1
|
Reus LM, Willemse SW, de Boer SCM, De Houwer J, Hartog WL, Mol MO, van Rooij JGJ, Tesi N, Donker Kaat L, Hulsman M, Vijverberg EGB, Holstege H, van Rheenen W, Veldink JH, van den Berg LH, van Swieten JC, Seelaar H, van der Lee SJ, van Es MA, Pijnenburg YAL. UNC13A Polymorphism Influences Survival in Patients with Frontotemporal Dementia. Ann Neurol 2025; 97:1062-1066. [PMID: 40214138 DOI: 10.1002/ana.27245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/01/2025] [Accepted: 03/16/2025] [Indexed: 05/17/2025]
Abstract
UNC13A (rs12608932-CC) is associated with both amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD), and shortens survival in ALS. We aim to describe the association for UNC13A and survival in FTD. We included 626 patients with FTD from Dutch memory clinics, including a subcohort of 150 patients with TDP-43 pathology. Survival analyses were performed using Cox proportional hazard models in a recessive manner. Homozygosity for rs12608932-C in UNC13A was associated with a shorter survival compared with other genotypes (hazard ratio [HR] = 1.28, 95% confidence interval [CI] = 1.02-1.60, p = 0.033), which has implications for patient counselling and trial design. ANN NEUROL 2025;97:1062-1066.
Collapse
Affiliation(s)
- Lianne M Reus
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Center for Neurobehavioral Genetics, Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine, University of California, Los Angeles, CA
| | - Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Sterre C M de Boer
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Julie De Houwer
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Willem L Hartog
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Merel O Mol
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | | | - Niccolo Tesi
- Genomics of Neurodegenerative Diseases and Aging, Human Genetics, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUMC, Amsterdam, The Netherlands
- Delft Bioinformatics Lab, Delft University of Technology, Delft, The Netherlands
| | - Laura Donker Kaat
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Marc Hulsman
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Everard G B Vijverberg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| | - Henne Holstege
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - John C van Swieten
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - H Seelaar
- Department of Neurology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sven J van der Lee
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
- Department of Clinical Genetics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Yolande A L Pijnenburg
- Alzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
- Amsterdam Neuroscience, Neurodegeneration, Amsterdam, The Netherlands
| |
Collapse
|
2
|
Kellett EA, Bademosi AT, Walker AK. Molecular mechanisms and consequences of TDP-43 phosphorylation in neurodegeneration. Mol Neurodegener 2025; 20:53. [PMID: 40340943 PMCID: PMC12063406 DOI: 10.1186/s13024-025-00839-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 04/10/2025] [Indexed: 05/10/2025] Open
Abstract
Increased phosphorylation of TDP-43 is a pathological hallmark of several neurodegenerative disorders, including amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). However, the regulation and roles of TDP-43 phosphorylation remain incompletely understood. A variety of techniques have been utilized to understand TDP-43 phosphorylation, including kinase/phosphatase manipulation, phosphomimic variants, and genetic, physical, or chemical inducement in a variety of cell cultures and animal models, and via analyses of post-mortem human tissues. These studies have produced conflicting results: suggesting incongruously that TDP-43 phosphorylation may either drive disease progression or serve a neuroprotective role. In this review, we explore the roles of regulators of TDP-43 phosphorylation including the putative TDP-43 kinases c-Abl, CDC7, CK1, CK2, IKKβ, p38α/MAPK14, MEK1, TTBK1, and TTBK2, and TDP-43 phosphatases PP1, PP2A, and PP2B, in disease. Building on recent studies, we also examine the consequences of TDP-43 phosphorylation on TDP-43 pathology, especially related to TDP-43 mislocalisation, liquid-liquid phase separation, aggregation, and neurotoxicity. By comparing conflicting findings from various techniques and models, this review highlights both the discrepancies and unresolved aspects in the understanding of TDP-43 phosphorylation. We propose that the role of TDP-43 phosphorylation is site and context dependent, and includes regulation of liquid-liquid phase separation, subcellular mislocalisation, and degradation. We further suggest that greater consideration of the normal functions of the regulators of TDP-43 phosphorylation that may be perturbed in disease is warranted. This synthesis aims to build towards a comprehensive understanding of the complex role of TDP-43 phosphorylation in the pathogenesis of neurodegeneration.
Collapse
Affiliation(s)
- Elise A Kellett
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia
| | - Adekunle T Bademosi
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
| | - Adam K Walker
- Neurodegeneration Pathobiology Laboratory, Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, St Lucia, 4072 QLD, Australia.
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, Camperdown, 2006 NSW, Australia.
- Charles Perkins Centre, The University of Sydney, Camperdown, 2006 NSW, Australia.
| |
Collapse
|
3
|
Liu Y, Xiang J, Gong H, Yu T, Gao M, Huang Y. The Regulation of TDP-43 Structure and Phase Transitions: A Review. Protein J 2025; 44:113-132. [PMID: 39987392 DOI: 10.1007/s10930-025-10261-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2025] [Indexed: 02/24/2025]
Abstract
The transactive response DNA binding protein 43 (TDP-43) is an RNA/DNA-binding protein that is involved in a number of cellular functions, including RNA processing and alternative splicing, RNA transport and translation, and stress granule assembly. It has attracted significant attention for being the primary component of cytoplasmic inclusions in patients with amyotrophic lateral sclerosis or frontotemporal dementia. Mounting evidence suggests that both cytoplasmic aggregation of TDP-43 and loss of nuclear TDP-43 function contribute to TDP-43 pathology. Furthermore, recent studies have demonstrated that TDP-43 is an important component of many constitutive or stress-induced biomolecular condensates. Dysregulation or liquid-to-gel transition of TDP-43 condensates can lead to alterations in TDP-43 function and the formation of TDP-43 amyloid fibrils. In this review, we summarize recent research progress on the structural characterization of TDP-43 and the TDP-43 phase transition. In particular, the roles that disease-associated genetic mutations, post-translational modifications, and extrinsic stressors play in the transitions among TDP-43 monomers, liquid condensates, solid condensates, and fibrils are discussed. Finally, we discuss the effectiveness of available regulators of TDP-43 phase separation and aggregation. Understanding the underlying mechanisms that drive the pathological transformation of TDP-43 could help develop therapeutic strategies for TDP-43 pathology.
