1
|
Vandermeulen MD, Khaiwal S, Rubio G, Liti G, Cullen PJ. Gain- and loss-of-function alleles within signaling pathways lead to phenotypic diversity among individuals. iScience 2024; 27:110860. [PMID: 39381740 PMCID: PMC11460476 DOI: 10.1016/j.isci.2024.110860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/29/2024] [Accepted: 08/29/2024] [Indexed: 10/10/2024] Open
Abstract
Understanding how phenotypic diversity is generated is an important question in biology. We explored phenotypic diversity among wild yeast isolates (Saccharomyces cerevisiae) and found variation in the activity of MAPK signaling pathways as a contributing mechanism. To uncover the genetic basis of this mechanism, we identified 1957 SNPs in 62 candidate genes encoding signaling proteins from a MAPK signaling module within a large collection of yeast (>1500 individuals). Follow-up testing identified functionally relevant variants in key signaling proteins. Loss-of-function (LOF) alleles in a PAK kinase impacted protein stability and pathway specificity decreasing filamentous growth and mating phenotypes. In contrast, gain-of-function (GOF) alleles in G-proteins that were hyperactivating induced filamentous growth. Similar amino acid substitutions in G-proteins were identified in metazoans that in some cases were fixed in multicellular lineages including humans, suggesting hyperactivating GOF alleles may play roles in generating phenotypic diversity across eukaryotes. A mucin signaler that regulates MAPK activity was also found to contain a prevalance of presumed GOF alleles amoung individuals based on changes in mucin repeat numbers. Thus, genetic variation in signaling pathways may act as a reservoir for generating phenotypic diversity across eukaryotes.
Collapse
Affiliation(s)
| | - Sakshi Khaiwal
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Gabriel Rubio
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| | - Gianni Liti
- Université Côte d’Azur, CNRS, INSERM, IRCAN, Nice, France
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, NY 14260-1300, USA
| |
Collapse
|
2
|
Bourgeois NM, Black JJ, Bhondeley M, Liu Z. Protein Kinase A Negatively Regulates the Acetic Acid Stress Response in S. cerevisiae. Microorganisms 2024; 12:1452. [PMID: 39065219 PMCID: PMC11278818 DOI: 10.3390/microorganisms12071452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/11/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
Bioethanol fermentation from lignocellulosic hydrolysates is negatively affected by the presence of acetic acid. The budding yeast S. cerevisiae adapts to acetic acid stress partly by activating the transcription factor, Haa1. Haa1 induces the expression of many genes, which are responsible for increased fitness in the presence of acetic acid. Here, we show that protein kinase A (PKA) is a negative regulator of Haa1-dependent gene expression under both basal and acetic acid stress conditions. Deletions of RAS2, encoding a positive regulator of PKA, and PDE2, encoding a negative regulator of PKA, lead to an increased and decreased expression of Haa1-regulated genes, respectively. Importantly, the deletion of HAA1 largely reverses the effects of ras2∆. Additionally, the expression of a dominant, hyperactive RAS2A18V19 mutant allele also reduces the expression of Haa1-regulated genes. We found that both pde2Δ and RAS2A18V19 reduce cell fitness in response to acetic acid stress, while ras2Δ increases cellular adaptation. There are three PKA catalytic subunits in yeast, encoded by TPK1, TPK2, and TPK3. We show that single mutations in TPK1 and TPK3 lead to the increased expression of Haa1-regulated genes, while tpk2Δ reduces their expression. Among tpk double mutations, tpk1Δ tpk3Δ greatly increases the expression of Haa1-regulated genes. We found that acetic acid stress in a tpk1Δ tpk3Δ double mutant induces a flocculation phenotype, which is reversed by haa1Δ. Our findings reveal PKA to be a negative regulator of the acetic acid stress response and may help engineer yeast strains with increased efficiency of bioethanol fermentation.
Collapse
Affiliation(s)
- Natasha M. Bourgeois
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Center for Global Infectious Disease Research, Seattle Children’s Research Institute, Seattle, WA 98109, USA
| | - Joshua J. Black
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Manika Bhondeley
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
- Kudo Biotechnology, 117 Kendrick Street, Needham, MA 02494, USA
| | - Zhengchang Liu
- Department of Biological Sciences, University of New Orleans, New Orleans, LA 70148, USA
| |
Collapse
|
3
|
Jacobus AP, Cavassana SD, de Oliveira II, Barreto JA, Rohwedder E, Frazzon J, Basso TP, Basso LC, Gross J. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:63. [PMID: 38730312 PMCID: PMC11088041 DOI: 10.1186/s13068-024-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil
- SENAI Innovation Institute for Biotechnology, São Paulo, Brazil
| | | | | | | | - Ewerton Rohwedder
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thalita Peixoto Basso
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Luiz Carlos Basso
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeferson Gross
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil.
| |
Collapse
|
4
|
Plank M, Carmiol N, Mitri B, Lipinski AA, Langlais PR, Capaldi AP. Systems level analysis of time and stimuli specific signaling through PKA. Mol Biol Cell 2024; 35:ar60. [PMID: 38446618 PMCID: PMC11064662 DOI: 10.1091/mbc.e23-02-0066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 02/13/2024] [Accepted: 03/01/2024] [Indexed: 03/08/2024] Open
Abstract
It is well known that eukaryotic cells create gradients of cAMP across space and time to regulate the cAMP dependent protein kinase (PKA) and, in turn, growth and metabolism. However, it is unclear how PKA responds to different concentrations of cAMP. Here, to address this question, we examine PKA signaling in Saccharomyces cerevisiae in different conditions, timepoints, and concentrations of the chemical inhibitor 1-NM-PP1, using phosphoproteomics. These experiments show that there are numerous proteins that are only phosphorylated when cAMP and PKA activity are at/near their maximum level, while other proteins are phosphorylated even when cAMP levels and PKA activity are low. The data also show that PKA drives cells into distinct growth states by acting on proteins with different thresholds for phosphorylation in different conditions. Analysis of the sequences surrounding the 118 PKA-dependent phosphosites suggests that the phosphorylation thresholds are set, at least in part, by the affinity of PKA for each site.
Collapse
Affiliation(s)
- Michael Plank
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| | - Nicole Carmiol
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | - Bassam Mitri
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
| | | | - Paul R. Langlais
- The Department of Medicine, University of Arizona, Tucson, AZ 85721
| | - Andrew P. Capaldi
- Department of Molecular and Cellular Biology, University of Arizona, Tucson, AZ 85721
- The Bio5 Institute, University of Arizona, Tucson, AZ 85721
| |
Collapse
|
5
|
Vandermeulen MD, Cullen PJ. Ecological inducers of the yeast filamentous growth pathway reveal environment-dependent roles for pathway components. mSphere 2023; 8:e0028423. [PMID: 37732804 PMCID: PMC10597418 DOI: 10.1128/msphere.00284-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/31/2023] [Indexed: 09/22/2023] Open
Abstract
Signaling modules, such as mitogen-activated protein kinase (MAPK) pathways, are evolutionarily conserved drivers of cell differentiation and stress responses. In many fungal species including pathogens, MAPK pathways control filamentous growth, where cells differentiate into an elongated cell type. The convenient model budding yeast Saccharomyces cerevisiae undergoes filamentous growth by the filamentous growth (fMAPK) pathway; however, the inducers of the pathway remain unclear, perhaps because pathway activity has been mainly studied in laboratory conditions. To address this knowledge gap, an ecological framework was used, which uncovered new fMAPK pathway inducers, including pectin, a material found in plants, and the metabolic byproduct ethanol. We also show that induction by a known inducer of the pathway, the non-preferred carbon source galactose, required galactose metabolism and induced the pathway differently than glucose limitation or other non-preferred carbon sources. By exploring fMAPK pathway function in fruit, we found that induction of the pathway led to visible digestion of fruit rind through a known target, PGU1, which encodes a pectolytic enzyme. Combinations of inducers (galactose and ethanol) stimulated the pathway to near-maximal levels, which showed dispensability of several fMAPK pathway components (e.g., mucin sensor, p21-activated kinase), but not others (e.g., adaptor, MAPKKK) and required the Ras2-protein kinase A pathway. This included a difference between the transcription factor binding partners for the pathway, as Tec1p, but not Ste12p, was partly dispensable for fMAPK pathway activity. Thus, by exploring ecologically relevant stimuli, new modes of MAPK pathway signaling were uncovered, perhaps revealing how a pathway can respond differently to specific environments. IMPORTANCE Filamentous growth is a cell differentiation response and important aspect of fungal biology. In plant and animal fungal pathogens, filamentous growth contributes to virulence. One signaling pathway that regulates filamentous growth is an evolutionarily conserved MAPK pathway. The yeast Saccharomyces cerevisiae is a convenient model to study MAPK-dependent regulation of filamentous growth, although the inducers of the pathway are not clear. Here, we exposed yeast cells to ecologically relevant compounds (e.g., plant compounds), which identified new inducers of the MAPK pathway. In combination, the inducers activated the pathway to near-maximal levels but did not cause detrimental phenotypes associated with previously identified hyperactive alleles. This context allowed us to identify conditional bypass for multiple pathway components. Thus, near-maximal induction of a MAPK pathway by ecologically relevant inducers provides a powerful tool to assess cellular signaling during a fungal differentiation response.
Collapse
Affiliation(s)
| | - Paul J. Cullen
- Department of Biological Sciences, University at Buffalo, Buffalo, New York, USA
| |
Collapse
|
6
|
Current Ethanol Production Requirements for the Yeast Saccharomyces cerevisiae. Int J Microbiol 2022; 2022:7878830. [PMID: 35996633 PMCID: PMC9392646 DOI: 10.1155/2022/7878830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 06/28/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022] Open
Abstract
An increase in global energy demand has caused oil prices to reach record levels in recent times. High oil prices together with concerns over CO2 emissions have resulted in renewed interest in renewable energy. Nowadays, ethanol is the principal renewable biofuel. However, the industrial need for increased productivity, wider substrate range utilization, and the production of novel compounds leads to renewed interest in further extending the use of current industrial strains by exploiting the immense, and still unknown, potential of natural yeast strains. This review seeks to answer the following questions: (a) which characteristics should S. cerevisiae have for the current production of first- and second-generation ethanol? (b) Why are alcohol-tolerance and thermo-tolerance characteristics required? (c) Which genes are related to these characteristics? (d) What are the advances that can be achieved with the isolation of new organisms from the environment?
