1
|
Abstract
Congenital heart disease (CHD) is the most common birth defect, affecting 1 in 100 babies. Among CHDs, single ventricle (SV) physiologies, such as hypoplastic left heart syndrome and tricuspid atresia, are particularly severe conditions that require multiple palliative surgeries, including the Fontan procedure. Although the management strategies for SV patients have markedly improved, the prevalence of ventricular dysfunction continues to increase over time, especially after the Fontan procedure. At present, the final treatment for SV patients who develop heart failure is heart transplantation; however, transplantation is difficult to achieve because of severe donor shortages. Recently, various regenerative therapies for heart failure have been developed that increase cardiomyocytes and restore cardiac function, with promising results in adults. The clinical application of various forms of regenerative medicine for CHD patients with heart failure is highly anticipated, and the latest research in this field is reviewed here. In addition, regenerative therapy is important for children with CHD because of their natural growth. The ideal pediatric cardiovascular device would have the potential to adapt to a child's growth. Therefore, if a device that increases in size in accordance with the patient's growth could be developed using regenerative medicine, it would be highly beneficial. This review provides an overview of the available regenerative technologies for CHD patients.
Collapse
|
2
|
Wang F, Zhang J, Wang R, Gu Y, Li J, Wang C. Triton X-100 combines with chymotrypsin: A more promising protocol to prepare decellularized porcine carotid arteries. Biomed Mater Eng 2017; 28:531-543. [PMID: 28854493 DOI: 10.3233/bme-171694] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Morbidity and mortality of cardiovascular diseases are increasing in recent years. To solve these problems, vascular transplantation has become a common approach. Decellularization has been a hot spot of tissue engineering to prepare vessel substitutes for vascular transplantation. However, there is no established canonical protocol for decellularization thus far. OBJECTIVE To further understand the decellularization effect of decellularization protocols and the causal relationship between decellularization and mechanical properties. METHODS Three decellularization protocols including two chemical protocols based on SDS and Trypsin respectively and a combination of Triton X-100 with chymotrypsin were adopted to obtain decellularized porcine carotid arteries in our study. After decellularization, histological analysis, scanning electron microscopy and mechanical tests were performed to evaluate their efficiency on removing of cellular components, retention of extracellular matrix and influence on mechanical properties. RESULTS All these decellularization protocols used in our study were efficient to remove cellular components. However, SDS and trypsin performed more disruptive effect on ECM structure and mechanical properties of native arteries while Triton X-100 combines with chymotrypsin had no significant disruptive effect. CONCLUSIONS Compared with decellularization protocols based on SDS and trypsin, Triton X-100 combines with chymotrypsin used in our study may be a more promising protocol to prepare decellularized porcine carotid arteries for vascular tissue engineering applications.
Collapse
Affiliation(s)
- Fei Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Institute of Vascular Surgery, Capital Medical University, Beijing, P.R. China
| | - Jian Zhang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Institute of Vascular Surgery, Capital Medical University, Beijing, P.R. China
| | - Rong Wang
- Department of Central Laboratory, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China
| | - Yongquan Gu
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Institute of Vascular Surgery, Capital Medical University, Beijing, P.R. China
| | - Jianxin Li
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Institute of Vascular Surgery, Capital Medical University, Beijing, P.R. China
| | - Cong Wang
- Department of Vascular Surgery, Xuan Wu Hospital, Capital Medical University, Beijing, P.R. China.,Institute of Vascular Surgery, Capital Medical University, Beijing, P.R. China
| |
Collapse
|
3
|
Wang N, Tang L, Zheng W, Peng Y, Cheng S, Lei Y, Zhang L, Hu B, Liu S, Zhang W, Jiang X. A strategy for rapid and facile fabrication of controlled, layered blood vessel-like structures. RSC Adv 2016. [DOI: 10.1039/c6ra12768a] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
With the aid of fibrin glue, we wrap thin films into multi-layered tubes with a precisely-arranged cell distribution within 70 min.
