1
|
Pyszka I, Jędrzejewska B. Modification of Light-Cured Composition for Permanent Dental Fillings; Mass Stability of New Composites Containing Quinoline and Quinoxaline Derivatives in Solutions Simulating the Oral Cavity Environment. MATERIALS (BASEL, SWITZERLAND) 2024; 17:6003. [PMID: 39685438 DOI: 10.3390/ma17236003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 12/03/2024] [Accepted: 12/05/2024] [Indexed: 12/18/2024]
Abstract
Billions of patients struggle with dental diseases every year. These mainly comprise caries and related diseases. This results in an extremely high demand for innovative, polymer composite filling materials that meet a number of dental requirements. The aim of the study was to modify the light-cured composition of permanent dental fillings by changing the composition of the liquid organic matrix. New photoinitiators (DQ1-DQ5) based on a quinoline or quinoxaline skeleton and a co-initiator-(phenylthio)acetic acid (PhTAA) were used. In addition, monomers that have been traditionally used in dental materials were replaced by trimethylolpropane triacrylate (TMPTA). The neutral dental glass IDG functioned as an inorganic filler. The influence of the storage conditions of the developed composites in solutions simulating the natural oral environment during the consumption of different meals on sorption, solubility, and mass changes was assessed. For the tests, fifty-four cylindrical composite samples were prepared according to ISO 4049 guidelines and stored in different solutions. Distilled water, artificial saliva, heptane, 10% ethanol, and 3% acetic acid, as well as solutions containing pigments such as coffee, tea, red wine, and Coca-Cola, were used for the studies. The samples were stored in these solutions for 7, 14, 28, 35, 42, 49, 56, and 63 days at 37 °C. The sorption, solubility, and mass changes in the tested samples were determined, and the trend of these changes as a function of storage time was presented. The results were analyzed considering the nature of the solution used, i.e., aqueous, hydrophobic, and acidic. The properties evaluated changed in a different way, characteristic for each of the abovementioned solution groups. It was found that the type of solution simulating the natural environment of the oral cavity has the greatest influence on the sorption, solubility, and changes in the mass of the tested material.
Collapse
Affiliation(s)
- Ilona Pyszka
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland
| | - Beata Jędrzejewska
- Faculty of Chemical Technology and Engineering, Bydgoszcz University of Science and Technology, 85-326 Bydgoszcz, Poland
| |
Collapse
|
2
|
Sağır K, Aydınoğlu A, Hazar Yoruç AB. Nanoflower hydroxyapatite's effect on the properties of resin‐based dental composite. J Appl Polym Sci 2024; 141. [DOI: 10.1002/app.55347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 01/26/2024] [Indexed: 01/06/2025]
Abstract
AbstractTo investigate the reinforcing effect of nanoflower‐like hydroxyapatite (NFHA) in resin‐based dental composites, we synthesized a novel NFHA using microwave irradiation (MW), hydrothermal treatment (HT), and sonochemical synthesis (SS). Silanized NFHA was then used as the reinforcing filler in dental resin composites. We characterized the structure and morphology of various HA nanostructures using x‐ray diffraction, scanning electron microscope, and TEM. The mechanical performance of dental resin composites reinforced with silanized NFHA was measured using a universal testing machine. Spherical HA, synthesized through chemical precipitation (CP), served as the control group. One‐way analysis of variance was employed for the statistical analysis of the acquired data. The results demonstrate that the nanoflower morphology significantly was improved mechanical and physical properties. After conducting trials, the NFHA synthesized using MW and HT showed a substantial enhancement in mechanical and physical properties compared to the other structures. Therefore, it can be concluded that NFHA can serve as a novel reinforcing HA filler, providing regenerative properties to resin composites with sufficient mechanical strength.
Collapse
Affiliation(s)
- Kadir Sağır
- Department of Materials Science and Technology, Faculty of Science Turkish‐German University Istanbul Turkey
| | - Aysu Aydınoğlu
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering Yıldız Technical University Istanbul Turkey
| | - Afife Binnaz Hazar Yoruç
- Department of Metallurgical and Materials Engineering, Faculty of Chemical and Metallurgical Engineering Yıldız Technical University Istanbul Turkey
| |
Collapse
|
3
|
Alrahlah A, Khan R, Al-Odayni AB, Saeed WS, Bautista LS, Alnofaiy IA, De Vera MAT. Advancing Dimethacrylate Dental Composites by Synergy of Pre-Polymerized TEGDMA Co-Filler: A Physio-Mechanical Evaluation. Biomimetics (Basel) 2023; 8:577. [PMID: 38132515 PMCID: PMC10741395 DOI: 10.3390/biomimetics8080577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/21/2023] [Accepted: 11/28/2023] [Indexed: 12/23/2023] Open
Abstract
Dental resin composites (DRCs) have gained immense popularity as filling material in direct dental restorations. They are highly valued for their ability to closely resemble natural teeth and withstand harsh oral conditions. To increase the clinical performance of dental restorations, various fillers are incorporated into DRCs. Herein, the effect of incorporating pre-polymerized triethylene glycol dimethacrylate (P-TEGDMA) as a co-filler in varying proportions (0%, 2.5%, 5%, and 10% by weight) into bisphenol A-glycidyl methacrylate (BisGMA)/TEGDMA/SiO2 resin composite was investigated. The obtained DRCs were examined for morphology, rheological properties, degree of crosslinking (DC), Vickers microhardness (VMH), thermal stability, and flexural strength (FS). The results revealed that SiO2 and P-TEGDMA particles were uniformly dispersed. The introduction of P-TEGDMA particles (2.5 wt.%) into the resin composite had a remarkable effect, leading to a significant reduction (p ≤ 0.05) in complex viscosity, decreasing from 393.84 ± 21.65 Pa.s to 152.84 ± 23.94 Pa.s. As a result, the DC was significantly (p ≤ 0.05) improved from 61.76 ± 3.80% to 68.77 ± 2.31%. In addition, the composite mixture demonstrated a higher storage modulus (G') than loss modulus (G″), indicative of its predominantly elastic nature. Moreover, the thermal stability of the DRCs was improved with the addition of P-TEGDMA particles by increasing the degradation temperature from 410 °C to 440 °C. However, the VMH was negatively affected. The study suggests that P-TEGDMA particles have the potential to be used as co-fillers alongside other inorganic fillers, offering a means to fine-tune the properties of DRCs and optimize their clinical performance.