Collapse
Affiliation(s)
- Yanqing Liu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Jiani Xiang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Hang Gong
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Tianxiong Yu
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China
| | - Meng Gao
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| | - Yongqi Huang
- Cooperative Innovation Center of Industrial Fermentation (Ministry of Education & Hubei Province), Hubei University of Technology, Wuhan, 430068, China.
- Hubei Key Laboratory of Industrial Microbiology, Hubei University of Technology, Wuhan, 430068, China.
- Key Laboratory of Industrial Fermentation (Ministry of Education), Hubei University of Technology, Wuhan, 430068, China.
| |
Collapse
|
4
|
Suk TR, Part CE, Zhang JL, Nguyen TT, Heer MM, Caballero-Gómez A, Grybas VS, McKeever PM, Nguyen B, Ali T, Callaghan SM, Woulfe JM, Robertson J, Rousseaux MWC. A stress-dependent TDP-43 SUMOylation program preserves neuronal function. Mol Neurodegener 2025; 20:38. [PMID: 40149017 PMCID: PMC11951803 DOI: 10.1186/s13024-025-00826-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 03/09/2025] [Indexed: 03/29/2025] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are overwhelmingly linked to TDP-43 dysfunction. Mutations in TDP-43 are rare, indicating that the progressive accumulation of exogenous factors - such as cellular stressors - converge on TDP-43 to play a key role in disease pathogenesis. Post translational modifications such as SUMOylation play essential roles in response to such exogenous stressors. We therefore set out to understand how SUMOylation may regulate TDP-43 in health and disease. We find that TDP-43 is regulated dynamically via SUMOylation in response to cellular stressors. When this process is blocked in vivo, we note age-dependent TDP-43 pathology and sex-specific behavioral deficits linking TDP-43 SUMOylation with aging and disease. We further find that SUMOylation is correlated with human aging and disease states. Collectively, this work presents TDP-43 SUMOylation as an early physiological response to cellular stress, disruption of which may confer a risk for TDP-43 proteinopathy.
Collapse
Affiliation(s)
- Terry R Suk
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Caroline E Part
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Jenny L Zhang
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Trina T Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Meghan M Heer
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Alejandro Caballero-Gómez
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Veronica S Grybas
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Paul M McKeever
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Benjamin Nguyen
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Tahir Ali
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - Steve M Callaghan
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada
| | - John M Woulfe
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada
- The Ottawa Hospital Research Institute, the Ottawa Hospital, Ottawa, ON, Canada
- Department of Pathology and Laboratory Medicine, University of Ottawa, Ottawa, ON, Canada
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, Canada
| | - Janice Robertson
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, ON, Canada
| | - Maxime W C Rousseaux
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada.
- Department of Cellular and Molecular Medicine, University of Ottawa, Ottawa, ON, Canada.
- Eric Poulin Center for Neuromuscular Diseases, Ottawa, ON, Canada.
- Ottawa Institute of Systems Biology, Ottawa, ON, Canada.
| |
Collapse
|
5
|
Fu Y, Zhang J, Qin R, Ren Y, Zhou T, Han B, Liu B. Activating autophagy to eliminate toxic protein aggregates with small molecules in neurodegenerative diseases. Pharmacol Rev 2025; 77:100053. [PMID: 40187044 DOI: 10.1016/j.pharmr.2025.100053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Accepted: 12/05/2024] [Indexed: 04/07/2025] Open
Abstract
Neurodegenerative diseases (NDs), such as Alzheimer disease, Parkinson disease, Huntington disease, amyotrophic lateral sclerosis, and frontotemporal dementia, are well known to pose formidable challenges for their treatment due to their intricate pathogenesis and substantial variability among patients, including differences in environmental exposures and genetic predispositions. One of the defining characteristics of NDs is widely reported to be the buildup of misfolded proteins. For example, Alzheimer disease is marked by amyloid beta and hyperphosphorylated Tau aggregates, whereas Parkinson disease exhibits α-synuclein aggregates. Amyotrophic lateral sclerosis and frontotemporal dementia exhibit TAR DNA-binding protein 43, superoxide dismutase 1, and fused-in sarcoma protein aggregates, and Huntington disease involves mutant huntingtin and polyglutamine aggregates. These misfolded proteins are the key biomarkers of NDs and also serve as potential therapeutic targets, as they can be addressed through autophagy, a process that removes excess cellular inclusions to maintain homeostasis. Various forms of autophagy, including macroautophagy, chaperone-mediated autophagy, and microautophagy, hold a promise in eliminating toxic proteins implicated in NDs. In this review, we focus on elucidating the regulatory connections between autophagy and toxic proteins in NDs, summarizing the cause of the aggregates, exploring their impact on autophagy mechanisms, and discussing how autophagy can regulate toxic protein aggregation. Moreover, we underscore the activation of autophagy as a potential therapeutic strategy across different NDs and small molecules capable of activating autophagy pathways, such as rapamycin targeting the mTOR pathway to clear α-synuclein and Sertraline targeting the AMPK/mTOR/RPS6KB1 pathway to clear Tau, to further illustrate their potential in NDs' therapeutic intervention. Together, these findings would provide new insights into current research trends and propose small-molecule drugs targeting autophagy as promising potential strategies for the future ND therapies. SIGNIFICANCE STATEMENT: This review provides an in-depth overview of the potential of activating autophagy to eliminate toxic protein aggregates in the treatment of neurodegenerative diseases. It also elucidates the fascinating interrelationships between toxic proteins and the process of autophagy of "chasing and escaping" phenomenon. Moreover, the review further discusses the progress utilizing small molecules to activate autophagy to improve the efficacy of therapies for neurodegenerative diseases by removing toxic protein aggregates.