Collapse
|
7
|
Autophagy Stimulus-Dependent Role of the Small GTPase Ras2 in Peroxisome Degradation. Biomolecules 2020; 10:biom10111553. [PMID: 33202661 PMCID: PMC7696409 DOI: 10.3390/biom10111553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/07/2020] [Accepted: 11/12/2020] [Indexed: 11/17/2022] Open
Abstract
The changing accessibility of nutrient resources induces the reprogramming of cellular metabolism in order to adapt the cell to the altered growth conditions. The nutrient-depending signaling depends on the kinases mTOR (mechanistic target of rapamycin), which is mainly activated by nitrogen-resources, and PKA (protein kinase A), which is mainly activated by glucose, as well as both of their associated factors. These systems promote protein synthesis and cell proliferation, while they inhibit degradation of cellular content by unselective bulk autophagy. Much less is known about their role in selective autophagy pathways, which have a more regulated cellular function. Especially, we were interested to analyse the central Ras2-module of the PKA-pathway in the context of peroxisome degradation. Yeast Ras2 is homologous to the mammalian Ras proteins, whose mutant forms are responsible for 33% of human cancers. In the present study, we were able to demonstrate a context-dependent role of Ras2 activity depending on the type of mTOR-inhibition and glucose-sensing situation. When mTOR was inhibited directly via the macrolide rapamycin, peroxisome degradation was still partially suppressed by Ras2, while inactivation of Ras2 resulted in an enhanced degradation of peroxisomes, suggesting a role of Ras2 in the inhibition of peroxisome degradation in glucose-grown cells. In contrast, the inhibition of mTOR by shifting cells from oleate-medium, which lacks glucose, to pexophagy-medium, which contains glucose and is limited in nitrogen, required Ras2-activity for efficient pexophagy, strongly suggesting that the role of Ras2 in glucose sensing-associated signaling is more important in this context than its co-function in mTOR-related autophagy-inhibition.
Collapse
|
8
|
Somboon P, Soontorngun N. An actin depolymerizing agent 19,20-epoxycytochalasin Q of Xylaria sp. BCC 1067 enhanced antifungal action of azole drugs through ROS-mediated cell death in yeast. Microbiol Res 2020; 243:126646. [PMID: 33227681 DOI: 10.1016/j.micres.2020.126646] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/30/2020] [Accepted: 11/06/2020] [Indexed: 01/21/2023]
Abstract
Multidrug resistance is a highly conserved phenomenon among all living organisms and a major veritable public health problem worldwide. Repetitive uses of antibiotics lead to antimicrobial drug resistance. Here, 19,20-epoxycytochalasin Q (ECQ) was isolated from endophytic fungus Xylaria sp. BCC 1067 and, its chemical structure was determined via chromatographic and spectral methods. ECQ displayed an antifungal activity with low MIC50 of 410 and 55 mg/l in the model yeast Saccharomyces cerevisiae wild-type and ScΔpdr5 strains, respectively. ECQ was a new inducer and potential substrate of key multi-drug efflux pumps S. cerevisiae ScPdr5 and Candida albicans CaCdr1. ECQ targeted actin filament, disrupting actin dynamics of yeast cells. ECQ also sensitized the ScΔsrv2 mutant, lacking suppressor of RasVal19. Overexpression of ScPDR5 or CaCDR1 genes prevented aggregation of actin and alleviated antifungal effect of ECQ. Additionally, ECQ induced high accumulation of reactive oxygen species, caused plasma membrane leakage and decreased yeast cell survival. Importantly, a discovery of ECQ implied a cellular connection between multi-drug resistance and actin stability, an important determinant of transporter mediated-drug resistance mechanism. Combination of ECQ and antifungal azoles displayed promising drug synergy against S. cerevisiae strains expressing multi-drug transporters, thereby providing potential solution for antifungal therapy and chemotherapeutic application.
Collapse
Affiliation(s)
- Pichayada Somboon
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand
| | - Nitnipa Soontorngun
- Division of Biochemical Technology, School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok, Thailand.
| |
Collapse
|
9
|
Chen A, Ju Z, Wang J, Wang J, Wang H, Wu J, Yin Y, Zhao Y, Ma Z, Chen Y. The RasGEF FgCdc25 regulates fungal development and virulence in Fusarium graminearum via cAMP and MAPK signalling pathways. Environ Microbiol 2020; 22:5109-5124. [PMID: 32537857 DOI: 10.1111/1462-2920.15129] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 06/11/2020] [Accepted: 06/12/2020] [Indexed: 11/29/2022]
Abstract
Ras GTPases act as molecular switches to control various cellular processes by coupling integrated signals in eukaryotes. Activities of Ras GTPases are triggered by Ras GTPase guanine nucleotide exchange factors (RasGEFs) in general, whereas the role of RasGEF in plant pathogenic fungi is largely unknown. In this study, we characterized the only RasGEF protein in Fusarium graminearum, FgCdc25, by combining genetic, cytological and phenotypic strategies. FgCdc25 directly interacted with RasGTPase FgRas2, but not FgRas1, to regulate growth and sexual reproduction. Mutation of the FgCDC25 gene resulted in decreased toxisome formation and deoxynivalenol (DON) production, which was largely depended on cAMP signalling. In addition, FgCdc25 indirectly interacted with FgSte11 in FgSte11-Ste7-Gpmk1 cascade, and the ΔFgcdc25 strain totally abolished the formation of infection structures and was nonpathogenic in planta, which was partially recovered by addition of exogenous cAMP. In contrast, FgCdc25 directly interplayed with FgBck1 in FgBck1-MKK1-Mgv1 cascade to negatively control cell wall integrity. Collectively, these results suggest that FgCdc25 modulates cAMP and MAPK signalling pathways and further regulates fungal development, DON production and plant infection in F. graminearum.
Collapse
Affiliation(s)
- Ahai Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Zhenzhen Ju
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jinli Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jing Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Hongkai Wang
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Jiayu Wu
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yanni Yin
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Youfu Zhao
- Department of Crop Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Zhonghua Ma
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| | - Yun Chen
- State Key Laboratory of Rice Biology, Institute of Biotechnology, Zhejiang University, Hangzhou, 310058, China.,Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
10
|
Caza M, Kronstad JW. The cAMP/Protein Kinase a Pathway Regulates Virulence and Adaptation to Host Conditions in Cryptococcus neoformans. Front Cell Infect Microbiol 2019; 9:212. [PMID: 31275865 PMCID: PMC6592070 DOI: 10.3389/fcimb.2019.00212] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Accepted: 05/31/2019] [Indexed: 12/28/2022] Open
Abstract
Nutrient sensing is critical for adaptation of fungi to environmental and host conditions. The conserved cAMP/PKA signaling pathway contributes to adaptation by sensing the availability of key nutrients such as glucose and directing changes in gene expression and metabolism. Interestingly, the cAMP/PKA pathway in fungal pathogens also influences the expression of virulence determinants in response to nutritional and host signals. For instance, protein kinase A (PKA) in the human pathogen Cryptococcus neoformans plays a central role in orchestrating phenotypic changes, such as capsule elaboration and melanin production, that directly impact disease development. In this review, we focus first on insights into the role of the cAMP/PKA pathway in nutrient sensing for the model yeast Saccharomyces cerevisiae to provide a foundation for understanding the pathway in C. neoformans. We then discuss key features of cAMP/PKA signaling in C. neoformans including new insights emerging from the analysis of transcriptional and proteomic changes in strains with altered PKA activity and expression. Finally, we highlight recent studies that connect the cAMP/PKA pathway to cell surface remodeling and the formation of titan cells.
Collapse
Affiliation(s)
- Mélissa Caza
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - James W Kronstad
- Michael Smith Laboratories, Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
11
|
Identification and Functional Testing of Novel Interacting Protein Partners for the Stress Sensors Wsc1p and Mid2p of Saccharomyces cerevisiae. G3-GENES GENOMES GENETICS 2019; 9:1085-1102. [PMID: 30733383 PMCID: PMC6469404 DOI: 10.1534/g3.118.200985] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Wsc1p and Mid2p are transmembrane signaling proteins of cell wall stress in the budding yeast Saccharomyces cerevisiae. When an environmental stress compromises cell wall integrity, they activate a cell response through the Cell Wall Integrity (CWI) pathway. Studies have shown that the cytoplasmic domain of Wsc1p initiates the CWI signaling cascade by interacting with Rom2p, a Rho1-GDP-GTP exchange factor. Binding of Rom2p to the cytoplasmic tail of Wsc1p requires dephosphorylation of specific serine residues but the mechanism by which the sensor is dephosphorylated and how it subsequently interacts with Rom2p remains unclear. We hypothesize that Wsc1p and Mid2p must be physically associated with interacting proteins other than Rom2p that facilitate its interaction and regulate the activation of CWI pathway. To address this, a cDNA plasmid library of yeast proteins was expressed in bait strains bearing membrane yeast two-hybrid (MYTH) reporter modules of Wsc1p and Mid2p, and their interacting preys were recovered and sequenced. 14 previously unreported interactors were confirmed for Wsc1p and 29 for Mid2p. The interactors’ functionality were assessed by cell growth assays and CWI pathway activation by western blot analysis of Slt2p/Mpk1p phosphorylation in null mutants of each interactor under defined stress conditions. The susceptibility of these strains to different stresses were tested against antifungal agents and chemicals. This study reports important novel protein interactions of Wsc1p and Mid2p that are associated with the cellular response to oxidative stress induced by Hydrogen Peroxide and cell wall stress induced by Caspofungin.