Collapse
Affiliation(s)
- Ali Alrahlah
- Restorative Dental Sciences Department, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Rawaiz Khan
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Abdel-Basit Al-Odayni
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Waseem Sharaf Saeed
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Leonel S. Bautista
- Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, College of Dentistry, King Saud University, Riyadh 11545, Saudi Arabia (W.S.S.); (L.S.B.)
| | - Ibraheem A. Alnofaiy
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.A.); (M.A.T.D.V.)
| | - Merry Angelyn Tan De Vera
- Research Center, College of Dentistry, King Saud University, Riyadh 11451, Saudi Arabia; (I.A.A.); (M.A.T.D.V.)
| |
Collapse
|
4
|
Almulhim KS, Syed MR, Alqahtani N, Alamoudi M, Khan M, Ahmed SZ, Khan AS. Bioactive Inorganic Materials for Dental Applications: A Narrative Review. MATERIALS (BASEL, SWITZERLAND) 2022; 15:6864. [PMID: 36234205 PMCID: PMC9573037 DOI: 10.3390/ma15196864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/22/2022] [Accepted: 09/27/2022] [Indexed: 06/16/2023]
Abstract
Over time, much attention has been given to the use of bioceramics for biomedical applications; however, the recent trend has been gaining traction to apply these materials for dental restorations. The bioceramics (mainly bioactive) are exceptionally biocompatible and possess excellent bioactive and biological properties due to their similar chemical composition to human hard tissues. However, concern has been noticed related to their mechanical properties. All dental materials based on bioactive materials must be biocompatible, long-lasting, mechanically strong enough to bear the masticatory and functional load, wear-resistant, easily manipulated, and implanted. This review article presents the basic structure, properties, and dental applications of different bioactive materials i.e., amorphous calcium phosphate, hydroxyapatite, tri-calcium phosphate, mono-calcium phosphate, calcium silicate, and bioactive glass. The advantageous properties and limitations of these materials are also discussed. In the end, future directions and proposals are given to improve the physical and mechanical properties of bioactive materials-based dental materials.
Collapse
Affiliation(s)
- Khalid S. Almulhim
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Mariam Raza Syed
- UWA Dental School, The University of Western Australia, Crawley 6009, Australia
| | - Norah Alqahtani
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Marwah Alamoudi
- College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Maria Khan
- Department of Oral Biology, University of Health Sciences, Lahore 54600, Pakistan
| | - Syed Zubairuddin Ahmed
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| |
Collapse
|
5
|
Huang Q, Liang Z, Li J, Bai Y, He J, Lin Z. Size Dependence of Particulate Calcium Phosphate Fillers in Dental Resin Composites. ACS OMEGA 2021; 6:35057-35066. [PMID: 34963987 PMCID: PMC8697599 DOI: 10.1021/acsomega.1c05825] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 11/30/2021] [Indexed: 06/14/2023]
Abstract
Resin composites that consist of polymeric resins and functional fillers are commonly used as restorative materials for dental caries. Various types of calcium phosphates (CaPs) are studied as remineralizing fillers in the formulation of dental resin composites, which are generally inhibitory to demineralization of teeth, but the performance of resin composites has not yet been investigated comprehensively with respect to the size of CaP particles. In this study, the same tricalcium phosphate (TCP) particles within two different size ranges, the as-received TCP particles (TCP) and those resulted from grinding (TCP-G), were tested to determine the size dependence of CaP fillers in dental resin composites. The buffering capability, mechanical properties, ion release, antibacterial performance, and remineralization effect of TCP/TCP-G-containing composites were experimentally characterized and compared against two other commercial dental materials. The integration of micrometer-sized TCP particles resulted in a similar buffering effect and Ca2+/PO4 3- release behaviors compared to the resin composite containing much smaller TCP-G particles. The flexural strength of the TCP-G resin composite was lower than that of the TCP composite after immersion in water for 30 days. However, the TCP-G composite facilitated crystal deposition toward better gap-closing performance at the dentin-composite interface. This study explored detailed insights about the size effect of CaP fillers, which is useful for the development of functional dental resin composites and their clinical translation.
Collapse
Affiliation(s)
- Qiting Huang
- Hospital
of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Zelin Liang
- Hospital
of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Junda Li
- Hospital
of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| | - Ying Bai
- Guangdong
Engineering Technology Research Centre for Functional Biomaterials,
PCFM Lab, School of Materials Science and Engineering, Sun Yat-sen University, Guangzhou 510275, China
| | - Jingwei He
- College
of Materials Science and Engineering, South
China University of Technology, Guangzhou 510641, China
| | - Zhengmei Lin
- Hospital
of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangzhou 510055, China
- Guangdong
Provincial Key Laboratory of Stomatology, Guangzhou 510055, China
| |
Collapse
|
6
|
Sharma K, Sharma S, Thapa S, Bhagat M, Kumar V, Sharma V. Nanohydroxyapatite-, Gelatin-, and Acrylic Acid-Based Novel Dental Restorative Material. ACS OMEGA 2020; 5:27886-27895. [PMID: 33163772 PMCID: PMC7643135 DOI: 10.1021/acsomega.0c03125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 10/13/2020] [Indexed: 06/11/2023]
Abstract
The aim of this study was to prepare a novel dental restorative material (NDRM) and to understand its cell viability behavior. The hydroxyapatite (HA) nanopowder was synthesized using a wet chemical precipitation method using calcium hydroxide and orthophosphoric acid as precursors. The as-prepared HA nanopowder was annealed at different temperatures to get a pure compound with a Ca/P ratio close to 1.67. The optimal temperature was found to be 600 °C, whereas at a higher temperature, HA starts decomposing into CaO. The preparation of NDRM was conducted in two steps. The first step comprises the preparation of HA nanopowder- and gelatin (G)-based film using microwave heating. In the second step, the homogenized mixture of the HA-G film was mixed with different amounts of acrylic acid to form a self-flowable NDRM paste. Further, both these materials (HA nanopowder and NDRM) were characterized using FTIR, XRD, and SEM-EDX analyses. The FTIR and XRD results show the peaks corresponding to natural bone apatite and therefore confirm the formation of HA. EDX results showed the presence of Ca and P in HA nanopowder and NDRM with Ca/P ratios of 1.79 and 1.63, respectively. Synthesized NDRM was also analyzed for its in vitro cytotoxic and reproductive viability potential against normal cells using MTT and clonogenic assay. The analysis showed significantly higher cellular viability on the treatment with NDRM when compared to HA nanopowder as well as no colony suppression by both materials was observed on the normal cell line (fR2) even after exposure for 24 h, indicating its nontoxicity. The synthesized NDRM therefore can be considered as a promising candidate for dental caries restoration applications.