Collapse
Affiliation(s)
- Yuqi Fu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jin Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; School of Pharmaceutical Sciences of Medical School, Shenzhen University, Shenzhen, China
| | - Rui Qin
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yueting Ren
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China; Department of Brain Science, Faculty of Medicine, Imperial College, London, UK
| | - Tingting Zhou
- Department of Pharmaceutical Analysis, School of Pharmacy, Second Military Medical University, Shanghai, China; Shanghai Key Laboratory for Pharmaceutical Metabolite Research, School of Pharmacy, Second Military Medical University, Shanghai, China.
| | - Bo Han
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China.
| | - Bo Liu
- Institute of Precision Drug Innovation and Cancer Center, the Second Hospital of Dalian Medical University, Dalian, China; Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
6
|
Almgren H, Mahoney CJ, Huynh W, D'Souza A, Berte S, Lv J, Wang C, Kiernan MC, Calamante F, Tu S. Quantifying neurodegeneration within subdivisions of core motor pathways in amyotrophic lateral sclerosis using diffusion MRI. J Neurol 2025; 272:215. [PMID: 39969638 PMCID: PMC11839792 DOI: 10.1007/s00415-025-12920-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/14/2025] [Accepted: 01/16/2025] [Indexed: 02/20/2025]
Abstract
BACKGROUND Diffusion MRI is sensitive to white matter changes in amyotrophic lateral sclerosis (ALS). The current study aimed to establish disease profiles across core motor pathways, and their relevance to clinical progression in ALS. METHODS Sixty-five participants (ALS = 47; Control = 18) were recruited for the study. White matter integrity of motor, somatosensory, and premotor subdivisions within the corticospinal tract and corpus callosum were quantified by fibre density, fibre-bundle cross-section, structural connectivity, and fractional anisotropy. Analyses focused on identifying diffusion metrics and tract profiles sensitive to ALS pathology, and their association with clinical progression. RESULTS Reduced fibre density of the motor subdivision of the corpus callosum (CC) and corticospinal tract (CST) demonstrated best performance in classifying ALS from controls (area-under-curve: CCmotor = 0.81, CSTmotor = 0.76). Significant reductions in fibre density (CCmotor: p < 0.001; CSTmotor: p = 0.016), and structural connectivity (CCmotor: p = 0.008; CSTsomatosensory: p = 0.012) indicated presence of ALS pathology. Reduced fibre density & cross-section significantly correlated with severity of functional impairment (ALSFRS-R; CCmotor: r = 0.52, p = 0.019; CSTmotor: r = 0.59, p = 0.016). The largest effect sizes were generally found for motor and somatosensory subdivisions across both major white matter bundles. CONCLUSION Current findings suggest that ALS does not uniformly impact the corticospinal tract and corpus callosum. There is a preferential disease profile of neurodegeneration mainly impacting primary motor fibres. Microstructural white matter abnormality indicated presence of ALS pathology while macrostructural white matter abnormality was associated with severity of functional impairment. Quantification of white matter abnormality in corticospinal tract and callosal subdivisions holds translational potential as an imaging biomarker for neurodegeneration in ALS.
Collapse
Affiliation(s)
- Hannes Almgren
- Brain & Mind Centre, The University of Sydney, Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Colin J Mahoney
- Department of Neurology, Liverpool Hospital, Sydney, Australia
| | - William Huynh
- Brain & Mind Centre, The University of Sydney, Sydney, Australia
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia
| | - Arkiev D'Souza
- Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Sienna Berte
- Brain & Mind Centre, The University of Sydney, Sydney, Australia
| | - Jinglei Lv
- Brain & Mind Centre, The University of Sydney, Sydney, Australia
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Chenyu Wang
- Brain & Mind Centre, The University of Sydney, Sydney, Australia
- Sydney Neuroimaging Analysis Centre, Sydney, Australia
| | - Matthew C Kiernan
- Neuroscience Research Australia, University of NSW, Sydney, Australia
| | - Fernando Calamante
- Brain & Mind Centre, The University of Sydney, Sydney, Australia.
- School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, Australia.
| | - Sicong Tu
- Brain & Mind Centre, The University of Sydney, Sydney, Australia.
- Sydney Medical School, Faculty of Medicine and Health, The University of Sydney, Sydney, Australia.
| |
Collapse
|
7
|
Shevchuk DV, Tukhvatulin AI, Dzharullaeva AS, Berdalina IA, Zakharova MN. Molecular Biomarkers of Neurodegeneration in Amyotrophic Lateral Sclerosis. BIOCHEMISTRY. BIOKHIMIIA 2025; 90:276-288. [PMID: 40254405 DOI: 10.1134/s0006297924604039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/23/2024] [Accepted: 12/24/2024] [Indexed: 04/22/2025]
Abstract
Amyotrophic lateral sclerosis (ALS) is the most prevalent motor neuron disease. However, definitive diagnosis could be delayed by up to 12 months due to the lack of specific and sensitive biomarkers for ALS. In our study, conducted for the first time on a large cohort of ALS patients (n = 100) within the Russian population, we assessed key biomarkers of neurodegenerative pathology, including β-amyloids (Aβ40 and Aβ42) and tau proteins (Tau-total and Tau-p181), as well as other pathogenetically relevant, promising biomarkers such as FGF-21, Kallikrein-6 (KLK-6), NCAM-1, Neurogranin (NRGN), TDP-43, Apolipoprotein E4, Clusterin (Apo J), Complement Factor H, Fetuin-A, α2-Macroglobulin, Apo AI, Apo CIII, Apo E, Complement C3, GDNF, sRAGE, and S100B protein. Significant differences between the ALS patients and the control group were observed for Aβ40 (p = 0.044), Aβ42 (p < 0.001), FGF-21 (p < 0.001), Tau-total (p = 0.001), Tau-p181 (p = 0.014), Clusterin (p < 0.001), Complement C3 (p = 0.001), and S100B (p = 0.024). A significant direct correlation was found between the ALSFRS-R score and concentrations of Aβ40 and Aβ42. Changes in the complement system (Complement C3 and Complement Factor H) were identified, highlighting critical role of neuroinflammatory processes in ALS pathogenesis. Additionally, increased levels of FGF-21 were observed in the patients with the bulbar onset of ALS. Significant increase in the concentration of the chaperone protein clusterin in the patients with rapid disease progression suggests its potential as a prognostic biomarker for motor neuron disease. Furthermore, its role in maintaining proteostasis could provide novel therapeutic targets.