Collapse
|
12
|
Vélez-Segarra V, Carrasquillo-Carrión K, Santini-González JJ, Ramos-Valerio YA, Vázquez-Quiñones LE, Roche-Lima A, Rodríguez-Medina JR, Parés-Matos EI. Modelling and molecular docking studies of the cytoplasmic domain of Wsc-family, full-length Ras2p, and therapeutic antifungal compounds. Comput Biol Chem 2019; 78:338-352. [PMID: 30654316 DOI: 10.1016/j.compbiolchem.2019.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/29/2018] [Accepted: 01/02/2019] [Indexed: 12/28/2022]
Abstract
Saccharomyces cerevisiae, the budding yeast, must remodel initial cell shape and cell wall integrity during vegetative growth and pheromone-induced morphogenesis. The cell wall remodeling is monitored and regulated by the cell wall integrity (CWI) signaling pathway. Wsc1p, together with Wsc2p and Wsc3p, belongs to a family of highly O-glycosylated cell surface proteins that function as stress sensors of the cell wall in S. cerevisiae. These cell surface proteins have the main role of activating the CWI signaling pathway by stimulating the small G-protein Rho1p, which subsequently activates protein kinase C (Pkc1p) and a mitogen activated protein (MAP) kinase cascade that activates downstream transcription factors of stress-response genes. Wsc1p, Wsc2p, and Wsc3p possess a cytoplasmic domain where two conserved regions of the sequence have been assessed to be important for Rom2p interaction. Meanwhile, other research groups have also proposed that these transmembrane proteins could support protein-protein interactions with Ras2p. Molecular structures of the cytoplasmic domain of Wsc1p, Wsc2p and Wsc3p were generated using the standard and fully-automated ORCHESTAR procedures provided by the Sybyl-X 2.1.1 program. The tridimensional structure of full length Ras2p was also generated with Phyre2. These protein models were validated with Procheck-PDBsum and ProSA-web tools and subsequently used in docking-based modeling of protein-protein and protein-compound interfaces for extensive structural and functional characterization of their interaction. The results retrieved from STRING 10.5 suggest that the Wsc-family is involved in protein-protein interactions with each other and with Ras2p. Docking-based studies also validated the existence of protein-protein interactions mainly between Motif I (Wsc3p > Wsc1p > Wsc2p) and Ras2p, in agreement with the data provided by STRING 10.5. Additionally, it has shown that Calcofluor White preferably binds to Wsc1p (-9.5 kcal/mol), meanwhile Caspofungin binds to Wsc3p (-9.1 kcal/mol), Wsc1p (-9.1 kcal/mol) and more weakly Wsc2p (-6.9 kcal/mol). Thus, these data suggests Caspofungin as a common inhibitor for the Wsc-family. MTiOpenScreen database has provided a list of new compounds with energy scores higher than those compounds used in our docking studies, thus suggesting these new compounds have a better affinity towards the cytoplasmic domains and Ras2p. Based on these data, there are new and possibly more effective compounds that should be considered as therapeutic agents against yeast infection.
Collapse
Affiliation(s)
- Vladimir Vélez-Segarra
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, San Juan, 00936, Puerto Rico
| | - Kelvin Carrasquillo-Carrión
- Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan, 00936, Puerto Rico
| | - Jorge J Santini-González
- Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, 00680, Puerto Rico
| | - Yabdiel A Ramos-Valerio
- Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, 00680, Puerto Rico
| | - Luis E Vázquez-Quiñones
- School of Sciences and Technology, Universidad Metropolitana, 1399 Ana G. Méndez Avenue, San Juan, 00926-2602, Puerto Rico
| | - Abiel Roche-Lima
- Center for Collaborative Research in Health Disparities, University of Puerto Rico-Medical Sciences Campus, San Juan, 00936, Puerto Rico
| | - José R Rodríguez-Medina
- Department of Biochemistry, University of Puerto Rico-Medical Sciences Campus, San Juan, 00936, Puerto Rico
| | - Elsie I Parés-Matos
- Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, 00680, Puerto Rico.
| |
Collapse
|
13
|
Ross EM, Maxwell PH. Low doses of DNA damaging agents extend Saccharomyces cerevisiae chronological lifespan by promoting entry into quiescence. Exp Gerontol 2018; 108:189-200. [PMID: 29705357 PMCID: PMC5994204 DOI: 10.1016/j.exger.2018.04.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 04/13/2018] [Accepted: 04/26/2018] [Indexed: 01/08/2023]
Abstract
A variety of mild stresses have been shown to extend lifespan in diverse species through hormesis, which is a beneficial response to a stress or toxin that would cause a negative response at a higher exposure. Whether particular stresses induce hormesis can vary with genotype for a given species, and the underlying mechanisms of lifespan extension are only partly understood in most cases. We show that low doses of the DNA damaging or replication stress agents hydroxyurea, methyl methanesulfonate, 4-nitroquinoline 1-oxide, or Zeocin (a phleomycin derivative) lengthened chronological lifespan in Saccharomyces cerevisiae if cells were exposed during growth, but not if they were exposed during stationary phase. Treatment with these agents did not change mitochondrial activity, increase resistance to acetic acid, ethanol, or heat stress, and three of four treatments did not increase resistance to hydrogen peroxide. Stationary phase yeast populations consist of both quiescent and nonquiescent cells, and all four treatments increased the proportion of quiescent cells. Several mutant strains with deletions in genes that influence quiescence prevented Zeocin treatment from extending lifespan and from increasing the proportion of quiescent stationary phase cells. These data indicate that mild DNA damage stress can extend lifespan by promoting quiescence in the absence of mitohormesis or improved general stress responses that have been frequently associated with improved longevity in other cases of hormesis. Further study of the underlying mechanism may yield new insights into quiescence regulation that will be relevant to healthy aging.
Collapse
Affiliation(s)
- Emily M Ross
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA
| | - Patrick H Maxwell
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy, NY, USA; Wadsworth Center, New York State Department of Health, Albany, NY, USA.
| |
Collapse
|
14
|
The Yeast Saccharomyces cerevisiae as a Model for Understanding RAS Proteins and their Role in Human Tumorigenesis. Cells 2018; 7:cells7020014. [PMID: 29463063 PMCID: PMC5850102 DOI: 10.3390/cells7020014] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/05/2018] [Accepted: 02/12/2018] [Indexed: 12/16/2022] Open
Abstract
The exploitation of the yeast Saccharomyces cerevisiae as a biological model for the investigation of complex molecular processes conserved in multicellular organisms, such as humans, has allowed fundamental biological discoveries. When comparing yeast and human proteins, it is clear that both amino acid sequences and protein functions are often very well conserved. One example of the high degree of conservation between human and yeast proteins is highlighted by the members of the RAS family. Indeed, the study of the signaling pathways regulated by RAS in yeast cells led to the discovery of properties that were often found interchangeable with RAS proto-oncogenes in human pathways, and vice versa. In this work, we performed an updated critical literature review on human and yeast RAS pathways, specifically highlighting the similarities and differences between them. Moreover, we emphasized the contribution of studying yeast RAS pathways for the understanding of human RAS and how this model organism can contribute to unveil the roles of RAS oncoproteins in the regulation of mechanisms important in the tumorigenic process, like autophagy.
Collapse
|
15
|
Sun LM, Liao K. Saccharomyces cerevisiae Hog1 MAP kinase pathway is activated in response to honokiol exposure. J Appl Microbiol 2018; 124:754-763. [PMID: 29165856 DOI: 10.1111/jam.13649] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 11/02/2017] [Accepted: 11/16/2017] [Indexed: 02/06/2023]
Abstract
AIM The goal of the study was to investigate the cellular tolerance mechanism in response to honokiol exposure. METHODS AND RESULTS The broth microdilution method was employed to test the sensitivity of different Saccharomyces cerevisiae strains to honokiol. Intracellular levels of reactive oxygen species (ROSs) were determined by DCFH-DA staining. The phosphorylation of Hog1 was evaluated by Western blot analysis. The mRNA expressions of genes involved in the Ras-cyclic AMP (cAMP) pathway were analysed by real-time reverse transcription polymerase chain reaction. We found that the sod1▵ mutant was hypersensitive to honokiol and produced more ROS compared with wild-type and sod2▵ cells. Hog1 was phosphorylated in response to honokiol exposure and deletion of HOG1 increased the sensitivity to honokiol. The expressions of genes involved in the Ras-cAMP pathway were down-regulated after honokiol exposure; exogenous cAMP significantly reduced the phosphorylation of Hog1, although the level was higher than the control level. CONCLUSIONS In addition to SOD1, the Ras-cAMP cascade and Hog1 MAP kinase pathway is essential for protecting against honokiol-induced oxidative stress. SIGNIFICANCE AND IMPACT OF THE STUDY Our results provide insight into the understanding of the action mechanism of honokiol.
Collapse
Affiliation(s)
- L-M Sun
- Department of Pharmacology, Medical School of Southeast University, Nanjing, China
| | - K Liao
- Department of Pathology and Pathophysiology, Medical School of Southeast University, Nanjing, China
| |
Collapse
|
16
|
Fructose-1,6-bisphosphate couples glycolytic flux to activation of Ras. Nat Commun 2017; 8:922. [PMID: 29030545 PMCID: PMC5640605 DOI: 10.1038/s41467-017-01019-z] [Citation(s) in RCA: 134] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 08/14/2017] [Indexed: 12/12/2022] Open
Abstract
Yeast and cancer cells share the unusual characteristic of favoring fermentation of sugar over respiration. We now reveal an evolutionary conserved mechanism linking fermentation to activation of Ras, a major regulator of cell proliferation in yeast and mammalian cells, and prime proto-oncogene product. A yeast mutant (tps1∆) with overactive influx of glucose into glycolysis and hyperaccumulation of Fru1,6bisP, shows hyperactivation of Ras, which causes its glucose growth defect by triggering apoptosis. Fru1,6bisP is a potent activator of Ras in permeabilized yeast cells, likely acting through Cdc25. As in yeast, glucose triggers activation of Ras and its downstream targets MEK and ERK in mammalian cells. Biolayer interferometry measurements show that physiological concentrations of Fru1,6bisP stimulate dissociation of the pure Sos1/H-Ras complex. Thermal shift assay confirms direct binding to Sos1, the mammalian ortholog of Cdc25. Our results suggest that the Warburg effect creates a vicious cycle through Fru1,6bisP activation of Ras, by which enhanced fermentation stimulates oncogenic potency. Yeast and cancer cells both favor sugar fermentation in aerobic conditions. Here the authors describe a conserved mechanism from yeast to mammals where the glycolysis intermediate fructose-1,6-bisphosphate binds Cdc25/Sos1 and couples increased glycolytic flux to increased Ras proto-oncoprotein activity.
Collapse
|
17
|
Thomas FM, Goode KM, Rajwa B, Bieberich AA, Avramova LV, Hazbun TR, Davisson VJ. A Chemogenomic Screening Platform Used to Identify Chemotypes Perturbing HSP90 Pathways. SLAS DISCOVERY 2017; 22:706-719. [PMID: 28346089 DOI: 10.1177/2472555216687525] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Compounds that modulate the heat shock protein (HSP) network have potential in a broad range of research applications and diseases. A yeast-based liquid culture assay that measured time-dependent turbidity enabled the high-throughput screening of different Saccharomyces cerevisae strains to identify HSP modulators with unique molecular mechanisms. A focused set of four strains, with differing sensitivities to Hsp90 inhibitors, was used to screen a compound library of 3680 compounds. Computed turbidity curve functions were used to classify strain responses and sensitivity to chemical effects across the compound library. Filtering based on single-strain selectivity identified nine compounds as potential heat shock modulators, including the known Hsp90 inhibitor macbecin. Haploid yeast deletion strains (360), mined from previous Hsp90 inhibitor yeast screens and heat shock protein interaction data, were screened for differential sensitivities to known N-terminal ATP site-directed Hsp90 inhibitors to reveal functional distinctions. Strains demonstrating differential sensitivity (13) to Hsp90 inhibitors were used to prioritize primary screen hit compounds, with NSC145366 emerging as the lead hit. Our follow-up biochemical and functional studies show that NSC145366 directly interacts and inhibits the C-terminus of Hsp90, validating the platform as a powerful approach for early-stage identification of bioactive modulators of heat shock-dependent pathways.