Collapse
|
4
|
G N, Tan A, Gundogan B, Farhatnia Y, Nayyer L, Mahdibeiraghdar S, Rajadas J, De Coppi P, Davies AH, Seifalian AM. Tissue engineering vascular grafts a fortiori: looking back and going forward. Expert Opin Biol Ther 2014; 15:231-44. [PMID: 25427995 DOI: 10.1517/14712598.2015.980234] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
INTRODUCTION Cardiovascular diseases such as coronary heart disease often necessitate the surgical repair using conduits. Although autografts still remain the gold standard, the inconvenience of harvesting and/or insufficient availability in patients with atherosclerotic disease has given impetus to look into alternative sources for vascular grafts. AREAS COVERED There are four main techniques to produce tissue-engineered vascular grafts (TEVGs): i) biodegradable synthetic scaffolds; ii) gel-based scaffolds; iii) decellularised scaffolds and iv) self-assembled cell-sheet-based techniques. The first three techniques can be grouped together as scaffold-guided approach as it involves the use of a construct to function as a supportive framework for the vascular graft. The most significant advantages of TEVGs are that it possesses the ability to grow, remodel and respond to environmental factors. Cell sources for TEVGs include mature somatic cells, stem cells, adult progenitor cells and pluripotent stem cells. EXPERT OPINION TEVG holds great promise with advances in nanotechnology, coupled with important refinements in tissue engineering and decellularisation techniques. This will undoubtedly be an important milestone for cardiovascular medicine when it is eventually translated to clinical use.
Collapse
Affiliation(s)
- Natasha G
- University College London (UCL), Centre for Nanotechnology and Regenerative Medicine, UCL Division of Surgery and Interventional Science, Research Department of Nanotechnology , London NW3 2QG , UK +44 207 830 2901 ;
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Mancuso L, Gualerzi A, Boschetti F, Loy F, Cao G. Decellularized ovine arteries as small-diameter vascular grafts. Biomed Mater 2014; 9:045011. [DOI: 10.1088/1748-6041/9/4/045011] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
6
|
Gao Y, Liu F, Zhang L, Su X, Liu JY, Li Y. Acellular blood vessels combined human hair follicle mesenchymal stem cells for engineering of functional arterial grafts. Ann Biomed Eng 2014; 42:2177-89. [PMID: 25023659 DOI: 10.1007/s10439-014-1061-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/19/2014] [Indexed: 12/11/2022]
Abstract
Tissue-engineered vessels offer options for autologous vascular grafts in cardiovascular repair and regeneration. The experiments aimed to construct functional arterial grafts by combining human hair follicle mesenchymal stem cells (HF-MSCs) with acellular umbilical arteries. We isolated mesenchymal stem cells from human hair follicles. Under appropriate culture conditions, these cells displayed CD44, CD90 and CD105, and exhibited the potential for differentiation to adipocytes, osteoblasts and chondrocytes. Very promisingly, HF-MSCs expressed the vascular smooth muscle specific markers in the presence of transforming growth factor-β. We created acellular arterial scaffolds by digesting human umbilical arteries with trypsin and sodium dodecyl sulfate. These acellular arterial scaffolds retained major components of the extracellular matrix. The mechanical properties of these acellular arterial scaffolds were very similar to those of native blood vessels. We then seeded HF-MSCs into acellular arterial scaffolds and found that they still expressed vascular smooth muscle specific markers. The arterial grafts derived from HF-MSCs demonstrated vasoreactivity in response to humoral constrictors. We constructed arterial grafts that are very close to native blood vessels in their structures and physiological functions. These properties suggest that these arterial grafts could be used as small diameter arterial grafts for cardiovascular repair and regeneration.