Collapse
Affiliation(s)
| | - Amir I Tukhvatulin
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | - Alina S Dzharullaeva
- Gamaleya National Research Center for Epidemiology and Microbiology, Ministry of Health of the Russian Federation, Moscow, 123098, Russia
| | | | | |
Collapse
|
8
|
Afzal M, Hameed H, Paiva-Santos AC, Saleem M, Hameed A, Ahmad SM. Bioengineered exosomes: Cellular membrane-camouflaged biomimetic nanocarriers for Parkinson's disease management. Eur J Pharmacol 2025; 987:177199. [PMID: 39662659 DOI: 10.1016/j.ejphar.2024.177199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 11/21/2024] [Accepted: 12/09/2024] [Indexed: 12/13/2024]
Abstract
Parkinson's disease is a prevalent neurological condition that affects around 1% of adults over 60 worldwide. Deep brain stimulation and dopamine replacement therapy are common therapies for Parkinson's disease, yet they are unable to reverse the disease it simply because of the blood brain barrier. The use of bioengineered exosomes to treat Parkinson's disease is being studied because they have the ability to cross the blood-brain barrier. Their natural ability to cross the blood-brain barrier (BBB) and their biocompatibility make them highly suitable for delivering therapeutic agents to manage PD, specifically the role of astrocytes, microglial cells, and alpha-synuclein. It also explores the biogenesis and preparation of these bioengineered exosomes. In comparison to conventional nanocarriers, the modified exosomal-membrane-camouflaged abiotic nanocarriers show improved resilience and compatibility. Improved cellular absorption and targeted delivery of therapeutic payloads, such as medications and enzymes, are being shown in laboratory trials. A viable strategy for treating PD involves combining abiotic nanocarriers with bioengineered exosomal membranes. Despite their promising potential, successful clinical application requires overcoming hurdles related to scalable production, regulatory approval, and long-term safety evaluation. Nevertheless, the innovative use of bioengineered exosomes holds significant promise for advancing PD management and improving patient outcomes through more targeted and effective therapeutic strategies.
Collapse
Affiliation(s)
- Maham Afzal
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Huma Hameed
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| | - Ana Cláudia Paiva-Santos
- Department of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal; REQUIMTE/LAQV, Group of Pharmaceutical Technology, Faculty of Pharmacy of the University of Coimbra, University of Coimbra, 3000-548, Coimbra, Portugal.
| | - Makkia Saleem
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Anam Hameed
- Department of Human Nutrition and Dietetics, Faculty of Rehabilitation and Allied Health Sciences, Riphah International University, Gulberg III, Lahore, 54000, Pakistan.
| | - Syed Muhammad Ahmad
- Faculty of Pharmaceutical Sciences, University of Central Punjab (UCP), Lahore, 54000, Pakistan.
| |
Collapse
|
9
|
Kempthorne L, Vaizoglu D, Cammack AJ, Carcolé M, Roberts MJ, Mikheenko A, Fisher A, Suklai P, Muralidharan B, Kroll F, Moens TG, Yshii L, Verschoren S, Hölbling BV, Moreira FC, Katona E, Coneys R, de Oliveira P, Zhang YJ, Jansen K, Daughrity LM, McGown A, Ramesh TM, Van Den Bosch L, Lignani G, Rahim AA, Coyne AN, Petrucelli L, Rihel J, Isaacs AM. Dual-targeting CRISPR-CasRx reduces C9orf72 ALS/FTD sense and antisense repeat RNAs in vitro and in vivo. Nat Commun 2025; 16:459. [PMID: 39779704 PMCID: PMC11711508 DOI: 10.1038/s41467-024-55550-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 12/11/2024] [Indexed: 01/11/2025] Open
Abstract
The most common genetic cause of frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) is an intronic G4C2 repeat expansion in C9orf72. The repeats undergo bidirectional transcription to produce sense and antisense repeat RNA species, which are translated into dipeptide repeat proteins (DPRs). As toxicity has been associated with both sense and antisense repeat-derived RNA and DPRs, targeting both strands may provide the most effective therapeutic strategy. CRISPR-Cas13 systems mature their own guide arrays, allowing targeting of multiple RNA species from a single construct. We show CRISPR-Cas13d variant CasRx effectively reduces overexpressed C9orf72 sense and antisense repeat transcripts and DPRs in HEK cells. In C9orf72 patient-derived iPSC-neuron lines, CRISPR-CasRx reduces endogenous sense and antisense repeat RNAs and DPRs and protects against glutamate-induced excitotoxicity. AAV delivery of CRISPR-CasRx to two distinct C9orf72 repeat mouse models significantly reduced both sense and antisense repeat-containing transcripts. This highlights the potential of RNA-targeting CRISPR systems as therapeutics for C9orf72 ALS/FTD.
Collapse
Affiliation(s)
- Liam Kempthorne
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Deniz Vaizoglu
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alexander J Cammack
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Mireia Carcolé
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Martha J Roberts
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alla Mikheenko
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Alessia Fisher
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Pacharaporn Suklai
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Bhavana Muralidharan
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
- Institute for Stem Cell Science and Regenerative Medicine, Bangalore, 560065, India
| | - François Kroll
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Thomas G Moens
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Lidia Yshii
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Stijn Verschoren
- VIB-KU Center for Brain and Disease Research, Leuven, 3001, Belgium
| | - Benedikt V Hölbling
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Francisco C Moreira
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Eszter Katona
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Rachel Coneys
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Paula de Oliveira
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Yong-Jie Zhang
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | - Karen Jansen
- Department of Neuroscience, Mayo Clinic, Jacksonville, FL, 32224, USA
| | | | - Alexander McGown
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | - Tennore M Ramesh
- Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, S10 2HQ, UK
| | | | - Gabriele Lignani
- Department of Clinical & Experimental Epilepsy, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK
| | - Ahad A Rahim
- UCL School of Pharmacy, University College London, London, WC1N 1AX, UK
| | - Alyssa N Coyne
- Department of Neurology, Johns Hopkins University, Baltimore, USA
- Brain Science Institute, Johns Hopkins University, Baltimore, USA
| | | | - Jason Rihel
- Department of Cell and Developmental Biology, University College London, London, WC1E 6BT, UK
| | - Adrian M Isaacs
- UK Dementia Research Institute at UCL, London, WC1E 6BT, UK.