Collapse
Affiliation(s)
- Fiona M Thomas
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Kourtney M Goode
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Bartek Rajwa
- 2 Bindley Bioscience Center, Purdue Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Andrew A Bieberich
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA
| | - Larisa V Avramova
- 2 Bindley Bioscience Center, Purdue Discovery Park, Purdue University, West Lafayette, IN, USA
| | - Tony R Hazbun
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,3 Purdue University Center for Cancer Research, West Lafayette, IN, USA
| | - V Jo Davisson
- 1 Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN, USA.,3 Purdue University Center for Cancer Research, West Lafayette, IN, USA
| |
Collapse
|
18
|
Satomura A, Miura N, Kuroda K, Ueda M. Reconstruction of thermotolerant yeast by one-point mutation identified through whole-genome analyses of adaptively-evolved strains. Sci Rep 2016; 6:23157. [PMID: 26984760 DOI: 10.1038/srep23157] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Accepted: 03/01/2016] [Indexed: 01/26/2023] Open
Abstract
Saccharomyces cerevisiae is used as a host strain in bioproduction, because of its rapid growth, ease of genetic manipulation, and high reducing capacity. However, the heat produced during the fermentation processes inhibits the biological activities and growth of the yeast cells. We performed whole-genome sequencing of 19 intermediate strains previously obtained during adaptation experiments under heat stress; 49 mutations were found in the adaptation steps. Phylogenetic tree revealed at least five events in which these strains had acquired mutations in the CDC25 gene. Reconstructed CDC25 point mutants based on a parental strain had acquired thermotolerance without any growth defects. These mutations led to the downregulation of the cAMP-dependent protein kinase (PKA) signaling pathway, which controls a variety of processes such as cell-cycle progression and stress tolerance. The one-point mutations in CDC25 were involved in the global transcriptional regulation through the cAMP/PKA pathway. Additionally, the mutations enabled efficient ethanol fermentation at 39 °C, suggesting that the one-point mutations in CDC25 may contribute to bioproduction.
Collapse
Affiliation(s)
- Atsushi Satomura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan.,Japan Society for the Promotion of Science, Sakyo-ku, Kyoto, Japan
| | - Natsuko Miura
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Kouichi Kuroda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| | - Mitsuyoshi Ueda
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Sakyo-ku, Kyoto, Japan
| |
Collapse
|
19
|
Druzhinina IS, Kubicek CP. Familiar Stranger: Ecological Genomics of the Model Saprotroph and Industrial Enzyme Producer Trichoderma reesei Breaks the Stereotypes. ADVANCES IN APPLIED MICROBIOLOGY 2016; 95:69-147. [PMID: 27261782 DOI: 10.1016/bs.aambs.2016.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The filamentous fungus Trichoderma reesei (Hypocreales, Ascomycota) has properties of an efficient cell factory for protein production that is exploited by the enzyme industry, particularly with respect to cellulase and hemicellulase formation. Under conditions of industrial fermentations it yields more than 100g secreted protein L(-1). Consequently, T. reesei has been intensively studied in the 20th century. Most of these investigations focused on the biochemical characteristics of its cellulases and hemicellulases, on the improvement of their properties by protein engineering, and on enhanced enzyme production by recombinant strategies. However, as the fungus is rare in nature, its ecology remained unknown. The breakthrough in the understanding of the fundamental biology of T. reesei only happened during 2000s-2010s. In this review, we compile the current knowledge on T. reesei ecology, physiology, and genomics to present a holistic view on the natural behavior of the organism. This is not only critical for science-driven further improvement of the biotechnological applications of this fungus, but also renders T. reesei as an attractive model of filamentous fungi with superior saprotrophic abilities.
Collapse
Affiliation(s)
- I S Druzhinina
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| | - C P Kubicek
- Institute of Chemical Engineering, TU Wien, Vienna, Austria
| |
Collapse
|
20
|
Gutin J, Sadeh A, Rahat A, Aharoni A, Friedman N. Condition-specific genetic interaction maps reveal crosstalk between the cAMP/PKA and the HOG MAPK pathways in the activation of the general stress response. Mol Syst Biol 2015; 11:829. [PMID: 26446933 PMCID: PMC4631200 DOI: 10.15252/msb.20156451] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Cells must quickly respond and efficiently adapt to environmental changes. The yeast Saccharomyces cerevisiae has multiple pathways that respond to specific environmental insults, as well as a generic stress response program. The later is regulated by two transcription factors, Msn2 and Msn4, that integrate information from upstream pathways to produce fast, tunable, and robust response to different environmental changes. To understand this integration, we employed a systematic approach to genetically dissect the contribution of various cellular pathways to Msn2/4 regulation under a range of stress and growth conditions. We established a high-throughput liquid handling and automated flow cytometry system and measured GFP levels in 68 single-knockout and 1,566 double-knockout strains that carry an HSP12-GFP allele as a reporter for Msn2/4 activity. Based on the expression of this Msn2/4 reporter in five different conditions, we identified numerous genetic and epistatic interactions between different components in the network upstream to Msn2/4. Our analysis gains new insights into the functional specialization of the RAS paralogs in the repression of stress response and identifies a three-way crosstalk between the Mediator complex, the HOG MAPK pathway, and the cAMP/PKA pathway.
Collapse
Affiliation(s)
- Jenia Gutin
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amit Sadeh
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Ayelet Rahat
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| | - Amir Aharoni
- Department of Life Science, National Institute for Biotechnology in the Negev Ben-Gurion University of the Negev, Be'er Sheva, Israel
| | - Nir Friedman
- School of Computer Science & Engineering Institute of Life Sciences Hebrew University, Jerusalem, Israel
| |
Collapse
|
21
|
Lakowski TM, Pak ML, Szeitz A, Thomas D, Vhuiyan MI, Clement B, Frankel A. Arginine methylation in yeast proteins during stationary-phase growth and heat shock. Amino Acids 2015; 47:2561-71. [DOI: 10.1007/s00726-015-2047-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 07/08/2015] [Indexed: 11/29/2022]
|
22
|
Quan Z, Cao L, Tang Y, Yan Y, Oliver SG, Zhang N. The Yeast GSK-3 Homologue Mck1 Is a Key Controller of Quiescence Entry and Chronological Lifespan. PLoS Genet 2015; 11:e1005282. [PMID: 26103122 PMCID: PMC4477894 DOI: 10.1371/journal.pgen.1005282] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Accepted: 05/14/2015] [Indexed: 02/06/2023] Open
Abstract
Upon starvation for glucose or any other core nutrient, yeast cells exit from the mitotic cell cycle and acquire a set of G0-specific characteristics to ensure long-term survival. It is not well understood whether or how cell cycle progression is coordinated with the acquisition of different G0-related features during the transition to stationary phase (SP). Here, we identify the yeast GSK-3 homologue Mck1 as a key regulator of G0 entry and reveal that Mck1 acts in parallel to Rim15 to activate starvation-induced gene expression, the acquisition of stress resistance, the accumulation of storage carbohydrates, the ability of early SP cells to exit from quiescence, and their chronological lifespan. FACS and microscopy imaging analyses indicate that Mck1 promotes mother-daughter cell separation and together with Rim15, modulates cell size. This indicates that the two kinases coordinate the transition-phase cell cycle, cell size and the acquisition of different G0-specific features. Epistasis experiments place MCK1, like RIM15, downstream of RAS2 in antagonising cell growth and activating stress resistance and glycogen accumulation. Remarkably, in the ras2∆ cells, deletion of MCK1 and RIM15 together, compared to removal of either of them alone, compromises respiratory growth and enhances heat tolerance and glycogen accumulation. Our data indicate that the nutrient sensor Ras2 may prevent the acquisition of G0-specific features via at least two pathways. One involves the negative regulation of the effectors of G0 entry such as Mck1 and Rim15, while the other likely to involve its functions in promoting respiratory growth, a phenotype also contributed by Mck1 and Rim15.
Collapse
Affiliation(s)
- Zhenzhen Quan
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Lu Cao
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yingzhi Tang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Yanchun Yan
- Graduate school of Chinese Academy of Agricultural Sciences, Zhongguancun, Beijing, PR China
| | - Stephen G. Oliver
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Nianshu Zhang
- Cambridge Systems Biology Centre and Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
- * E-mail:
| |
Collapse
|
23
|
Cox AD, Der CJ. Ras history: The saga continues. Small GTPases 2014; 1:2-27. [PMID: 21686117 DOI: 10.4161/sgtp.1.1.12178] [Citation(s) in RCA: 534] [Impact Index Per Article: 48.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2010] [Revised: 05/17/2010] [Accepted: 05/24/2010] [Indexed: 12/24/2022] Open
Abstract
Although the roots of Ras sprouted from the rich history of retrovirus research, it was the discovery of mutationally activated RAS genes in human cancer in 1982 that stimulated an intensive research effort to understand Ras protein structure, biochemistry and biology. While the ultimate goal has been developing anti-Ras drugs for cancer treatment, discoveries from Ras have laid the foundation for three broad areas of science. First, they focused studies on the origins of cancer to the molecular level, with the subsequent discovery of genes mutated in cancer that now number in the thousands. Second, elucidation of the biochemical mechanisms by which Ras facilitates signal transduction established many of our fundamental concepts of how a normal cell orchestrates responses to extracellular cues. Third, Ras proteins are also founding members of a large superfamily of small GTPases that regulate all key cellular processes and established the versatile role of small GTP-binding proteins in biology. We highlight some of the key findings of the last 28 years.
Collapse
Affiliation(s)
- Adrienne D Cox
- Department of Radiation Oncology; Lineberger Comprehensive Cancer Center; University of North Carolina at Chapel Hill; Chapel Hill, NC USA
| | | |
Collapse
|
24
|
Yang S, Rosenwald AG. The roles of monomeric GTP-binding proteins in macroautophagy in Saccharomyces cerevisiae. Int J Mol Sci 2014; 15:18084-101. [PMID: 25302616 PMCID: PMC4227204 DOI: 10.3390/ijms151018084] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2014] [Revised: 09/24/2014] [Accepted: 09/28/2014] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a cellular degradation process that sequesters components into a double-membrane structure called the autophagosome, which then fuses with the lysosome or vacuole for hydrolysis and recycling of building blocks. Bulk phase autophagy, also known as macroautophagy, controlled by specific Atg proteins, can be triggered by a variety of stresses, including starvation. Because autophagy relies extensively on membrane traffic to form the membranous structures, factors that control membrane traffic are essential for autophagy. Among these factors, the monomeric GTP-binding proteins that cycle between active and inactive conformations form an important group. In this review, we summarize the functions of the monomeric GTP-binding proteins in autophagy, especially with reference to experiments in Saccharomyces cerevisiae.
