that transcript slippage would not occur in fully processive complexes. We constructed a series of templates that allowed us to stall RNA polymerase II after the synthesis of a repetitive sequence (5'-CUCUCU-3') at varying distances downstream of +1. We found that polymerase must synthesize at least a 23-nt RNA to attain resistance to transcript slippage. The ability to undergo slippage was lost in two discrete steps, suggestive of two distinct transitions. The first transition is the formation of the 8- to 9-bp mature RNA-DNA hybrid, when slippage abruptly dropped by 10-fold. However, easily detectable slippage continued until 14 more bonds were made. Thus, although the transcript becomes tightly constrained within the transcription complex once the hybrid reaches its final length, much more RNA synthesis is required before the RNA is no longer able to slip upstream along the template. This last point may reflect an important stabilizing role for the interaction of the polymerase with the transcript well upstream of the RNA-DNA hybrid.
Collapse
Affiliation(s)
- Mahadeb Pal
- Department of Molecular Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA
| | | |
Collapse
|
48
|
Abstract
As with transcription from DNA templates, RNA synthesis from viral RNA templates must initiate accurately. RNA sequences named specificity and initiation determinants allow recognition of and coordinated interaction with the viral replication enzyme. Using enriched replicase from brome mosaic virus (BMV)-infected plants and variants of the promoter template for minus-strand and subgenomic RNA initiation, we found that a specificity determinant for minus-strand initiation could function at variable distances and positions from the 3' initiation site in a manner similar to enhancers of transcription from DNA templates. This determinant's addition could convert a cellular tRNA into a template for RNA synthesis by the BMV replicase in vitro. Furthermore, the same specificity element could direct internal initiation, which occurred at a highly preferred site in a manner distinct from initiation at the 3' terminus of the template. These results document two distinct modes of initiation site recognition by a viral RNA replicase.
Collapse
Affiliation(s)
- C T Ranjith-Kumar
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA
| | | | | |
Collapse
|
49
|
Komissarova N, Becker J, Solter S, Kireeva M, Kashlev M. Shortening of RNA:DNA hybrid in the elongation complex of RNA polymerase is a prerequisite for transcription termination. Mol Cell 2002; 10:1151-62. [PMID: 12453422 DOI: 10.1016/s1097-2765(02)00738-4] [Citation(s) in RCA: 122] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Passage of E. coli RNA polymerase through an intrinsic transcription terminator, which encodes an RNA hairpin followed by a stretch of uridine residues, results in quick dissociation of the elongation complex. We show that folding of the hairpin disrupts the three upstream base pairs of the 8 bp RNA:DNA hybrid, a major stability determinant in the complex. Shortening the weak rU:dA hybrid from 8 nt to 5 nt causes dissociation of the complex. During termination, the hairpin does not directly compete for base pairing with the 8 bp hybrid. Thus, melting of the hybrid seems to result from spatial restrictions in RNA polymerase that couple the hairpin formation with the disruption of the hybrid immediately downstream from the stem. Our results suggest that a similar mechanism disrupts elongation complexes of yeast RNA polymerase II in vitro.
Collapse
Affiliation(s)
- Natalia Komissarova
- NCI Center for Cancer Research, Frederick Cancer Research and Development Center, Frederick, MD 21702, USA.
| | | | | | | | | |
Collapse
|
50
|
Ederth J, Artsimovitch I, Isaksson LA, Landick R. The downstream DNA jaw of bacterial RNA polymerase facilitates both transcriptional initiation and pausing. J Biol Chem 2002; 277:37456-63. [PMID: 12147705 DOI: 10.1074/jbc.m207038200] [Citation(s) in RCA: 83] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Regulation of RNA polymerase during initiation, elongation, and termination of transcription is mediated in part by interactions with intrinsic regulatory signals encoded in the RNA and DNA that contact the enzyme. These interactions include contacts to an 8-9-bp RNA:DNA hybrid within the active-site cleft of the enzyme, contacts to the melted nontemplate DNA strand in the vicinity of the hybrid, contacts to exiting RNA upstream of the hybrid, and contacts to approximately 20 bp of duplex DNA downstream of the active site. Based on characterization of an amino acid substitution (G1161R) and a deletion (Delta1149-1190) in the jaw domain of the bacterial RNA polymerase largest subunit (beta'), we report here that contacts of the jaw domain to downstream DNA at the leading edge of the transcription complex contribute to regulation during all three phases of transcription. The results provide insight into the role of the jaw domain-downstream DNA contact in transcriptional initiation and pausing and suggest possible explanations for the previously reported isolation of the jaw mutants based on reduced ColEI plasmid replication.
Collapse
Affiliation(s)
- Josefine Ederth
- Department of Microbiology, Stockholm University, S-10691 Stockholm, Sweden
| | | | | | | |
Collapse
|