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, WC1N 3BG, UK.
| |
Collapse
|
10
|
Trojsi F, Canna A, Sharbafshaaer M, di Nardo F, Canale F, Passaniti C, Pirozzi MA, Silvestro M, Orologio I, Russo A, Cirillo M, Tessitore A, Siciliano M, Esposito F. Brain neurovascular coupling in amyotrophic lateral sclerosis: Correlations with disease progression and cognitive impairment. Eur J Neurol 2025; 32:e16540. [PMID: 39529471 PMCID: PMC11625914 DOI: 10.1111/ene.16540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 10/17/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND AND PURPOSE 'Neurovascular coupling' (NVC) alterations, assessing the interplay between local cerebral perfusion and neural activity within a given brain region or network, may reflect neurovascular unit impairment in amyotrophic lateral sclerosis (ALS). The aim was to explore NVC as a correlation between the functional connectivity and cerebral blood flow within the large-scale resting-state functional magnetic resonance imaging brain networks in a sample of ALS patients compared to healthy controls (HCs). METHODS Forty-eight ALS patients (30 males; mean age 60.64 ± 9.62 years) and 32 HC subjects (14 males; mean age 55.06 ± 16 years) were enrolled and underwent 3 T magnetic resonance imaging. ALS patients were screened by clinical and neuropsychological scales and were retrospectively classified as very fast progressors (VFPs), fast progressors and slow progressors (SPs). RESULTS Neurovascular coupling reduction within the default mode network (DMN) (p = 0.005) was revealed in ALS patients compared to HCs, observing, for this network, significant NVC differences between VFP and SP groups. Receiver operating characteristic curve analysis showed that impaired NVC in the DMN at baseline best discriminated VFPs and SPs (area under the curve 75%). Significant correlations were found between NVC and the executive (r = 0.40, p = 0.01), memory (r = 0.32, p = 0.04), visuospatial ability (r = 0.40, p = 0.01) and non-ALS-specific (r = 0.40, p = 0.01) subscores of the Edinburgh Cognitive and Behavioural ALS Screen. CONCLUSIONS The reduction of brain NVC in the DMN may reflect largely distributed abnormalities of the neurovascular unit. NVC alterations in the DMN could play a role in anticipating a faster clinical progression in ALS patients, aiding patient selection and monitoring during clinical trials.
Collapse
Affiliation(s)
- Francesca Trojsi
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
- First Division of Neurology and NeurophysiopathologyAOU Università degli Studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Antonietta Canna
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
- Montreal Neurological Institute and Hospital, McGill UniversityMontrealQuebecCanada
| | - Minoo Sharbafshaaer
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
| | - Federica di Nardo
- First Division of Neurology and NeurophysiopathologyAOU Università degli Studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Fabrizio Canale
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
- First Division of Neurology and NeurophysiopathologyAOU Università degli Studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Carla Passaniti
- First Division of Neurology and NeurophysiopathologyAOU Università degli Studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Maria Agnese Pirozzi
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
| | - Marcello Silvestro
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
| | - Ilaria Orologio
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
- First Division of Neurology and NeurophysiopathologyAOU Università degli Studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Antonio Russo
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
- First Division of Neurology and NeurophysiopathologyAOU Università degli Studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Mario Cirillo
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
| | - Alessandro Tessitore
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
- First Division of Neurology and NeurophysiopathologyAOU Università degli Studi della Campania ‘Luigi Vanvitelli’NaplesItaly
| | - Mattia Siciliano
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
- Department of PsychologyUniversità degli Studi della Campania ‘Luigi Vanvitelli’CasertaItaly
- Neurosciences Research CentreMolecular and Clinical Sciences Research Institute, St George's, University of LondonLondonUK
| | - Fabrizio Esposito
- Department of Advanced Medical and Surgical SciencesMRI Research Center, Università degli Studi della Campania Luigi VanvitelliNaplesItaly
| |
Collapse
|
11
|
Sultana J, Ragagnin AMG, Parakh S, Saravanabavan S, Soo KY, Vidal M, Jagaraj CJ, Ding K, Wu S, Shadfar S, Don EK, Deva A, Nicholson G, Rowe DB, Blair I, Yang S, Atkin JD. C9orf72-Associated Dipeptide Repeat Expansions Perturb ER-Golgi Vesicular Trafficking, Inducing Golgi Fragmentation and ER Stress, in ALS/FTD. Mol Neurobiol 2024; 61:10318-10338. [PMID: 38722513 PMCID: PMC11584443 DOI: 10.1007/s12035-024-04187-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 03/14/2024] [Indexed: 11/24/2024]
Abstract
Hexanucleotide repeat expansions (HREs) in the chromosome 9 open reading frame 72 (C9orf72) gene are the most frequent genetic cause of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Both are debilitating neurodegenerative conditions affecting either motor neurons (ALS) in the brain and spinal cord or neurons in the frontal and/or temporal cortical lobes (FTD). HREs undergo repeat-associated non-ATG (RAN) translation on both sense and anti-sense strands, generating five distinct dipeptide repeat proteins (DPRs), poly-GA, -GR, -GP, -PA and -PR. Perturbed proteostasis is well-recognised in ALS pathogenesis, including processes affecting the endoplasmic reticulum (ER) and Golgi compartments. However, these mechanisms have not been well characterised for C9orf72-mediated ALS/FTD. In this study we demonstrate that C9orf72 DPRs polyGA, polyGR and polyGP (× 40 repeats) disrupt secretory protein transport from the ER to the Golgi apparatus in neuronal cells. Consistent with this finding, these DPRs also induce fragmentation of the Golgi apparatus, activate ER stress, and inhibit the formation of the omegasome, the precursor of the autophagosome that originates from ER membranes. We also demonstrate Golgi fragmentation in cells undergoing RAN translation that express polyGP. Furthermore, dysregulated ER-Golgi transport was confirmed in C9orf72 patient dermal fibroblasts. Evidence of aberrant ER-derived vesicles in spinal cord motor neurons from C9orf72 ALS patients compared to controls was also obtained. These data thus confirm that ER proteostasis and ER-Golgi transport is perturbed in C9orf72-ALS in the absence of protein over-expression. Hence this study identifies novel molecular mechanisms associated with the ER and Golgi compartments induced by the C9orf72 HRE.