Collapse
Affiliation(s)
- Kashma Sharma
- Institute
of Forensic Science & Criminology, Panjab
University, Chandigarh 160014, India
| | - Shreya Sharma
- Institute
of Forensic Science & Criminology, Panjab
University, Chandigarh 160014, India
| | - Sonia Thapa
- Cancer
Pharmacology Division, CSIR-IIIM, Canal Road, Jammu 180001, Jammu
and Kashmir, India
| | - Madhulika Bhagat
- School
of Biotechnology, University of Jammu, Jammu 180006, Jammu and Kashmir, India
| | - Vijay Kumar
- Department
of Physics, National Institute of Technology
(NIT), Hazratbal, Srinagar 190006, Jammu
and Kashmir, India
| | - Vishal Sharma
- Institute
of Forensic Science & Criminology, Panjab
University, Chandigarh 160014, India
| |
Collapse
|
7
|
Development of brushite particles synthesized in the presence of acidic monomers for dental applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 116:111178. [PMID: 32806326 DOI: 10.1016/j.msec.2020.111178] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Revised: 06/04/2020] [Accepted: 06/08/2020] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To synthesize and characterize brushite particles in the presence of acidic monomers (acrylic acid/AA, citric acid/CA, and methacryloyloxyethyl phosphate/MOEP) and evaluate the effect of these particles on degree of conversion (DC), flexural strength/modulus (FS/FM) and ion release of experimental composites. METHODS Particles were synthesized by co-precipitation with monomers added to the phosphate precursor solution and characterized for monomer content, size and morphology. Composites containing 20 vol% brushite and 40 vol% reinforcing glass were tested for DC, FS and FM (after 24 h and 60 d in water), and 60-day ion release. Data were subjected to ANOVA/Tukey tests (DC) or Kruskal-Wallis/Dunn tests (FS and FM, alpha: 5%). RESULTS The presence of acidic monomers affected particle morphology. Monomer content on the particles was low (0.1-1.4% by mass). Composites presented similar DC. For FS/24 h, only the composite containing DCPD_AA was statistically similar to the composite containing 60 vol% of reinforcing glass (without brushite, "control"). After 60 days, all brushite-containing materials showed similar FS, statistically lower than the control composite (p<0.01). Composites containing DCPD_AA, DCPD_MOEP or DCPD_U ("unmodified") showed statistically similar FM/24 h, higher than the control composite. After prolonged immersion, all composites were similar to the control composite, except DCPD_AA. Cumulative ion release ranged from 21 ppm to 28 ppm (calcium) and 9 ppm to 17 ppm (phosphate). Statistically significant reductions in ion release between 15 and 60 days were detected only for the composite containing DCPD_MOEP. SIGNIFICANCE Acidic monomers added to the synthesis affected brushite particle morphology. After 60-day storage in water, composite strength was similar among all brushite-containing composites. Ion release was sustained for 60 days and it was not affected by particle morphology.
Collapse
|
8
|
Jardim RN, Rocha AA, Rossi AM, de Almeida Neves A, Portela MB, Lopes RT, Pires Dos Santos TM, Xing Y, Moreira da Silva E. Fabrication and characterization of remineralizing dental composites containing hydroxyapatite nanoparticles. J Mech Behav Biomed Mater 2020; 109:103817. [PMID: 32543392 DOI: 10.1016/j.jmbbm.2020.103817] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 04/17/2020] [Accepted: 04/20/2020] [Indexed: 11/25/2022]
Abstract
The aim of this study was to fabricate and characterize dental composites containing hydroxyapatite nanoparticles (HApNPs). Four dental composites were produced from the same organic matrix (70 wt% Bis-GMA and 30 wt% TEGDMA), with partial replacement of BaBSi particles (65 wt%) by HApNPs in the following concentrations (wt%): E0 (0) - control, E10 (10), E20 (20) and E30 (30). Ca2+ and PO43- release was evaluated in solutions with different pHs (4, 5.5, and 7) using atomic emission spectroscopy with microwave-induced nitrogen plasma while the enamel remineralization potential was evaluated in caries-like enamel lesions induced by S. mutans biofilm using micro-CT. The following properties were characterized: degree of conversion (DC%), microhardness (KHN), flexural strength (FS), elastic modulus (EM) and translucency (TP). The higher the HApNPs content, the higher the Ca2+ and PO43- release. The ions release was influenced by pH (4 > 5.5 > 7) (p < 0.05). All composites loaded with HApNPs were able to remineralize the enamel (E30 = E20 > E10) (p < 0.05). Contrarily, E0 was not able of recovering the enamel mineral loss. E0 and E10 presented highest DC%, while E20 and E30 showed similar and lowest DC%. KHN and FS were decreased with the addition of HApNPs, while EM was not influenced by the incorporation of HApNPs. E10 presented statistically similar TP to E0, while this property decreased for E20 and E30 (p < 0.05). Incorporation of HApNPs into dental composites promoted enamel remineralization, mainly at potentially cariogenic pH (= 4), while maintained their overall performance in terms of physicomechanical properties.
Collapse
Affiliation(s)
- Renata Nunes Jardim
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil
| | - Anderson Araújo Rocha
- Department of Analytical Chemistry and NAB - Nucleus of Biomass Studies and Water Management - Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | | | - Aline de Almeida Neves
- Department of Pediatric Dentistry and Orthodontics, School of Dentistry, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Paediatric Dentistry, King's College London, London, UK
| | - Maristela Barbosa Portela
- Odontopediatric Division, School of Dentistry, Federal Fluminense University, Niterói, Rio de Janeiro, Brazil
| | - Ricardo Tadeu Lopes
- Laboratory for Nuclear Instrumentation, Federal University of Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Yutao Xing
- High-resolution Electron Microscopy Lab, Advanced Characterization Center for Petroleum Industry, Fluminense Federal University, Niterói, Rio de Janeiro, Brazil
| | - Eduardo Moreira da Silva
- Analytical Laboratory of Restorative Biomaterials - LABiom-R, School of Dentistry, Universidade Federal Fluminense, Niterói, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Comeau PA, Willett TL. Triethyleneglycol dimethacrylate addition improves the 3D-printability and construct properties of a GelMA-nHA composite system towards tissue engineering applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2020; 112:110937. [PMID: 32409083 DOI: 10.1016/j.msec.2020.110937] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/30/2020] [Accepted: 04/05/2020] [Indexed: 12/26/2022]
Abstract
In tissue engineering, there is a growing interest in the development of 3D printable bone tissue-inspired nanocomposites. However, most such nanocomposites have poor mechanical properties, owing to poor dispersion of the mineral phase (e.g. nano-hydroxyapatite, nHA) within the organic phase (e.g. methacrylated gelatin, GelMA) and low volume fractions of each phase. Triethyleneglycol dimethacrylate (TEGDMA) is commonly added to dental resin-based composites to improve the properties of the dental resin. Here, the effects of substituting a portion of the water phase in a GelMA-nHA composite with TEGDMA were evaluated. TEGDMA improved the dispersion of nHA within the highly-concentrated GelMA-based composite ink, as well as increased the ink's shear yield strength and reduced the critical energy for ink cure. As a result, the printability of the composite ink was greatly improved upon TEGDMA inclusion. Lastly, while the swelling of the cast composite in 37 °C water increased slightly, the mechanical properties (tensile strength, toughness, and stiffness) of the cast composite increased by at least an order of magnitude upon TEGDMA addition, and all composites demonstrated MSC cytocompatibility after 24 h. Overall, TEGDMA shows promise as an additive to tune properties of the GelMA-nHA system towards use in tissue engineering applications.