Collapse
Affiliation(s)
- Shu Yang
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| | - Anne G Rosenwald
- Department of Biology, Georgetown University, Washington, DC 20057, USA.
| |
Collapse
|
25
|
Engelberg D, Perlman R, Levitzki A. Transmembrane signaling in Saccharomyces cerevisiae as a model for signaling in metazoans: state of the art after 25 years. Cell Signal 2014; 26:2865-78. [PMID: 25218923 DOI: 10.1016/j.cellsig.2014.09.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Accepted: 09/02/2014] [Indexed: 02/07/2023]
Abstract
In the very first article that appeared in Cellular Signalling, published in its inaugural issue in October 1989, we reviewed signal transduction pathways in Saccharomyces cerevisiae. Although this yeast was already a powerful model organism for the study of cellular processes, it was not yet a valuable instrument for the investigation of signaling cascades. In 1989, therefore, we discussed only two pathways, the Ras/cAMP and the mating (Fus3) signaling cascades. The pivotal findings concerning those pathways undoubtedly contributed to the realization that yeast is a relevant model for understanding signal transduction in higher eukaryotes. Consequently, the last 25 years have witnessed the discovery of many signal transduction pathways in S. cerevisiae, including the high osmotic glycerol (Hog1), Stl2/Mpk1 and Smk1 mitogen-activated protein (MAP) kinase pathways, the TOR, AMPK/Snf1, SPS, PLC1 and Pkr/Gcn2 cascades, and systems that sense and respond to various types of stress. For many cascades, orthologous pathways were identified in mammals following their discovery in yeast. Here we review advances in the understanding of signaling in S. cerevisiae over the last 25 years. When all pathways are analyzed together, some prominent themes emerge. First, wiring of signaling cascades may not be identical in all S. cerevisiae strains, but is probably specific to each genetic background. This situation complicates attempts to decipher and generalize these webs of reactions. Secondly, the Ras/cAMP and the TOR cascades are pivotal pathways that affect all processes of the life of the yeast cell, whereas the yeast MAP kinase pathways are not essential. Yeast cells deficient in all MAP kinases proliferate normally. Another theme is the existence of central molecular hubs, either as single proteins (e.g., Msn2/4, Flo11) or as multisubunit complexes (e.g., TORC1/2), which are controlled by numerous pathways and in turn determine the fate of the cell. It is also apparent that lipid signaling is less developed in yeast than in higher eukaryotes. Finally, feedback regulatory mechanisms seem to be at least as important and powerful as the pathways themselves. In the final chapter of this essay we dare to imagine the essence of our next review on signaling in yeast, to be published on the 50th anniversary of Cellular Signalling in 2039.
Collapse
Affiliation(s)
- David Engelberg
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel; CREATE-NUS-HUJ, Cellular & Molecular Mechanisms of Inflammation Programme, National University of Singapore, 1 CREATE Way, Innovation Wing, #03-09, Singapore 138602, Singapore.
| | - Riki Perlman
- Hematology Division, Hadassah Hebrew University Medical Center, POB 12000, 91120 Jerusalem, Israel
| | - Alexander Levitzki
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
| |
Collapse
|
26
|
Norton TS, Fortwendel JR. Control of Ras-mediated signaling in Aspergillus fumigatus. Mycopathologia 2014; 178:325-30. [PMID: 24952717 DOI: 10.1007/s11046-014-9765-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Accepted: 05/28/2014] [Indexed: 12/13/2022]
Abstract
Pathogenic fungi employ numerous mechanisms to flourish in the stressful environment encountered within their mammalian hosts. Central to this arsenal for filamentous fungi is invasive growth within the host microenvironment, mediated by establishment and maintenance of polarized hyphal morphogenesis. In Aspergillus fumigatus, the RasA signal transduction pathway has emerged as a significant regulator of hyphal morphogenesis and virulence, among other processes. The factors contributing to the regulation of RasA itself are not as thoroughly understood, although proper temporal activation of RasA and spatial localization of RasA to the plasma membrane are known to play major roles. Interference with RasA palmitoylation or prenylation results in mislocalization of RasA and is associated with severe growth deficits. In addition, dysregulation of RasA activation results in severe morphologic aberrancies and growth deficits. This review highlights the relationship between RasA signaling, hyphal morphogenesis, and virulence in A. fumigatus and focuses on potential determinants of spatial and temporal RasA regulation.
Collapse
Affiliation(s)
- Tiffany S Norton
- Department of Microbiology and Immunology, College of Medicine, University of South Alabama, 5851 USA Drive North, MSB 2102, Mobile, AL, 36688, USA
| | | |
Collapse
|
27
|
Protein kinase A is part of a mechanism that regulates nuclear reimport of the nuclear tRNA export receptors Los1p and Msn5p. EUKARYOTIC CELL 2013; 13:209-30. [PMID: 24297441 DOI: 10.1128/ec.00214-13] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The two main signal transduction mechanisms that allow eukaryotes to sense and respond to changes in glucose availability in the environment are the cyclic AMP (cAMP)/protein kinase A (PKA) and AMP-activated protein kinase (AMPK)/Snf1 kinase-dependent pathways. Previous studies have shown that the nuclear tRNA export process is inhibited in Saccharomyces cerevisiae deprived of glucose. However, the signal transduction pathway involved and the mechanism by which glucose availability regulates nuclear-cytoplasmic tRNA trafficking are not understood. Here, we show that inhibition of nuclear tRNA export is caused by a block in nuclear reimport of the tRNA export receptors during glucose deprivation. Cytoplasmic accumulation of the tRNA export receptors during glucose deprivation is not caused by activation of Snf1p. Evidence obtained suggests that PKA is part of the mechanism that regulates nuclear reimport of the tRNA export receptors in response to glucose availability. This mechanism does not appear to involve phosphorylation of the nuclear tRNA export receptors by PKA. The block in nuclear reimport of the tRNA export receptors appears to be caused by activation of an unidentified mechanism when PKA is turned off during glucose deprivation. Taken together, the data suggest that PKA facilitates return of the tRNA export receptors to the nucleus by inhibiting an unidentified activity that facilitates cytoplasmic accumulation of the tRNA export receptors when glucose in the environment is limiting. A PKA-independent mechanism was also found to regulate nuclear tRNA export in response to glucose availability. This mechanism, however, does not regulate nuclear reimport of the tRNA export receptors.
Collapse
|
28
|
Lee YJ, Shi R, Witt SN. The small molecule triclabendazole decreases the intracellular level of cyclic AMP and increases resistance to stress in Saccharomyces cerevisiae. PLoS One 2013; 8:e64337. [PMID: 23667708 PMCID: PMC3648474 DOI: 10.1371/journal.pone.0064337] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2013] [Accepted: 04/11/2013] [Indexed: 12/13/2022] Open
Abstract
The Ras-adenylyl cyclase-protein kinase A nutrient-sensing pathway controls metabolism, proliferation and resistance to stress in Saccharomyces cerevisiae. The genetic disruption of this pathway increases resistance to a variety of stresses. We show here that the pharmacological inhibition of this pathway by the drug triclabendazole increases resistance to oxidants, heat stress and extends the chronological life. Evidence is presented that triclabendazole decreases the intracellular level of cyclic AMP by inhibiting adenylyl cyclase and triggers the parallel rapid translocation of the stress-resistance transcription factor Msn2 from the cytosol into the nucleus, as deduced from experiments employing a strain in which MSN2 is replaced with MSN2-GFP (GFP, green fluorescent protein). Msn2 and Msn4 are responsible for activating the transcription of numerous genes that encode proteins that protect cells from stress. The results are consistent with triclabendazole either inhibiting the association of Ras with adenylyl cyclase or directly inhibiting adenylyl cyclase, which in turn triggers Msn2/4 to enter the nucleus and activate stress-responsible element gene expression.
Collapse
Affiliation(s)
- Yong Joo Lee
- Department of Biochemistry and Molecular Biology, Louisiana State University Health Sciences Center at Shreveport, Shreveport, Louisiana, United States of America
| | | | | |
Collapse
|
29
|
Abstract
Many cells are able to orient themselves in a non-uniform environment by responding to localized cues. This leads to a polarized cellular response, where the cell can either grow or move towards the cue source. Fungal haploid cells secrete pheromones to signal mating, and respond by growing a mating projection towards a potential mate. Upon contact of the two partner cells, these fuse to form a diploid zygote. In this review, we present our current knowledge on the processes of mating signalling, pheromone-dependent polarized growth and cell fusion in Saccharomyces cerevisiae and Schizosaccharomyces pombe, two highly divergent ascomycete yeast models. While the global architecture of the mating response is very similar between these two species, they differ significantly both in their mating physiologies and in the molecular connections between pheromone perception and downstream responses. The use of both yeast models helps enlighten both conserved solutions and species-specific adaptations to a general biological problem.
Collapse
Affiliation(s)
- Laura Merlini
- Department of Fundamental Microbiology, Faculty of Biology and Medicine, University of Lausanne, Lausanne 1015, Switzerland
| | | | | |
Collapse
|
30
|
Gancedo JM. Biological roles of cAMP: variations on a theme in the different kingdoms of life. Biol Rev Camb Philos Soc 2013; 88:645-68. [PMID: 23356492 DOI: 10.1111/brv.12020] [Citation(s) in RCA: 127] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 12/19/2012] [Accepted: 12/20/2012] [Indexed: 12/18/2022]
Abstract
Cyclic AMP (cAMP) plays a key regulatory role in most types of cells; however, the pathways controlled by cAMP may present important differences between organisms and between tissues within a specific organism. Changes in cAMP levels are caused by multiple triggers, most affecting adenylyl cyclases, the enzymes that synthesize cAMP. Adenylyl cyclases form a large and diverse family including soluble forms and others with one or more transmembrane domains. Regulatory mechanisms for the soluble adenylyl cyclases involve either interaction with diverse proteins, as happens in Escherichia coli or yeasts, or with calcium or bicarbonate ions, as occurs in mammalian cells. The transmembrane cyclases can be regulated by a variety of proteins, among which the α subunit and the βγ complex from G proteins coupled to membrane receptors are prominent. cAMP levels also are controlled by the activity of phosphodiesterases, enzymes that hydrolyze cAMP. Phosphodiesterases can be regulated by cAMP, cGMP or calcium-calmodulin or by phosphorylation by different protein kinases. Regulation through cAMP depends on its binding to diverse proteins, its proximal targets, this in turn causing changes in a variety of distal targets. Specifically, binding of cAMP to regulatory subunits of cAMP-dependent protein kinases (PKAs) affects the activity of substrates of PKA, binding to exchange proteins directly activated by cAMP (Epac) regulates small GTPases, binding to transcription factors such as the cAMP receptor protein (CRP) or the virulence factor regulator (Vfr) modifies the rate of transcription of certain genes, while cAMP binding to ion channels modulates their activity directly. Further studies on cAMP signalling will have important implications, not only for advancing fundamental knowledge but also for identifying targets for the development of new therapeutic agents.