Collapse
Affiliation(s)
- Jessica Sultana
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Audrey M G Ragagnin
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sonam Parakh
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sayanthooran Saravanabavan
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kai Ying Soo
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia
| | - Marta Vidal
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Cyril Jones Jagaraj
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Kunjie Ding
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sharlynn Wu
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Sina Shadfar
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Emily K Don
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Anand Deva
- Department of Plastic and Reconstructive Surgery, and The Integrated Specialist Healthcare Education and Research Foundation, Macquarie University, Sydney, Australia
| | - Garth Nicholson
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
- ANZAC Research Institute, Concord Hospital, University of Sydney, Sydney, NSW, Australia
| | - Dominic B Rowe
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Ian Blair
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Shu Yang
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Julie D Atkin
- Motor Neuron Disease Research Centre, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, NSW, 2109, Australia.
- La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Melbourne, VIC, 3086, Australia.
| |
Collapse
|
12
|
Li Y, Liu Y, Yu XY, Xu Y, Pan X, Sun Y, Wang Y, Song YH, Shen Z. Membraneless organelles in health and disease: exploring the molecular basis, physiological roles and pathological implications. Signal Transduct Target Ther 2024; 9:305. [PMID: 39551864 PMCID: PMC11570651 DOI: 10.1038/s41392-024-02013-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/22/2024] [Accepted: 10/10/2024] [Indexed: 11/19/2024] Open
Abstract
Once considered unconventional cellular structures, membraneless organelles (MLOs), cellular substructures involved in biological processes or pathways under physiological conditions, have emerged as central players in cellular dynamics and function. MLOs can be formed through liquid-liquid phase separation (LLPS), resulting in the creation of condensates. From neurodegenerative disorders, cardiovascular diseases, aging, and metabolism to cancer, the influence of MLOs on human health and disease extends widely. This review discusses the underlying mechanisms of LLPS, the biophysical properties that drive MLO formation, and their implications for cellular function. We highlight recent advances in understanding how the physicochemical environment, molecular interactions, and post-translational modifications regulate LLPS and MLO dynamics. This review offers an overview of the discovery and current understanding of MLOs and biomolecular condensate in physiological conditions and diseases. This article aims to deliver the latest insights on MLOs and LLPS by analyzing current research, highlighting their critical role in cellular organization. The discussion also covers the role of membrane-associated condensates in cell signaling, including those involving T-cell receptors, stress granules linked to lysosomes, and biomolecular condensates within the Golgi apparatus. Additionally, the potential of targeting LLPS in clinical settings is explored, highlighting promising avenues for future research and therapeutic interventions.
Collapse
Affiliation(s)
- Yangxin Li
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| | - Yuzhe Liu
- Department of Orthopedics, The Second Hospital of Jilin University, Changchun, Jilin, 130041, P. R. China
| | - Xi-Yong Yu
- NMPA Key Laboratory for Clinical Research and Evaluation of Drug for Thoracic Diseases, Key Laboratory of Molecular Target & Clinical Pharmacology and the State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 511436, P. R. China
| | - Yan Xu
- Department of General Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, P. R. China
| | - Xiangbin Pan
- Department of Structural Heart Disease, National Center for Cardiovascular Disease, China & Fuwai Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, State key laboratory of cardiovascular disease, Beijing, 100037, P. R. China
| | - Yi Sun
- Department of Cardiovascular Surgery, Fuwai Yunnan Cardiovascular Hospital, Kunming, 650102, P. R. China
| | - Yanli Wang
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yao-Hua Song
- Cyrus Tang Hematology Center, Collaborative Innovation Center of Hematology, Soochow University, National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, State Key Laboratory of Radiation Medicine and Protection, Soochow University, Suzhou, 215123, P.R. China.
| | - Zhenya Shen
- Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, State Key Laboratory of Radiation Medicine and Protection, Suzhou Medical College, Collaborative Innovation Center of Hematology, Soochow University, Suzhou, Jiangsu, 215123, P. R. China.
| |
Collapse
|
13
|
Casiraghi V, Milone I, Brusati A, Peverelli S, Doretti A, Poletti B, Maderna L, Morelli C, Ticozzi N, Silani V, Verde F, Ratti A. Quantification of serum TDP-43 and neurofilament light chain in patients with amyotrophic lateral sclerosis stratified by UNC13A genotype. J Neurol Sci 2024; 466:123210. [PMID: 39241471 DOI: 10.1016/j.jns.2024.123210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 08/30/2024] [Accepted: 08/31/2024] [Indexed: 09/09/2024]
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal neurodegenerative condition affecting upper and/or lower motor neurons and characterized neuropathologically by TDP-43 proteinopathy. Given its role in ALS pathobiology, it is currently under debate whether TDP-43 might represent a suitable ALS biomarker to be measured in patients' biofluids. The rs12608932 A > C single nucleotide polymorphism in the UNC13A gene is a risk factor for ALS and patients homozygous for the high-risk C allele display a higher burden of TDP-43 neuropathology than homozygotes for the low-risk A allele, although the association with TDP-43 levels in biofluids has never been evaluated. In this study, we measured serum levels of TDP-43 and neurofilament light chain (NFL) by Simoa technology in a cohort of 69 ALS patients stratified according to the UNC13A rs12608932 genotype compared to 43 neurologically healthy controls. By multiple linear regression analysis, serum TDP-43 was significantly elevated in ALS patients compared to controls, with UNC13A AA and AC, but not CC, ALS patients showing higher serum TDP-43 levels than controls. We also confirmed that serum NFL concentration was increased in ALS patients, without any correlation with the UNC13A genotype. Our results indicate that serum TDP-43 is higher in ALS patients compared to controls and that, in contrast to NFL, this increase is specifically associated with the UNC13A rs12608932 AA and AC genotypes, but not with the high-risk CC genotype. Studies in larger cohorts will be needed to confirm these findings and to elucidate the biological link between serum TDP-43 levels and UNC13A genotype.