Collapse
Affiliation(s)
- P A Comeau
- 200 University Avenue West, Systems Design Engineering, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada
| | - T L Willett
- 200 University Avenue West, Systems Design Engineering, University of Waterloo, Waterloo N2L 3G1, Ontario, Canada.
| |
Collapse
|
10
|
Mulyawati E, Soesatyo MHNE, Sunarintyas S, Handajani J. Apical Sealing Ability of Calcite-Synthesized Hydroxyapatite as a Filler of Epoxy Resin-Based Root Canal Sealer. Contemp Clin Dent 2020; 11:136-140. [PMID: 33110326 PMCID: PMC7583529 DOI: 10.4103/ccd.ccd_447_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 03/06/2020] [Accepted: 04/17/2020] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND The success of root canal treatment is influenced by hermetic root canal obturation. This study was conducted to analyze the apical sealing ability after the addition of calcite-synthesized hydroxyapatite (HA) as an epoxy resin sealer filler. METHODS Calcite-synthesized HA powder was prepared using the microwave hydrothermal process. HA resin sealer powder and epoxy resin paste (3:1) were mixed, and concentrations of 10%, 20%, 30%, 40%, and 50% were prepared. A sample of thirty maxillary incisors were prepared in the root canal and then, the crown was cut to leave 13 mm of the root and a working length of 12 mm. The root canal was prepared using the crown-down technique and irrigated using 2.5% sodium hypochlorite and 17% ethylenediaminetetraacetic acid alternately. The samples were divided into six groups, with each group consisting of five roots. Group I was obturated with gutta percha using an epoxy resin sealer without HA (HA-0%) as a control group. In each of the Groups II, III, IV, V, and VI, 10% HA resin sealer, 20% HA, 30% HA, 40% HA, and 50% HA were used. All the samples were incubated in a 10-ml simulated body fluid solution at 37°C for 4 weeks. Apical closure density measurement was done using a scanning electron microscope, and the results were analyzed using the Kruskal-Wallis and Mann-Whitney U-tests. RESULTS A significant increase in the apical sealing ability was observed in the HA-20% sealer group and the HA-30% and HA-40% groups compared to that in the control group. However, the HA-50% sealer group showed a decrease in the apical sealing ability, whereas the HA-10% sealer group showed no difference. The HA-30% had the highest sealing ability than other concentrations. CONCLUSION The addition of calcite-synthesized HA as a filler at concentrations of 20%, 30%, and 40% increased the apical sealing ability of the epoxy resin sealer.
Collapse
Affiliation(s)
- Ema Mulyawati
- Department of Conservative Dentistry, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | | | - Siti Sunarintyas
- Department of Biomaterials, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| | - Juni Handajani
- Department of Oral Biology, Faculty of Dentistry, Universitas Gadjah Mada, Yogyakarta, Indonesia
| |
Collapse
|
11
|
Pajor K, Pajchel L, Kolmas J. Hydroxyapatite and Fluorapatite in Conservative Dentistry and Oral Implantology-A Review. MATERIALS (BASEL, SWITZERLAND) 2019; 12:E2683. [PMID: 31443429 PMCID: PMC6747619 DOI: 10.3390/ma12172683] [Citation(s) in RCA: 101] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 08/15/2019] [Accepted: 08/20/2019] [Indexed: 01/18/2023]
Abstract
Calcium phosphate, due to its similarity to the inorganic fraction of mineralized tissues, has played a key role in many areas of medicine, in particular, regenerative medicine and orthopedics. It has also found application in conservative dentistry and dental surgery, in particular, as components of toothpaste and mouth rinse, coatings of dental implants, cements, and bone substitute materials for the restoration of cavities in maxillofacial surgery. In dental applications, the most important role is played by hydroxyapatite and fluorapatite, i.e., calcium phosphates characterized by the highest chemical stability and very low solubility. This paper presents the role of both apatites in dentistry and a review of recent achievements in the field of the application of these materials.
Collapse
Affiliation(s)
- Kamil Pajor
- Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Lukasz Pajchel
- Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland
| | - Joanna Kolmas
- Analytical Group, Department of Analytical Chemistry and Biomaterials, Faculty of Pharmacy with Laboratory Medicine Division, Medical University of Warsaw, 02-097 Warsaw, Poland.
| |
Collapse
|
12
|
Basu S, Basu B. Unravelling Doped Biphasic Calcium Phosphate: Synthesis to Application. ACS APPLIED BIO MATERIALS 2019; 2:5263-5297. [DOI: 10.1021/acsabm.9b00488] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Subhadip Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
| | - Bikramjit Basu
- Materials Research Centre, Indian Institute of Science, Bangalore 560012, India
- Center for BioSystems Science and Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
13
|
Abstract
Currently, much has been published related to conventional resin-based composites and adhesives; however, little information is available about bioceramics-based restorative materials. The aim was to structure this topic into its component parts and to highlight the translational research that has been conducted up to the present time. A literature search was done from indexed journals up to September 2017. The main search terms used were based on dental resin-based composites, dental adhesives along with bioactive glass and the calcium phosphate family. The results showed that in 123 articles, amorphous calcium phosphate (39.83%), hydroxyapatite (23.5%), bioactive glass (16.2%), dicalcium phosphate (5.69%), monocalcium phosphate monohydrate (3.25%), and tricalcium phosphate (2.43%) have been used in restorative materials. Moreover, seven studies were found related to a newly developed commercial bioactive composite. The utilization of bioactive materials for tooth restorations can promote remineralization and a durable seal of the tooth-material interface.
Collapse
Affiliation(s)
- Abdul Samad Khan
- Department of Restorative Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University
| | - Mariam Raza Syed
- Department of Dental Materials, University of Health Sciences.,Department of Dental Materials, Lahore Medical and Dental College
| |
Collapse
|
14
|
Braga RR. Calcium phosphates as ion-releasing fillers in restorative resin-based materials. Dent Mater 2018; 35:3-14. [PMID: 30139530 DOI: 10.1016/j.dental.2018.08.288] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 08/07/2018] [Accepted: 08/08/2018] [Indexed: 01/30/2023]
Abstract
Calcium phosphates (CaP) are the main constituents of the mineral phase in bones and teeth and, along with calcium silicates and bioactive glasses, have been extensively investigated in remineralization of enamel and dentin. When used as ion-releasing fillers in resin-based materials, they could contribute to extend the service life of adhesive restorations, remineralize caries-affected dentin or prevent caries lesions under sealants and orthodontic brackets. However, the development of resin-based bioactive materials is not straightforward because of the several compositional variables involved in ion release. Also, CaP particles do not reinforce the material; therefore, if high mechanical properties are required, the ratio between CaP particles and reinforcing fillers must be observed. Several research groups have investigated how CaP phase, particle size and content, as well as resin matrix formulation affect remineralization, ion release kinetics and mechanical properties of these materials. This review presents an overview of the main findings reported in the literature.