Collapse
Affiliation(s)
- Juana M Gancedo
- Department of Metabolism and Cell Signalling, Instituto de Investigaciones Biomédicas Alberto Sols CSIC-UAM, Madrid 28029, Spain.
| |
Collapse
|
31
|
Processing body and stress granule assembly occur by independent and differentially regulated pathways in Saccharomyces cerevisiae. Genetics 2012; 193:109-23. [PMID: 23105015 DOI: 10.1534/genetics.112.146993] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A variety of ribonucleoprotein (RNP) granules form in eukaryotic cells to regulate the translation, decay, and localization of the encapsulated messenger RNA (mRNAs). The work here examined the assembly and function of two highly conserved RNP structures, the processing body (P body) and the stress granule, in the yeast Saccharomyces cerevisiae. These granules are induced by similar stress conditions and contain translationally repressed mRNAs and a partially overlapping set of protein constituents. However, despite these similarities, the data indicate that these RNP complexes are independently assembled and that this assembly is controlled by different signaling pathways. In particular, the cAMP-dependent protein kinase (PKA) was found to control P body formation under all conditions examined. In contrast, the assembly of stress granules was not affected by changes in either PKA or TORC1 signalling activity. Both of these RNP granules were also detected in stationary-phase cells, but each appears at a distinct time. P bodies were formed prior to stationary-phase arrest, and the data suggest that these foci are important for the long-term survival of these quiescent cells. Stress granules, on the other hand, were not assembled until after the cells had entered into the stationary phase of growth and their appearance could therefore serve as a specific marker for the entry into this quiescent state. In all, the results here provide a framework for understanding the assembly of these RNP complexes and suggest that these structures have distinct but important activities in quiescent cells.
Collapse
|
32
|
Abstract
Signal transduction pathways regulating growth and stress responses are areas of significant study in the effort to delineate pathogenic mechanisms of fungi. In-depth knowledge of signal transduction events deepens our understanding of how a fungal pathogen is able to sense changes in the environment and respond accordingly by modulation of gene expression and re-organization of cellular activities to optimize fitness. Members of the Ras protein family are important regulators of growth and differentiation in eukaryotic organisms, and have been the focus of numerous studies exploring fungal pathogenesis. Here, the current data regarding Ras signal transduction are reviewed for three major pathogenic fungi: Cryptococcus neoformans, Candida albicans and Aspergillus fumigatus. Particular emphasis is placed on Ras-protein interactions during control of morphogenesis, stress response and virulence.
Collapse
Affiliation(s)
- Jarrod R Fortwendel
- Department of Microbiology and Immunology, University of South Alabama, Mobile AL, USA
| |
Collapse
|
33
|
RAS/cyclic AMP and transcription factor Msn2 regulate mating and mating-type switching in the yeast Kluyveromyces lactis. EUKARYOTIC CELL 2011; 10:1545-52. [PMID: 21890818 DOI: 10.1128/ec.05158-11] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In response to harsh environmental conditions, ascomycetes produce stress-resistant spores to promote survival. As sporulation requires a diploid DNA content, species with a haploid lifestyle, such as Kluyveromyces lactis, first induce mating in response to stress. In K. lactis, mating and mating-type switching are induced by the DNA-binding protein Mts1. Mts1 expression is known to be upregulated by nutrient limitation, but the mechanism is unknown. We show that a ras2 mutation results in a hyperswitching phenotype. In contrast, strains lacking the phosphodiesterase Pde2 had lower switching rates compared to that of the wild type (WT). As Ras2 promotes cyclic AMP (cAMP) production and Pde2 degrades cAMP, these data suggest that low cAMP levels induce switching. Because the MTS1 regulatory region contains several Msn2 binding sites and Msn2 is a transcription factor that is activated by low cAMP levels, we investigated if Msn2 regulates MTS1 transcription. Consistently with this idea, an msn2 mutant strain displayed lower switching rates than the WT strain. The transcription of MTS1 is highly induced in the ras2 mutant strain. In contrast, an msn2 ras2 double mutant strain displays WT levels of the MTS1 transcript, showing that Msn2 is a critical inducer of MTS1 transcription. Strains lacking Msn2 and Pde2 also exhibit mating defects that can be complemented by the ectopic expression of Mts1. Finally, we show that MTS1 is subjected to negative autoregulation, presumably adding robustness to the mating and switching responses. We suggest a model in which Ras2/cAMP/Msn2 mediates the stress-induced mating and mating-type switching responses in K. lactis.
Collapse
|
34
|
Brückner S, Mösch HU. Choosing the right lifestyle: adhesion and development in Saccharomyces cerevisiae. FEMS Microbiol Rev 2011; 36:25-58. [PMID: 21521246 DOI: 10.1111/j.1574-6976.2011.00275.x] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The budding yeast Saccharomyces cerevisiae is a eukaryotic microorganism that is able to choose between different unicellular and multicellular lifestyles. The potential of individual yeast cells to switch between different growth modes is advantageous for optimal dissemination, protection and substrate colonization at the population level. A crucial step in lifestyle adaptation is the control of self- and foreign adhesion. For this purpose, S. cerevisiae contains a set of cell wall-associated proteins, which confer adhesion to diverse biotic and abiotic surfaces. Here, we provide an overview of different aspects of S. cerevisiae adhesion, including a detailed description of known lifestyles, recent insights into adhesin structure and function and an outline of the complex regulatory network for adhesin gene regulation. Our review shows that S. cerevisiae is a model system suitable for studying not only the mechanisms and regulation of cell adhesion, but also the role of this process in microbial development, ecology and evolution.
Collapse
Affiliation(s)
- Stefan Brückner
- Department of Genetics, Philipps-Universität Marburg, Marburg, Germany
| | | |
Collapse
|
35
|
The membrane localization of Ras2p and the association between Cdc25p and Ras2-GTP are regulated by protein kinase A (PKA) in the yeast Saccharomyces cerevisiae. FEBS Lett 2011; 585:1127-34. [PMID: 21457714 DOI: 10.1016/j.febslet.2011.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 03/15/2011] [Indexed: 11/23/2022]
Abstract
The Saccharomyces cerevisiae Ras2p has been suggested to be a target in the feedback regulation of Ras-cAMP pathway. This work proves that the Ras2p localization is regulated by PKA activity, and that PKA down-regulates Ras2p activity and the protein association between Cdc25p and Ras2-GTP, which is due to a reduced Ras2-GEF Cdc25p activity. These results suggest that Ras2p localization and Ras2-GEF activity of Cdc25p play roles in the feedback regulation of Ras2p in the Ras-cAMP pathway.
Collapse
|
36
|
The retrograde response retrograde response and other pathways of interorganelle communication interorganelle communication in yeast replicative aging. Subcell Biochem 2011; 57:79-100. [PMID: 22094418 DOI: 10.1007/978-94-007-2561-4_4] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
A form of mitochondria-to-nucleus signaling mitochondria-to-nucleus signaling is known to play a role in determining replicative life span in yeast. This retrograde response is triggered by experimentally-induced mitochondrial dysfunction mitochondrial dysfunction, but it also is activated during the course of normal replicative aging, allowing yeast to have as long a replicative life span as they do. The components of the retrograde signaling pathway participate in diverse cellular processes such as mitophagy, which appear to be involved in mitochondrial quality control mitochondrial quality control. This plethora of mitochondrial surveillance mitochondrial surveillance mechanisms points to the central importance of this organelle organelle in yeast replicative aging. Additional pathways pathways that monitor mitochondrial status mitochondrial status that do not apparently involve the retrograde response machinery also play a role. A unifying theme is the involvement of the target of rapamycin target of rapamycin (TOR) in both these additional pathways and in the retrograde response. The involvement of TOR brings another large family of signaling events into juxtaposition. Ceramide synthesis is regulated by TOR opening up the potential for coordination of mitochondrial status with a wide array of additional cellular processes. The retrograde response lies at the nexus of metabolic regulation metabolic regulation, stress resistance stress resistance, chromatin-dependent gene regulation chromatin-dependent gene regulation, and genome stability genome stability. In its metabolic outputs, it is related to calorie restriction,calorie restriction, which may be the result of the involvement of TOR. Retrograde response-like processes have been identified in systems other than yeast, including mammalian cells mammalian cells. The retrograde response is a prototypical pathway of interorganelle communication. Other such phenomena are emerging, such as the cross-talk cross-talk between mitochondria mitochondria and the vacuole vacuole, which involves components of the retrograde signaling pathway. The impact of these varied physiological responses on yeast replicative aging remains to be assessed.
Collapse
|
37
|
Hu Y, Liu E, Bai X, Zhang A. The localization and concentration of the PDE2-encoded high-affinity cAMP phosphodiesterase is regulated by cAMP-dependent protein kinase A in the yeast Saccharomyces cerevisiae. FEMS Yeast Res 2010; 10:177-87. [PMID: 20059552 DOI: 10.1111/j.1567-1364.2009.00598.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The genome of the yeast Saccharomyces cerevisiae encodes two cyclic AMP (cAMP) phosphodiesterases, a low-affinity one, Pde1, and a high-affinity one, Pde2. Pde1 has been ascribed a function for downregulating agonist-induced cAMP accumulation in a protein kinase A (PKA)-governed negative feedback loop, whereas Pde2 controls the basal cAMP level in the cell. Here we show that PKA regulates the localization and protein concentration of Pde2. Pde2 is accumulated in the nucleus in wild-type cells growing on glucose, or in strains with hyperactive PKA. In contrast, in derepressed wild-type cells or cells with attenuated PKA activity, Pde2 is distributed over the nucleus and cytoplasm. We also show evidence indicating that the Pde2 protein level is positively correlated with PKA activity. The increase in the Pde2 protein level in high-PKA strains and in cells growing on glucose was due to its increased half-life. These results suggest that, like its low-affinity counterpart, the high-affinity phosphodiesterase may also play an important role in the PKA-controlled feedback inhibition of intracellular cAMP.