Collapse
Affiliation(s)
- Valeria Casiraghi
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy
| | - Ilaria Milone
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Alberto Brusati
- Department of Brain and Behavioral Sciences, University of Pavia, Via Bassi 21, 27100 Pavia, Italy
| | - Silvia Peverelli
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Alberto Doretti
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Barbara Poletti
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy; Department of Oncology and Hemato-Oncology, Università degli Studi di Milano, Via Festa del Perdono 7, 20122 Milan, Italy
| | - Luca Maderna
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Claudia Morelli
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy
| | - Nicola Ticozzi
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy; "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Vincenzo Silani
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy; "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Federico Verde
- Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy; "Dino Ferrari" Center, Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Via Francesco Sforza 35, 20122 Milan, Italy
| | - Antonia Ratti
- Department of Medical Biotechnology and Translational Medicine, Università degli Studi di Milano, Via Fratelli Cervi 93, 20090 Segrate, Milan, Italy; Department of Neuroscience - Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Piazzale Brescia 20, 20149 Milan, Italy.
| |
Collapse
|
14
|
Liampas I, Kyriakoulopoulou P, Karakoida V, Kavvoura PA, Sgantzos M, Bogdanos DP, Stamati P, Dardiotis E, Siokas V. Blood-Based Biomarkers in Frontotemporal Dementia: A Narrative Review. Int J Mol Sci 2024; 25:11838. [PMID: 39519389 PMCID: PMC11546606 DOI: 10.3390/ijms252111838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
This narrative review explores the current landscape of blood biomarkers in Frontotemporal dementia (FTD). Neurofilament light chain (NfL) may be useful in the differentiation of behavioral variant FTD from primary psychiatric disorders (PPDs) or dementia with Lewy bodies (DLB). In prodromal FTD and presymptomatic mutation carriers (GRN, MAPT, C9orf72), elevated NfL may herald pheno-conversion to full-blown dementia. Baseline NfL correlates with steeper neuroanatomical changes and cognitive, behavioral and functional decline, making NfL promising in monitoring disease progression. Phosphorylated neurofilament heavy chain (pNfH) levels have a potential limited role in the demarcation of the conversion stage to full-blown FTD. Combined NfL and pNfH measurements may allow a wider stage stratification. Total tau levels lack applicability in the framework of FTD. p-tau, on the other hand, is of potential value in the discrimination of FTD from Alzheimer's dementia. Progranulin concentrations could serve the identification of GRN mutation carriers. Glial fibrillary acidic protein (GFAP) may assist in the differentiation of PPDs from behavioral variant FTD and the detection of GRN mutation carriers (additional research is warranted). Finally, TAR DNA-binding protein-43 (TDP-43) appears to be a promising diagnostic biomarker for FTD. Its potential in distinguishing TDP-43 pathology from other FTD-related pathologies requires further research.
Collapse
Affiliation(s)
- Ioannis Liampas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | | | - Vasiliki Karakoida
- School of Medicine, University of Patras, 26504 Rio Patras, Greece; (P.K.); (V.K.); (P.A.K.)
| | | | - Markos Sgantzos
- Department of Anatomy, Medical School, University of Thessaly, 41100 Larissa, Greece;
| | - Dimitrios P. Bogdanos
- Department of Rheumatology and Clinical Immunology, Faculty of Medicine, School of Health Sciences, University of Thessaly, 41100 Larissa, Greece;
| | - Polyxeni Stamati
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Efthimios Dardiotis
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| | - Vasileios Siokas
- Department of Neurology, University Hospital of Larissa, School of Medicine, University of Thessaly, 41100 Larissa, Greece; (P.S.); (E.D.); (V.S.)
| |
Collapse
|
15
|
Mehta RI, Ranjan M, Haut MW, Carpenter JS, Rezai AR. Focused Ultrasound for Neurodegenerative Diseases. Magn Reson Imaging Clin N Am 2024; 32:681-698. [PMID: 39322357 DOI: 10.1016/j.mric.2024.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2024]
Abstract
Neurodegenerative diseases are a leading cause of death and disability and pose a looming global public health crisis. Despite progress in understanding biological and molecular factors associated with these disorders and their progression, effective disease modifying treatments are presently limited. Focused ultrasound (FUS) is an emerging therapeutic strategy for Alzheimer's disease, Parkinson's disease, and amyotrophic lateral sclerosis. In these contexts, applications of FUS include neuroablation, neuromodulation, and/or blood-brain barrier opening with and without facilitated intracerebral drug delivery. Here, the authors review preclinical evidence and current and emerging applications of FUS for neurodegenerative diseases and summarize future directions in the field.
Collapse
Affiliation(s)
- Rashi I Mehta
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University.
| | - Manish Ranjan
- Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Marc W Haut
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Behavioral Medicine and Psychiatry, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurology, Rockefeller Neuroscience Institute, West Virginia University
| | - Jeffrey S Carpenter
- Department of Neuroradiology, Rockefeller Neuroscience Institute, West Virginia University; Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| | - Ali R Rezai
- Department of Neuroscience, Rockefeller Neuroscience Institute, West Virginia University; Department of Neurosurgery, Rockefeller Neuroscience Institute, West Virginia University
| |
Collapse
|
16
|
Ma B, Zhang J, Cui Y, Gao H. Detailed Analysis of the Palmomental Reflex and Its Clinical Significance. Brain Behav 2024; 14:e70164. [PMID: 39576271 PMCID: PMC11583821 DOI: 10.1002/brb3.70164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 10/08/2024] [Accepted: 10/31/2024] [Indexed: 11/24/2024] Open
Abstract
PURPOSE This comprehensive review thoroughly explores the clinical significance of the palmomental reflex (PMR) in neurological disorders. PMR is a primitive reflex that, when reemerging in adults, indicates underlying neurological dysfunction. METHOD The article elaborates on the clinical assessment techniques, neurophysiological basis, and applications of PMR in various neurological disorders, including neurodegenerative diseases, cerebrovascular disorders, traumatic brain injury, and multiple sclerosis. FINDING By understanding the modulation and suppression mechanisms of PMR, valuable insights into the specific neurological impairments associated with these disorders can be gained. CONCLUSION The potential of PMR as a diagnostic marker, prognostic indicator, and treatment monitoring tool is increasingly evident.