Collapse
Affiliation(s)
- Roberto Ruggiero Braga
- Department of Biomaterials and Oral Biology, University of São Paulo School of Dentistry, Av. Prof. Lineu Prestes, 2227 São Paulo, SP 05508-000, Brazil.
| |
Collapse
|
15
|
Pappus SA, Mishra M. A Drosophila Model to Decipher the Toxicity of Nanoparticles Taken Through Oral Routes. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1048:311-322. [DOI: 10.1007/978-3-319-72041-8_18] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
16
|
Calcium release from experimental dental materials. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 68:213-220. [DOI: 10.1016/j.msec.2016.05.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/09/2016] [Accepted: 05/25/2016] [Indexed: 12/16/2022]
|
17
|
Abou Neel EA, Aljabo A, Strange A, Ibrahim S, Coathup M, Young AM, Bozec L, Mudera V. Demineralization-remineralization dynamics in teeth and bone. Int J Nanomedicine 2016; 11:4743-4763. [PMID: 27695330 PMCID: PMC5034904 DOI: 10.2147/ijn.s107624] [Citation(s) in RCA: 365] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Biomineralization is a dynamic, complex, lifelong process by which living organisms control precipitations of inorganic nanocrystals within organic matrices to form unique hybrid biological tissues, for example, enamel, dentin, cementum, and bone. Understanding the process of mineral deposition is important for the development of treatments for mineralization-related diseases and also for the innovation and development of scaffolds. This review provides a thorough overview of the up-to-date information on the theories describing the possible mechanisms and the factors implicated as agonists and antagonists of mineralization. Then, the role of calcium and phosphate ions in the maintenance of teeth and bone health is described. Throughout the life, teeth and bone are at risk of demineralization, with particular emphasis on teeth, due to their anatomical arrangement and location. Teeth are exposed to food, drink, and the microbiota of the mouth; therefore, they have developed a high resistance to localized demineralization that is unmatched by bone. The mechanisms by which demineralization-remineralization process occurs in both teeth and bone and the new therapies/technologies that reverse demineralization or boost remineralization are also scrupulously discussed. Technologies discussed include composites with nano- and micron-sized inorganic minerals that can mimic mechanical properties of the tooth and bone in addition to promoting more natural repair of surrounding tissues. Turning these new technologies to products and practices would improve health care worldwide.
Collapse
Affiliation(s)
- Ensanya Ali Abou Neel
- Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia
- Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Anas Aljabo
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Adam Strange
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Salwa Ibrahim
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Melanie Coathup
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| | - Anne M Young
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Laurent Bozec
- Department of Biomaterials and Tissue Engineering, UCL Eastman Dental Institute, London, UK
| | - Vivek Mudera
- UCL Institute of Orthopaedics and Musculoskeletal Sciences, Royal National Orthopaedic Hospital, Stanmore, London, UK
| |
Collapse
|
18
|
Habib E, Wang R, Wang Y, Zhu M, Zhu XX. Inorganic Fillers for Dental Resin Composites: Present and Future. ACS Biomater Sci Eng 2015; 2:1-11. [DOI: 10.1021/acsbiomaterials.5b00401] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Eric Habib
- Department
of Chemistry, Université de Montréal, CP 6128, Succ. Centre-ville, Montreal, Quebec, Canada
| | - Ruili Wang
- Department
of Chemistry, Université de Montréal, CP 6128, Succ. Centre-ville, Montreal, Quebec, Canada
| | - Yazi Wang
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - Meifang Zhu
- State
Key Laboratory for Modification of Chemical Fibers and Polymer Materials,
College of Material Science and Engineering, Donghua University, Shanghai 201620, China
| | - X. X. Zhu
- Department
of Chemistry, Université de Montréal, CP 6128, Succ. Centre-ville, Montreal, Quebec, Canada
| |
Collapse
|
19
|
Aljabo A, Abou Neel EA, Knowles JC, Young AM. Development of dental composites with reactive fillers that promote precipitation of antibacterial-hydroxyapatite layers. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 60:285-292. [PMID: 26706532 DOI: 10.1016/j.msec.2015.11.047] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2015] [Revised: 10/23/2015] [Accepted: 11/16/2015] [Indexed: 10/22/2022]
Abstract
The study aim was to develop light-curable, high strength dental composites that would release calcium phosphate and chlorhexidine (CHX) but additionally promote surface hydroxyapatite/CHX co-precipitation in simulated body fluid (SBF). 80 wt.% urethane dimethacrylate based liquid was mixed with glass fillers containing 10 wt.% CHX and 0, 10, 20 or 40 wt.% reactive mono- and tricalcium phosphate (CaP). Surface hydroxyapatite layer thickness/coverage from SEM images, Ca/Si ratio from EDX and hydroxyapatite Raman peak intensities were all proportional to both time in SBF and CaP wt.% in the filler. Hydroxyapatite was, however, difficult to detect by XRD until 4 weeks. XRD peak width and SEM images suggested this was due to the very small size (~10 nm) of the hydroxyapatite crystallites. Precipitate mass at 12 weeks was 22 wt.% of the sample CaP total mass irrespective of CaP wt.% and up to 7 wt.% of the specimen. Early diffusion controlled CHX release, assessed by UV spectrometry, was proportional to CaP and twice as fast in water compared with SBF. After 1 week, CHX continued to diffuse into water but in SBF, became entrapped within the precipitating hydroxyapatite layer. At 12 weeks CHX formed 5 to 15% of the HA layer with 10 to 40 wt.% CaP respectively. Despite linear decline of strength and modulus in 4 weeks from 160 to 101 MPa and 4 to 2.4 GPa, respectively, upon raising CaP content, all values were still within the range expected for commercial composites. The high strength, hydroxyapatite precipitation and surface antibacterial accumulation should reduce tooth restoration failure due to fracture, aid demineralised dentine repair and prevent subsurface carious disease respectively.