Collapse
Affiliation(s)
- Yun Hu
- Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | | | | | | |
Collapse
|
38
|
Antagonistic interactions between the cAMP-dependent protein kinase and Tor signaling pathways modulate cell growth in Saccharomyces cerevisiae. Genetics 2010; 187:441-54. [PMID: 21078689 DOI: 10.1534/genetics.110.123372] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Eukaryotic cells integrate information from multiple sources to respond appropriately to changes in the environment. Here, we examined the relationship between two signaling pathways in Saccharomyces cerevisiae that are essential for the coordination of cell growth with nutrient availability. These pathways involve the cAMP-dependent protein kinase (PKA) and Tor proteins, respectively. Although these pathways control a similar set of processes important for growth, it was not clear how their activities were integrated in vivo. The experiments here examined this coordination and, in particular, tested whether the PKA pathway was primarily a downstream effector of the TORC1 signaling complex. Using a number of reporters for the PKA pathway, we found that the inhibition of TORC1 did not result in diminished PKA signaling activity. To the contrary, decreased TORC1 signaling was generally associated with elevated levels of PKA activity. Similarly, TORC1 activity appeared to increase in response to lower levels of PKA signaling. Consistent with these observations, we found that diminished PKA signaling partially suppressed the growth defects associated with decreased TORC1 activity. In all, these data suggested that the PKA and TORC1 pathways were functioning in parallel to promote cell growth and that each pathway might restrain, either directly or indirectly, the activity of the other. The potential significance of this antagonism for the regulation of cell growth and overall fitness is discussed.
Collapse
|
39
|
Inoue Y, Klionsky DJ. Regulation of macroautophagy in Saccharomyces cerevisiae. Semin Cell Dev Biol 2010; 21:664-70. [PMID: 20359542 DOI: 10.1016/j.semcdb.2010.03.009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2010] [Accepted: 03/24/2010] [Indexed: 01/07/2023]
Abstract
Macroautophagy (hereafter autophagy) is a cellular degradation process, which in yeast is induced in response to nutrient deprivation. In this process, a double-membrane vesicle, an autophagosome, surrounds part of the cytoplasm and fuses with the vacuole to allow the breakdown and subsequent recycling of the cargo. In yeast, many autophagy-related (ATG) genes have been identified that are required for selective and/or nonselective autophagy. In all autophagy-related pathways, core Atg proteins are required for the formation of the autophagosome, which is one of the most unique aspects of autophagy and is unlike other vesicle transport events. In contrast to nonselective autophagy, the selective processes are induced in response to various specific physiological conditions such as alterations in the carbon source. In this review, we provide an overview of the common aspects concerning the mechanism of autophagy-related pathways, and highlight recent advances in our understanding of the machinery that controls autophagy induction in response to nutrient starvation conditions.
Collapse
Affiliation(s)
- Yuko Inoue
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109-2216, USA
| | | |
Collapse
|
40
|
Sato T, Nakashima A, Guo L, Tamanoi F. Specific activation of mTORC1 by Rheb G-protein in vitro involves enhanced recruitment of its substrate protein. J Biol Chem 2009; 284:12783-91. [PMID: 19299511 DOI: 10.1074/jbc.m809207200] [Citation(s) in RCA: 151] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Rheb G-protein plays critical roles in the TSC/Rheb/mTOR signaling pathway by activating mTORC1. The activation of mTORC1 by Rheb can be faithfully reproduced in vitro by using mTORC1 immunoprecipitated by the use of anti-raptor antibody from mammalian cells starved for nutrients. The low in vitro kinase activity against 4E-BP1 of this mTORC1 preparation is dramatically increased by the addition of recombinant Rheb. On the other hand, the addition of Rheb does not activate mTORC2 immunoprecipitated from mammalian cells by the use of anti-rictor antibody. The activation of mTORC1 is specific to Rheb, because other G-proteins such as KRas, RalA/B, and Cdc42 did not activate mTORC1. Both Rheb1 and Rheb2 activate mTORC1. In addition, the activation is dependent on the presence of bound GTP. We also find that the effector domain of Rheb is required for the mTORC1 activation. FKBP38, a recently proposed mediator of Rheb action, appears not to be involved in the Rheb-dependent activation of mTORC1 in vitro, because the preparation of mTORC1 that is devoid of FKBP38 is still activated by Rheb. The addition of Rheb results in a significant increase of binding of the substrate protein 4E-BP1 to mTORC1. PRAS40, a TOR signaling (TOS) motif-containing protein that competes with the binding of 4EBP1 to mTORC1, inhibits Rheb-induced activation of mTORC1. A preparation of mTORC1 that is devoid of raptor is not activated by Rheb. Rheb does not induce autophosphorylation of mTOR. These results suggest that Rheb induces alteration in the binding of 4E-BP1 with mTORC1 to regulate mTORC1 activation.
Collapse
Affiliation(s)
- Tatsuhiro Sato
- Department of Microbiology, Immunology & Molecular Genetics, Molecular Biology Institute, Jonsson Comprehensive Cancer Center, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
41
|
Schumacher J, Kokkelink L, Huesmann C, Jimenez-Teja D, Collado IG, Barakat R, Tudzynski P, Tudzynski B. The cAMP-dependent signaling pathway and its role in conidial germination, growth, and virulence of the gray mold Botrytis cinerea. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2008; 21:1443-1459. [PMID: 18842094 DOI: 10.1094/mpmi-21-11-1443] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
In Botrytis cinerea, some components of the cAMP-dependent pathway, such as alpha subunits of heterotrimeric G proteins and the adenylate cyclase BAC, have been characterized and their impact on growth, conidiation, germination, and virulence has been demonstrated. Here, we describe the functions of more components of the cAMP cascade: the catalytic subunits BcPKA1 and BcPKA2 and the regulatory subunit BcPKAR of the cAMP-dependent protein kinase (PKA). Although Deltabcpka2 mutants showed no obvious phenotypes, growth and virulence were severely affected by deletion of both bcpka1 and bcpkaR. Similar to Deltabac, lesion development of Deltabcpka1 and DeltabcpkaR was slower than in controls and soft rot of leaves never occurred. In contrast to Deltabac, Deltabcpka1 and DeltabcpkaR mutants sporulated in planta, and growth rate, conidiation, and conidial germination were not impaired, indicating PKA-independent functions of cAMP. Unexpectedly, Deltabcpka1 and DeltabcpkaR showed identical phenotypes, suggesting the total loss of PKA activity in both mutants. The deletion of bcras2 encoding the fungal-specific Ras GTPase resulted in significantly delayed germination and decreased growth rates. Both effects could be partially restored by exogenous cAMP, suggesting that BcRAS2 activates the adenylate cyclase in addition to the Galpha subunits BCG1 and BCG3, thus influencing cAMP-dependent signal transduction.
Collapse
Affiliation(s)
- Julia Schumacher
- Institut für Botanik der Westfälischen Wilhelms-Universität Münster, Schlossgarten 3, D-48149 Münster, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Schmoll M. The information highways of a biotechnological workhorse--signal transduction in Hypocrea jecorina. BMC Genomics 2008; 9:430. [PMID: 18803869 PMCID: PMC2566311 DOI: 10.1186/1471-2164-9-430] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 09/20/2008] [Indexed: 11/24/2022] Open
Abstract
Background The ascomycete Hypocrea jecorina (anamorph Trichoderma reesei) is one of the most prolific producers of biomass-degrading enzymes and frequently termed an industrial workhorse. To compete for nutrients in its habitat despite its shortcoming in certain degradative enzymes, efficient perception and interpretation of environmental signals is indispensable. A better understanding of these signals as well as their transmission machinery can provide sources for improvement of biotechnological processes. Results The genome of H. jecorina was analysed for the presence and composition of common signal transduction pathways including heterotrimeric G-protein cascades, cAMP signaling, mitogen activated protein kinases, two component phosphorelay systems, proteins involved in circadian rhythmicity and light response, calcium signaling and the superfamily of Ras small GTPases. The results of this survey are discussed in the context of current knowledge in order to assess putative functions as well as potential impact of alterations of the respective pathways. Conclusion Important findings include an additional, bacterial type phospholipase C protein and an additional 6-4 photolyase. Moreover the presence of 4 RGS-(Regulator of G-protein Signaling) proteins and 3 GprK-type G-protein coupled receptors comprising an RGS-domain suggest a more complex posttranslational regulation of G-protein signaling than in other ascomycetes. Also the finding, that H. jecorina, unlike yeast possesses class I phosducins which are involved in phototransduction in mammals warrants further investigation. An alteration in the regulation of circadian rhythmicity may be deduced from the extension of both the class I and II of casein kinases, homologues of which are implicated in phosphorylation of FRQ in Neurospora crassa. On the other hand, a shortage in the number of the pathogenicity related PTH11-type G-protein coupled receptors (GPCRs) as well as a lack of microbial opsins was detected. Considering its efficient enzyme system for breakdown of cellulosic materials, it came as a surprise that H. jecorina does not possess a carbon sensing GPCR.
Collapse
Affiliation(s)
- Monika Schmoll
- Research Area of Gene Technology and Applied Biochemistry, Institute for Chemical Engineering, Vienna University of Technology, Wien, Austria.
| |
Collapse
|
43
|
Rajalingam K, Schreck R, Rapp UR, Albert S. Ras oncogenes and their downstream targets. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2007; 1773:1177-95. [PMID: 17428555 DOI: 10.1016/j.bbamcr.2007.01.012] [Citation(s) in RCA: 318] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2006] [Revised: 01/17/2007] [Accepted: 01/19/2007] [Indexed: 12/30/2022]
Abstract
RAS proteins are small GTPases, which serve as master regulators of a myriad of signaling cascades involved in highly diverse cellular processes. RAS oncogenes have been originally discovered as retroviral oncogenes, and ever since constitutively activating RAS mutations have been identified in human tumors, they are in the focus of intense research. In this review, we summarize the biochemical properties of RAS proteins, trace down the evolution of RAS signaling and present an overview of the spatio-temporal activation of major RAS isoforms. We further discuss RAS effector pathways, their role in normal and transformed cell physiology and summarize ongoing attempts to interfere with aberrant RAS signaling. Finally, we comment on the role of micro RNAs in modulating RAS expression, contribution of RAS to stem cell function and on high-throughput analyses of RAS signaling networks.