Collapse
Affiliation(s)
- Yunhe Gao
- The Key Laboratory of Pathobiology, Ministry of Education, Norman Bethune College of Medicine, Jilin University, Changchun, 130021, Jilin, China
| | | | | | | | | | | |
Collapse
|
7
|
Gurjarpadhye AA, Whited BM, Sampson A, Niu G, Sharma KS, Vogt WC, Wang G, Xu Y, Soker S, Rylander MN, Rylander CG. Imaging and characterization of bioengineered blood vessels within a bioreactor using free-space and catheter-based OCT. Lasers Surg Med 2013; 45:391-400. [PMID: 23740768 DOI: 10.1002/lsm.22147] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/29/2013] [Indexed: 11/10/2022]
Abstract
BACKGROUND AND OBJECTIVE Regenerative medicine involves the bioengineering of a functional tissue or organ by seeding living cells on a biodegradable scaffold cultured in a bioreactor. A major barrier to creating functional tissues, however, has been the inability to monitor the dynamic and complex process of scaffold maturation in real time, making control and optimization extremely difficult. Current methods to assess maturation of bioengineered constructs, such as histology or organ bath physiology, are sample-destructive. Optical coherence tomography (OCT) has recently emerged as a key modality for structural assessment of native blood vessels as well as engineered vessel mimics. The objective of this study was to monitor and assess in real time the development of a bioengineered blood vessel using a novel approach of combining both free-space and catheter-based OCT imaging in a new quartz-walled bioreactor. Development of the blood vessel was characterized by changes in thickness and scattering coefficient over a 30-day period. MATERIALS AND METHODS We constructed a novel blood vessel bioreactor utilizing a rotating cylindrical quartz cuvette permitting free-space OCT imaging of an installed vessel's outer surface. A vascular endoscopic OCT catheter was used to image the lumen of the vessels. The quartz cuvette permits 360 degree, free-space OCT imaging of the blood vessel. Bioengineered blood vessels were fabricated using biodegradable polymers (15% PCL/collagen, ∼300 µm thick) and seeded with CH3 10t1/2 mesenchymal stem cells. A swept-source OCT imaging system comprised of a 20 kHz tunable laser (Santec HSL2000) with 1,300 nm central wavelength and 110 nm FWHM bandwidth was used to assess the vessels. OCT images were obtained at days 1, 4, 7, 14, 21, and 30. Free-space (exterior surface) OCT images were co-registered with endoscopic OCT images to determine the vessel wall thickness. DAPI-stained histological sections, acquired at same time point, were evaluated to quantify wall thickness and cellular infiltration. Non-linear curve fitting of free-space OCT data to the extended Huygen-Fresnel model was performed to determine optical scattering properties. RESULTS Vessel wall thickness increased from 435 ± 15 µm to 610 ± 27 µm and Vessel scattering coefficient increased from 3.73 ± 0.32 cm⁻¹ to 5.74 ± 0.06 cm⁻¹ over 30 days. Histological studies showed cell migration from the scaffold surface toward the lumen and cell proliferation over the same time course. The imaging procedure did not have any significant impact on scaffold dimensions, cell migration, or cell proliferation. CONCLUSIONS This study suggests that combination of free-space and catheter-based OCT for blood vessel imaging provides accurate structural information of the developing blood vessel. We determined that free-space OCT images could be co-registered with catheter-based OCT images to monitor structural features such as wall thickness or delamination of the developing tissue-engineered blood vessel within a bioreactor. Structural parameters and optical properties obtained from OCT imaging correlate with histological sections of the blood vessel and could potentially be used as markers to non-invasively and non-destructively assess regeneration of engineered tissues in real time.
Collapse
Affiliation(s)
- Abhijit A Gurjarpadhye
- School of Biomedical Engineering and Sciences, Virginia Polytechnic Institute and State University, Blacksburg, Virginia 24061, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Abstract
Vascular occlusion remains the leading cause of death in Western countries, despite advances made in balloon angioplasty and conventional surgical intervention. Vascular surgery, such as CABG surgery, arteriovenous shunts, and the treatment of congenital anomalies of the coronary artery and pulmonary tracts, requires biologically responsive vascular substitutes. Autografts, particularly saphenous vein and internal mammary artery, are the gold-standard grafts used to treat vascular occlusions. Prosthetic grafts have been developed as alternatives to autografts, but their low patency owing to short-term and intermediate-term thrombosis still limits their clinical application. Advances in vascular tissue engineering technology-such as self-assembling cell sheets, as well as scaffold-guided and decellularized-matrix approaches-promise to produce responsive, living conduits with properties similar to those of native tissue. Over the past decade, vascular tissue engineering has become one of the fastest-growing areas of research, and is now showing some success in the clinic.
Collapse
Affiliation(s)
- Dawit G Seifu
- Laboratory for Biomaterials and Bioengineering, Department of Min-Met-Materials Engineering and Quebec University Hospital Center, Laval University, Quebec City, QC G1V 0A6, Canada
| | | | | | | |
Collapse
|