Collapse
Affiliation(s)
- Anas Aljabo
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering Division, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | - Ensanya A Abou Neel
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering Division, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom; Division of Biomaterials, Operative Dentistry Department, Faculty of Dentistry, King Abdulaziz University, Jeddah, Saudi Arabia; Biomaterials Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Jonathan C Knowles
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering Division, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| | - Anne M Young
- UCL Eastman Dental Institute, Biomaterials & Tissue Engineering Division, 256 Gray's Inn Road, London WC1X 8LD, United Kingdom
| |
Collapse
|
20
|
Almaroof A, Alhashimi R, Mannocci F, Deb S. New functional and aesthetic composite materials used as an alternative to traditional post materials for the restoration of endodontically treated teeth. J Dent 2015; 43:1308-15. [PMID: 26362214 DOI: 10.1016/j.jdent.2015.09.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2015] [Accepted: 09/04/2015] [Indexed: 11/24/2022] Open
|
21
|
Liu F, Jiang X, Bao S, Wang R, Sun B, Zhu M. Effect of hydroxyapatite whisker surface graft polymerization on water sorption, solubility and bioactivity of the dental resin composite. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 53:150-5. [DOI: 10.1016/j.msec.2015.04.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2014] [Revised: 03/13/2014] [Accepted: 04/21/2015] [Indexed: 11/30/2022]
|
22
|
Canché-Escamilla G, Duarte-Aranda S, Toledano M. Synthesis and characterization of hybrid silica/PMMA nanoparticles and their use as filler in dental composites. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 42:161-7. [DOI: 10.1016/j.msec.2014.05.016] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 04/23/2014] [Accepted: 05/13/2014] [Indexed: 10/25/2022]
|
23
|
Qidwai M, Sheraz MA, Ahmed S, Alkhuraif AA, ur Rehman I. Preparation and characterization of bioactive composites and fibers for dental applications. Dent Mater 2014; 30:e253-63. [PMID: 24954646 DOI: 10.1016/j.dental.2014.05.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Revised: 03/18/2014] [Accepted: 05/21/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVES The present study was carried out to create composites and fibers using polyurethane (PU) with hydroxyapatite (HA) that could be used for dental applications. METHODS Composites with varying HA concentration were prepared by solution casting technique. Similarly, PU-HA fibers with varying PU hard and soft segments and fixed HA concentration were also prepared. Various characterization techniques, such as, X-ray diffractometry, differential scanning calorimetry, scanning electron microscopy and Fourier transform infrared spectroscopy in conjunction with photo-acoustic sampling cell were employed to study the composites and fibers for changes in their physicochemical properties before and after immersion in artificial saliva at 37°C for up to 5 days. RESULTS The results indicated formation of amorphous apatite layers with maximum amorphicity in composites containing highest amount of HA with 5 days of immersion in artificial saliva. Similarly, fibers with more PU hard segment resulted in better transformation of crystalline HA to its amorphous state with increasing immersion time thus confirming the bioactive nature of the HA-PU fibers. SIGNIFICANCE Concentrations of HA and PU hard segment along with the duration of immersion in artificial saliva are two major factors involved in the modification of solid-state properties of HA. The amorphous apatite layer on the surface is known to have tendency to bind with living tissues and hence the use of optimum amount of HA and PU hard segment in composites and fibers, respectively could help in the development of novel dental filling material.
Collapse
Affiliation(s)
- Maryam Qidwai
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK
| | - Muhammad Ali Sheraz
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK
| | - Sofia Ahmed
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK
| | | | - Ihtesham ur Rehman
- Department of Materials Science and Engineering, The Kroto Research Institute, University of Sheffield, North Campus, Broad Lane, Sheffield S3 7HQ, UK.
| |
Collapse
|
24
|
Li X, Liu W, Sun L, Aifantis KE, Yu B, Fan Y, Feng Q, Cui F, Watari F. Resin composites reinforced by nanoscaled fibers or tubes for dental regeneration. BIOMED RESEARCH INTERNATIONAL 2014; 2014:542958. [PMID: 24982894 PMCID: PMC4058202 DOI: 10.1155/2014/542958] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2013] [Accepted: 03/04/2014] [Indexed: 12/20/2022]
Abstract
It has been stated clearly that nanofillers could make an enhancement on the mechanical performances of dental composites. In order to address current shortage of traditional dental composites, fillers in forms of nanofibers or nanotubes are broadly regarded as ideal candidates to greatly increase mechanical performances of dental composites with low content of fillers. In this review, the efforts using nanofibers and nanotubes to reinforce mechanical performances of dental composites, including polymeric nanofibers, metallic nanofibers or nanotubes, and inorganic nanofibers or nanotubes, as well as their researches related, are demonstrated in sequence. The first purpose of current paper was to confirm the enhancement of nanofibers or nanotubes' reinforcement on the mechanical performances of dental restorative composite. The second purpose was to make a general description about the reinforcement mechanism of nanofibers and nanotubes, especially, the impact of formation of interphase boundary interaction and nanofibers themselves on the advanced mechanical behaviors of the dental composites. By means of the formation of interface interaction and poststretching nanofibers, reinforced effect of dental composites by sorts of nanofibers/nanotubes has been successfully obtained.
Collapse
Affiliation(s)
- Xiaoming Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Wei Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Lianwen Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | | | - Bo Yu
- Department of Orthopedics, Zhujiang Hospital of Southern Medical University, Guangzhou 510282, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100191, China
| | - Qingling Feng
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Fuzhai Cui
- State Key Laboratory of New Ceramics and Fine Processing, Tsinghua University, Beijing 100084, China
| | - Fumio Watari
- Department of Biomedical Materials and Engineering, Graduate School of Dental Medicine, Hokkaido University, Sapporo 060-8586, Japan
| |
Collapse
|
25
|
Okulus Z, Héberger K, Voelkel A. Sorption, solubility, and mass changes of hydroxyapatite-containing composites in artificial saliva, food simulating solutions, tea, and coffee. J Appl Polym Sci 2013. [DOI: 10.1002/app.39856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Zuzanna Okulus
- Poznań University of Technology; Institute of Chemical Technology and Engineering, Department of Organic Chemistry; Poznań 60-965 Poland
| | - Karoly Héberger
- Research Centre for Natural Sciences; Hungarian Academy of Sciences; Budapest H-1025 Hungary
| | - Adam Voelkel
- Poznań University of Technology; Institute of Chemical Technology and Engineering, Department of Organic Chemistry; Poznań 60-965 Poland
| |
Collapse
|
26
|
Sadiasa A, Franco RA, Seo HS, Lee BT. Hydroxyapatite delivery to dentine tubules using carboxymethyl cellulose dental hydrogel for treatment of dentine hypersensitivity. ACTA ACUST UNITED AC 2013. [DOI: 10.4236/jbise.2013.610123] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
27
|
Sadhasivam S, Chen JC, Savitha S, Hsu MX, Hsu CK, Lin CP, Lin FH. Synthesis of partial stabilized cement-gypsum as new dental retrograde filling material. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2012; 32:1859-1867. [PMID: 34062667 DOI: 10.1016/j.msec.2012.05.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2011] [Revised: 02/01/2012] [Accepted: 05/04/2012] [Indexed: 10/28/2022]
Abstract
The study describes the sol-gel synthesis of a new dental retrograde filling material partial stabilized cement (PSC)-gypsum by adding different weight percentage of gypsum (25% PSC+75% gypsum, 50% PSC+50% gypsum and 75% PSC+25% gypsum) to the PSC. The crystalline phase and hydration products of PSC-gypsum were characterized by X-ray diffraction (XRD) and scanning electron microscopy (SEM) analysis. The handling properties such as setting time, viscosity, tensile strength, porosity and pH, were also studied. The XRD and microstructure analysis demonstrated the formation of hydroxyapatite and removal of calcium dihydrate during its immersion in simulated body fluid (SBF) on day 10 for 75% PSC+25% gypsum. The developed PSC-gypsum not only improved the setting time but also greatly reduced the viscosity, which is very essential for endodontic surgery. The cytotoxic and cell proliferation studies indicated that the synthesized material is highly biocompatible. The increased alkaline pH of the PSC-gypsum also had a remarkable antibacterial activity.