Collapse
Affiliation(s)
- Krishnaraj Rajalingam
- University of Würzburg, Institut für Medizinische Strahlenkunde und Zellforschung, Versbacherstr. 5, D-97078 Würzburg, Germany
| | | | | | | |
Collapse
|
44
|
Fang HM, Wang Y. RA domain-mediated interaction of Cdc35 with Ras1 is essential for increasing cellular cAMP level for Candida albicans hyphal development. Mol Microbiol 2006; 61:484-96. [PMID: 16856944 DOI: 10.1111/j.1365-2958.2006.05248.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Many Ras GTPases activate their effectors through binding at a conserved Ras association (RA) domain. An example is the activation of the budding yeast adenylate cyclase Cyr1 by Ras1 and Ras2. Candida albicans Ras1 is speculated to similarly activate Cdc35, the orthologue of Cyr1, for hyphal development. Here, we have investigated whether the RA domain mediates Ras1-Cdc35 interaction and how this interaction regulates cAMP levels and morphogenesis. Yeast two-hybrid assays suggested that Ras1 interacts only with the RA but not any other identifiable domains of Cdc35. The Ras1-RA interaction was further confirmed by in vitro binding assays of purified RA domain and Ras1 and by co-immunoprecipitation of Ras1 and Cdc35 from cell lysates. Substituting Ala for the conserved residue K(338) or L(349) in the RA domain or deleting the RA domain abolished the Ras1-RA or Ras1-Cdc35 interactions. cdc35 mutants with the RA domain deleted or carrying K388A or L349A mutation exhibited rather normal yeast growth but were completely defective in hyphal morphogenesis. Further, the mutants contained nearly wild-type levels of cAMP during yeast growth but were unable to increase it upon hyphal induction. These results suggest an essential role for the RA-mediated Ras1-Cdc35 interaction in raising cellular cAMP levels for hyphal morphogenesis.
Collapse
Affiliation(s)
- Hao-Ming Fang
- Institute of Molecular and Cell Biology, ASTAR Biomedical Sciences Institutes, Proteos, 61 Biopolis Drive, Singapore 138673, Singapore
| | | |
Collapse
|
45
|
Schubert D, Raudaskoski M, Knabe N, Kothe E. Ras GTPase-activating protein gap1 of the homobasidiomycete Schizophyllum commune regulates hyphal growth orientation and sexual development. EUKARYOTIC CELL 2006; 5:683-95. [PMID: 16607016 PMCID: PMC1459660 DOI: 10.1128/ec.5.4.683-695.2006] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 01/03/2006] [Indexed: 11/20/2022]
Abstract
The white rot fungus Schizophyllum commune is used for the analysis of mating and sexual development in homobasidiomycete fungi. In this study, we isolated the gene gap1 encoding a GTPase-activating protein for Ras. Disruption of gap1 should therefore lead to strains accumulating Ras in its activated, GTP-bound state and to constitutive Ras signaling. Haploid Deltagap1 monokaryons of different mating types did not show alterations in mating behavior in the four different mating interactions possible in fungi expressing a tetrapolar mating type system. Instead, the growth rate in Deltagap1 monokaryons was reduced by ca. 25% and ca. 50% in homozygous Deltagap1/Deltagap1 dikaryons. Monokaryons, as well as homozygous dikaryons, carrying the disrupted gap1 alleles exhibited a disorientated growth pattern. Dikaryons showed a strong phenotype during clamp formation since hook cells failed to fuse with the peg beside them. Instead, the dikaryotic character of the hyphae was rescued by fusion of the hooks with nearby developing branches. Deltagap1/Deltagap1 dikaryons formed increased numbers of fruitbody primordia, whereas the amount of fruitbodies was not raised. Mature fruitbodies formed no or abnormal gills. No production of spores could be observed. The results suggest Ras involvement in growth, clamp formation, and fruitbody development.
Collapse
Affiliation(s)
- Daniela Schubert
- Institute of Microbiology, Microbial Phytopathology, Neugasse 25, D-07743 Jena, Germany
| | | | | | | |
Collapse
|
46
|
Peri F, Airoldi C, Colombo S, Martegani E, van Neuren AS, Stein M, Marinzi C, Nicotra F. Design, synthesis and biological evaluation of sugar-derived Ras inhibitors. Chembiochem 2005; 6:1839-48. [PMID: 16196015 DOI: 10.1002/cbic.200400420] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The design and synthesis of novel Ras inhibitors with a bicyclic scaffold derived from the natural sugar D-arabinose are presented. Molecular modelling showed that these ligands can bind Ras by accommodating the aromatic moieties and the phenylhydroxylamino group in a cavity near the Switch II region of the protein. All the synthetic compounds were active in inhibiting nucleotide exchange on p21 human Ras in vitro, and two of them selectively inhibited Ras-dependent cell growth in vivo.
Collapse
Affiliation(s)
- Francesco Peri
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Howard SC, Deminoff SJ, Herman PK. Increased phosphoglucomutase activity suppresses the galactose growth defect associated with elevated levels of Ras signaling in S. cerevisiae. Curr Genet 2005; 49:1-6. [PMID: 16292676 DOI: 10.1007/s00294-005-0036-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2005] [Revised: 10/18/2005] [Accepted: 10/20/2005] [Indexed: 11/29/2022]
Abstract
The Ras proteins regulate many aspects of cell growth in the budding yeast, Saccharomyces cerevisiae, via the cAMP-dependent protein kinase (PKA). Here, we show that a RAS2(val19) mutant that exhibits elevated levels of Ras/PKA signaling activity is unable to grow on media with galactose as the sole source of carbon. This growth defect was due, at least in part, to a defect in the expression of genes, like GAL1, that encode enzymes needed for the metabolism of galactose. This growth defect was used as the basis for a genetic screen for dosage suppressors of the RAS2(val19) mutant. This screen identified two genes, PGM1 and PCM1, that encode proteins with phosphoglucomutase activity. This activity is responsible for converting the glucose-1-phosphate produced during the metabolism of galactose to glucose-6-phosphate, a precursor that can be metabolized via the glycolytic pathway. The over-expression of PGM1 was not able to suppress any other RAS2(val19) phenotype or the galactose growth defect associated with a gal1Delta mutant. Overall, these data suggest that the elevated levels of phosphoglucomutase activity allow for the more efficient utilization of the limiting levels of glucose-1-phosphate that are present in the RAS2(val19) mutant.
Collapse
Affiliation(s)
- Susie C Howard
- Department of Molecular Genetics, The Ohio State University, 484 West Twelfth Avenue, Room 984, Columbus, 43210, USA
| | | | | |
Collapse
|
48
|
Colombo S, Peri F, Tisi R, Nicotra F, Martegani E. Design and characterization of a new class of inhibitors of ras activation. Ann N Y Acad Sci 2005; 1030:52-61. [PMID: 15659780 DOI: 10.1196/annals.1329.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The Ras proteins, which regulate intracellular signaling by a cyclic process involving interconversion between active GTP-bound and inactive GDP-bound states, play an essential role in controlling the activity of several crucial signaling pathways regulating normal cellular proliferation. Mutational activation of RAS genes can induce cancer in humans and other mammals. About 30% of human tumors contain an altered oncogenic Ras; therefore, inhibitors of Ras activation are potentially antineoplastic drugs. In this work we describe original molecules acting as Ras inhibitors. Recently a new class of inhibitors of the Ras nucleotide exchange process was described by Taveras et al. These molecules are able to form a noncovalent complex with Ras-GDP, inhibiting the GDP-GTP nucleotide exchange. We synthesized molecule SCH-53870 and we found that it inhibits p21-hRas nucleotide exchange in vitro, but it has very low solubility in water and undergoes rapid degradation at room temperature when dissolved in water-DMSO mixtures. This chemical instability could prejudice pharmacological activity in vivo. With the aim to improve solubility and chemical stability, we designed and synthesized other original bioactive molecules that have been characterized in vitro using purified human and yeast Ras proteins and in vivo using suitable Saccharomyces cerevisiae strains. In the long term we hope that the knowledge we derive from these compounds will help in the development of an alternative therapy targeting Ras for a specific inhibition of transformed cell proliferation.
Collapse
Affiliation(s)
- Sonia Colombo
- Laboratory of Molecular Biology, Department of Biotechnology and Bioscience, University of Milano-Bicocca, Piazza della Scienza 2, Milan 20126, Italy
| | | | | | | | | |
Collapse
|
49
|
Colombo S, Ronchetti D, Thevelein JM, Winderickx J, Martegani E. Activation state of the Ras2 protein and glucose-induced signaling in Saccharomyces cerevisiae. J Biol Chem 2004; 279:46715-22. [PMID: 15339905 DOI: 10.1074/jbc.m405136200] [Citation(s) in RCA: 101] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The activity of adenylate cyclase in the yeast Saccharomyces cerevisiae is controlled by two G-protein systems, the Ras proteins and the Galpha protein Gpa2. Glucose activation of cAMP synthesis is thought to be mediated by Gpa2 and its G-protein-coupled receptor Gpr1. Using a sensitive GTP-loading assay for Ras2 we demonstrate that glucose addition also triggers a fast increase in the GTP loading state of Ras2 concomitant with the glucose-induced increase in cAMP. This increase is severely delayed in a strain lacking Cdc25, the guanine nucleotide exchange factor for Ras proteins. Deletion of the Ras-GAPs IRA2 (alone or with IRA1) or the presence of RAS2Val19 allele causes constitutively high Ras GTP loading that no longer increases upon glucose addition. The glucose-induced increase in Ras2 GTP-loading is not dependent on Gpr1 or Gpa2. Deletion of these proteins causes higher GTP loading indicating that the two G-protein systems might directly or indirectly interact. Because deletion of GPR1 or GPA2 reduces the glucose-induced cAMP increase the observed enhancement of Ras2 GTP loading is not sufficient for full stimulation of cAMP synthesis. Glucose phosphorylation by glucokinase or the hexokinases is required for glucose-induced Ras2 GTP loading. These results indicate that glucose phosphorylation might sustain activation of cAMP synthesis by enhancing Ras2 GTP loading likely through inhibition of the Ira proteins. Strains with reduced feedback inhibition on cAMP synthesis also display elevated basal and induced Ras2 GTP loading consistent with the Ras2 protein acting as a target of the feedback-inhibition mechanism.
Collapse
Affiliation(s)
- Sonia Colombo
- Dipartimento di Biotecnologie e Bioscienze, Università Milano-Bicocca, Piazza della Scienza 2, 20126 Milano, Italy
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- Peter J Lammers
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces NM, USA 88003 (tel +1 505064603918; fax +1 505 646 6846; email )
| |
Collapse
|