Collapse
Affiliation(s)
- S Sadhasivam
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Division of Medical Engineering Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan
| | - Jung-Chih Chen
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Medical Device Innovation Center, National Cheng Kung University, Tainan,Taiwan
| | - S Savitha
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Ming-Xiang Hsu
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chung-King Hsu
- Institute of Materials Science and Engineering, National Taipei University of Technology, Taipei, Taiwan
| | - Chun-Pin Lin
- School of Dentistry and Graduate Institute of Clinical Dentistry, College of Medicine, National Taiwan University and National Taiwan University Hospital, Taipei, Taiwan
| | - Feng-Huei Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan; Division of Medical Engineering Research, National Health Research Institute, Zhunan, Miaoli County, Taiwan.
| |
Collapse
|
28
|
Zhang H, Darvell BW. Failure and behavior in water of hydroxyapatite whisker-reinforced bis-GMA-based resin composites. J Mech Behav Biomed Mater 2012; 10:39-47. [DOI: 10.1016/j.jmbbm.2012.02.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2011] [Revised: 01/28/2012] [Accepted: 02/02/2012] [Indexed: 11/16/2022]
|
29
|
Buruiana EC, Jitaru F, Melinte V, Buruiana T. Effect of cinnamate comonomers on the dental formulation properties. J Appl Polym Sci 2012. [DOI: 10.1002/app.37942] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
30
|
Chen L, Yu Q, Wang Y, Li H. BisGMA/TEGDMA dental composite containing high aspect-ratio hydroxyapatite nanofibers. Dent Mater 2011; 27:1187-95. [PMID: 21937098 DOI: 10.1016/j.dental.2011.08.403] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2011] [Revised: 05/23/2011] [Accepted: 08/25/2011] [Indexed: 11/17/2022]
Abstract
OBJECTIVES The objectives of this study are to investigate the properties of high aspect-ratio hydroxyapatite (HAP) nanofibers and the reinforcing effect of such fibers on bisphenol A glycidyl methacrylate (BisGMA)/triethylene glycol dimethacrylate (TEGDMA) dental resins (without silica microparticle filler) and dental composites (with silica microparticle filler) with various mass fractions (loading rates). METHODS HAP nanofibers were synthesized using a wet-chemical method and characterized by X-ray diffraction (XRD), scanning electron microscope (SEM), and thermal gravimetric analysis (TGA). Biaxial flexural strength (BFS) of the HAP nanofibers reinforced dental resins without any microsized filler and dental composites with silica microparticle filler was tested and analysis of variance (ANOVA) was used for the statistically analysis of acquired data. The morphology of fracture surface of tested dental composite samples was examined by SEM. RESULTS The HAP nanofibers with aspect-ratios of 600 to 800 can be successfully fabricated with a simple wet-chemical method in aqueous solution. Impregnation of small mass fractions of the HAP nanofibers (5 wt% or 10 wt%) into the BisGMA/TEGDMA dental resins or impregnation of small mass fractions of the HAP nanofibers (2 wt% or 3 wt%) into the dental composites can substantially improve the biaxial flexural strength of the resulting dental resins and composites. A percolation threshold of HAP nanofibers, beyond which more nanofibers will no longer further increase the mechanical properties of dental composites containing HAP nanofibers, was observed for the dental composites with or without silica microparticle filler. Our mechanical testing and fractographic analysis indicated that the relatively good dispersion of HAP nanofibers at low mass fraction is the key reason for the significantly improved biaxial flexural strength, while higher mass fraction of HAP nanofibers tends to lead to bundles that cannot effectively reinforce the dental resins or composites and may even serve as defects and thus degrade the resulting dental resin and composite mechanical properties. SIGNIFICANCE The incorporation of small mass fraction of HAP nanofibers with good dispersion can improve the mechanical property of dental resins and dental composites.
Collapse
Affiliation(s)
- Liang Chen
- Department of Mechanical and Aerospace Engineering, University of Missouri-Columbia, Columbia, MO 65211, United States
| | | | | | | |
Collapse
|
31
|
Collares FM, Leitune VCB, Rostirolla FV, Trommer RM, Bergmann CP, Samuel SMW. Nanostructured hydroxyapatite as filler for methacrylate-based root canal sealers. Int Endod J 2011; 45:63-7. [DOI: 10.1111/j.1365-2591.2011.01948.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
32
|
Buruiana T, Melinte V, Costin G, Buruiana EC. Synthesis and properties of liquid crystalline urethane methacrylates for dental composite applications. ACTA ACUST UNITED AC 2011. [DOI: 10.1002/pola.24693] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
33
|
Sadat-Shojai M, Atai M, Nodehi A, Khanlar LN. Hydroxyapatite nanorods as novel fillers for improving the properties of dental adhesives: Synthesis and application. Dent Mater 2010; 26:471-82. [DOI: 10.1016/j.dental.2010.01.005] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 10/03/2009] [Accepted: 01/09/2010] [Indexed: 11/28/2022]
|
34
|
Scougall-Vilchis RJ, Hotta Y, Hotta M, Idono T, Yamamoto K. Examination of composite resins with electron microscopy, microhardness tester and energy dispersive X-ray microanalyzer. Dent Mater J 2009; 28:102-12. [PMID: 19280975 DOI: 10.4012/dmj.28.102] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study was conducted to examine the ultrastructures of eight recently improved light-cure restorative composite resins with scanning and transmission electron microscopes (SEM and TEM). Additionally, Vickers hardness, volume/weight fraction of filler, and chemical composition were analyzed. Composite resins selected for evaluation were Beautifil II, Clearfil AP-X, Clearfil Majesty, Estelite sigma, Filtek Supreme, Filtek Z250, Solare, and Synergy. SEM and TEM images revealed a great diversity in ultrastructure, and Vickers hardness test showed significant differences amongst all the composite resins (except between Clearfil Majesty and Estelite sigma, and between Filtek Supreme and Filtek Z250). By means of EDX, similar elements such as C, O, and Si were detected, but the concentration was different in every composite resin. Results obtained in this study served to validate that the methods employed in this study SEM and TEM at high magnification--were useful in examining the ultrastructures of composite resins. It was also found that the ultrastructure, size of filler particles, volume/weight fraction of filler, and chemical composition of the composite resins had an effect on Vickers hardness. Given the great diversity of ultrastructures amongst the composite resins, which stemmed from the different revolutionary technologies used to manufacture them, further studies are warranted in the search of clinical applications that optimally match the differing properties of these materials.
Collapse
Affiliation(s)
- Rogelio José Scougall-Vilchis
- Department of Operative Dentistry, Division of Oral Functional Science and Rehabilitation, School of Dentistry Asahi University 1851 Hozumi, Mizuho City, Gifu 501-0296, Japan.
| | | | | | | | | |
Collapse
|
35
|
Buruiana T, Melinte V, Stroea L, Buruiana EC. Urethane Dimethacrylates with Carboxylic Groups as Potential Dental Monomers. Synthesis and Properties. Polym J 2009. [DOI: 10.1295/polymj.pj2009131] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
36
|
Tomlinson SK, Ghita OR, Hooper RM, Evans KE. Monomer conversion and hardness of novel dental cements based on ethyl cyanoacrylate. Dent Mater 2007; 23:799-806. [PMID: 16949146 DOI: 10.1016/j.dental.2006.06.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2005] [Revised: 05/23/2006] [Accepted: 06/22/2006] [Indexed: 10/24/2022]
Abstract
OBJECTIVES The aim of this work was to study the setting of two novel dental cements: (i) a 'hybrid' cement, incorporating an ethyl cyanoacrylate into a glass-ionomer cement (ECGIC) formulation and (ii) an ethyl cyanoacrylate/hydroxyapatite composite cement (ECHC). The mechanical role of the cyanoacrylate and its curing within the cements have been discussed. METHODS The setting of the cements was characterised using Vickers indentation hardness and near-infrared (near-IR) spectroscopy. RESULTS The cyanoacrylate component of ECGIC was 100% cured approximately 10min after the initial cement mixing. The ECGIC continued to increase in hardness after the cyanoacrylate component was fully cured. This proved that the fully polymerised network of cyanoacrylate did not prevent the acid-base reactions of the GIC components from continuing. The Vickers hardness number of ECGIC at 18 weeks was approximately 105. The curing of the cyanoacrylate within ECHC was much slower and was still not complete (98%) 18 weeks after the initial cement mixing. The hardness of the ECHC was shown to be correlated with the extent of cyanoacrylate cure. The Vickers hardness number of ECHC at 18 weeks was approximately 21. The primary reasons for the overall lower hardness of ECHC in comparison to ECGIC were the lower powder:liquid ratio and the softer filler type. SIGNIFICANCE Careful consideration is needed when incorporating cyanoacrylates into dental cements, as speed of cure and hardness are particularly important.
Collapse
Affiliation(s)
- Susannah K Tomlinson
- School of Engineering, Computer Science and Mathematics, University of Exeter, Harrison Building, North Park Road, Exeter, Devon EX4 4QF, United Kingdom.
| | | | | | | |
Collapse
|
37
|
Osorio E, Osorio R, Davidenko N, Sastre R, Aguilar JA, Toledano M. Polymerization kinetics and mechanical characterization of new formulations of light-cured dental sealants. J Biomed Mater Res B Appl Biomater 2006; 80:18-24. [PMID: 16649184 DOI: 10.1002/jbm.b.30563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The aim of the study was to develop and evaluate the in vitro performance of a new and simplified formulation of photocuring resin to be used as dental sealant. Two experimental dental sealants (CYTED1 and CYTED2) were formulated and their kinetic of polymerisation and physico-chemical properties were studied and compared to those of two commercially available sealants (Helioseal, Delton-FS). Rates of photoinitiated polymerisation (Rp), as well as the conversions and the quantum yields of polymerisation (phi(p)) were calculated. Flexural strength, Young's modulus, microhardness, microleakage, water sorption, and solubility were also tested. ANOVA, Student-Newman-Keuls, Pearson correlation and Kruskal-Wallis tests were used (p < 0.05). The highest Rp and phi(p) were obtained for the sealant CYTED2, Rp and phi(p) were similar for CYTEDl and Helioseal, and the lowest for Delton. Water sorption values were similar for Helioseal and CYTED2 being higher for CYTED1 and lower for Delton. No differences were found for solubility and microleakage values. Mechanical properties were better for Delton and no differences were found within the rest of the sealants. At short irradiation times (30 s), the maximum effectiveness of the photoinitiating system was obtained by the experimental CYTED2.
Collapse
Affiliation(s)
- Estrella Osorio
- Department of Dental Materials. Dental School, University of Granada, Spain
| | | | | | | | | | | |
Collapse
|
38
|
Kim HW, Knowles JC, Kim HE. Hydroxyapatite porous scaffold engineered with biological polymer hybrid coating for antibiotic Vancomycin release. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2005; 16:189-195. [PMID: 15744609 DOI: 10.1007/s10856-005-6679-y] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2004] [Accepted: 08/12/2004] [Indexed: 05/24/2023]
Abstract
The purpose of this study is to improve hydroxyapatite (HA) porous scaffolds via coating with biological polymer-HA hybrids for use as wound healing and tissue regeneration. Highly porous HA scaffolds, fabricated by a polyurethane foam reticulate method, were coated with hybrid coating solution, consisting of poly(epsilon-caprolactone) (PCL), HA powders, and the antibiotic Vancomycin. The PCL to HA ratio was fixed at 1.5 and the drug amounts were varied [drug/(PCL + HA) = 0.02 and 0.04]. For the purpose of comparison, bare HA scaffold without the hybrid coating layer was also loaded with Vancomycin via an immersion-adsorption method. The hybrid coating structure and morphology were observed with Fourier transformed infrared (FT-IR) spectroscopy and scanning electron microscopy (SEM). The effects of the hybrid coating on the compressive mechanical properties and the in vitro drug release of the scaffolds were investigated in comparison with bare HA scaffold. The PCL-HA hybrid coating altered the scaffold pore structure slightly, resulting in thicker stems and reduced porosity. With the hybrid coating, the HA scaffold responded to an applied compressive stress more effectively without showing a brittle failure. This was attributed to the shielding and covering of the framework surface by the coating layer. The encapsulated drugs within the coated scaffold was released in a highly sustained manner as compared to the rapid release of drugs directly adsorbed on the pure HA scaffold. These findings suggest that the coated HA scaffolds expand their applicability in hard tissue regeneration and wound healing substitutes delivering bioactive molecules.
Collapse
Affiliation(s)
- Hae-Won Kim
- School of Materials Science and Engineering, Seoul National University, Seoul 151-742, Korea.
| | | | | |
Collapse
|