Collapse
Affiliation(s)
- Benxu Ma
- Department of AcupunctureQingdao Central Hospital, University of Health and Rehabilitation Sciences (Qingdao Central Hospital)QingdaoChina
| | - Jianying Zhang
- Department of NeurologyThe Affiliated Hospital of Qingdao Binhai UniversityQingdaoChina
| | - Yanlei Cui
- Department of NeurologyThe Affiliated Hospital of Qingdao Binhai UniversityQingdaoChina
| | - Huanmin Gao
- Department of NeurologyThe Affiliated Hospital of Qingdao Binhai UniversityQingdaoChina
| |
Collapse
|
17
|
Kiernan MC, Kaji R. Emerging concepts and therapies for amyotrophic lateral sclerosis. Curr Opin Neurol 2024; 37:558-559. [PMID: 39224919 DOI: 10.1097/wco.0000000000001308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Affiliation(s)
- Matthew C Kiernan
- Neuroscience Research Australia; University of New South Wales
- Neurology Department, South Eastern Sydney Local Health District, Sydney, New South Wales, Australia
| | - Ryuji Kaji
- Department of Neurology, Tokushima University, Tokushima, Japan
| |
Collapse
|
18
|
Ferrari V, Tedesco B, Cozzi M, Chierichetti M, Casarotto E, Pramaggiore P, Cornaggia L, Mohamed A, Patelli G, Piccolella M, Cristofani R, Crippa V, Galbiati M, Poletti A, Rusmini P. Lysosome quality control in health and neurodegenerative diseases. Cell Mol Biol Lett 2024; 29:116. [PMID: 39237893 PMCID: PMC11378602 DOI: 10.1186/s11658-024-00633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Accepted: 08/13/2024] [Indexed: 09/07/2024] Open
Abstract
Lysosomes are acidic organelles involved in crucial intracellular functions, including the degradation of organelles and protein, membrane repair, phagocytosis, endocytosis, and nutrient sensing. Given these key roles of lysosomes, maintaining their homeostasis is essential for cell viability. Thus, to preserve lysosome integrity and functionality, cells have developed a complex intracellular system, called lysosome quality control (LQC). Several stressors may affect the integrity of lysosomes, causing Lysosomal membrane permeabilization (LMP), in which membrane rupture results in the leakage of luminal hydrolase enzymes into the cytosol. After sensing the damage, LQC either activates lysosome repair, or induces the degradation of the ruptured lysosomes through autophagy. In addition, LQC stimulates the de novo biogenesis of functional lysosomes and lysosome exocytosis. Alterations in LQC give rise to deleterious consequences for cellular homeostasis. Specifically, the persistence of impaired lysosomes or the malfunctioning of lysosomal processes leads to cellular toxicity and death, thereby contributing to the pathogenesis of different disorders, including neurodegenerative diseases (NDs). Recently, several pieces of evidence have underlined the importance of the role of lysosomes in NDs. In this review, we describe the elements of the LQC system, how they cooperate to maintain lysosome homeostasis, and their implication in the pathogenesis of different NDs.
Collapse
Affiliation(s)
- Veronica Ferrari
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Barbara Tedesco
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Cozzi
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Marta Chierichetti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Elena Casarotto
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Paola Pramaggiore
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Laura Cornaggia
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Ali Mohamed
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Guglielmo Patelli
- Unit of Medical Genetics and Neurogenetics, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Margherita Piccolella
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Riccardo Cristofani
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Valeria Crippa
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Mariarita Galbiati
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| | - Angelo Poletti
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy.
| | - Paola Rusmini
- Dipartimento di Scienze Farmacologiche e Biomolecolari "Rodolfo Paoletti", Università degli Studi di Milano, Dipartimento Di Eccellenza, 2018-2027, Milan, Italy
| |
Collapse
|
19
|
Devenney EM, Anh N Nguyen Q, Tse NY, Kiernan MC, Tan RH. A scoping review of the unique landscape and challenges associated with dementia in the Western Pacific region. THE LANCET REGIONAL HEALTH. WESTERN PACIFIC 2024; 50:101192. [PMID: 39399870 PMCID: PMC11471059 DOI: 10.1016/j.lanwpc.2024.101192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/14/2024] [Accepted: 08/22/2024] [Indexed: 10/15/2024]
Abstract
Dementia is a leading public health crisis that is projected to affect 152.8 million individuals by 2050, over half of whom will be living in the Western Pacific region. To determine the challenges and opportunities for capacity building in the region, this scoping review searched databases. Our findings reveal national and ethnoracial differences in the prevalence, literacy and genetic risk factors associated with dementia syndromes, underscoring the need to identify and mitigate relevant risk factors in this region. Importantly, ∼80% of research was derived from higher income countries, where the establishment of patient registries and biobanks reflect increased efforts and allocation of resources towards understanding the pathogenesis of dementia. We discuss the need for increased public awareness through culturally-relevant policies, the potential to support patients and caregivers through digital strategies and development of regional networks to mitigate the growing social impact and economic burden of dementia in this region. Funding FightMND Mid-Career Fellowship, NHMRC EL1 Fellowship, NHMRC Practitioner Fellowship (1156093), NHMRC Postgraduate scholarship (2022387).
Collapse
Affiliation(s)
- Emma M. Devenney
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Faculty of Medicine and Health Translative Collective, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Quynh Anh N Nguyen
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
| | - Nga Yan Tse
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
| | - Matthew C. Kiernan
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
- Central Clinical School, Faculty of Medicine and Health, University of Sydney, G02 - Jane Foss Russell Building, The University of Sydney New South Wales, 2006, Australia
- Neuroscience Research Australia, 139 Barker Street, Randwick, New South Wales, 2031, Australia
| | - Rachel H. Tan
- School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, 3 Parramatta Road, Camperdown, New South Wales, 2050, Australia
- Brain and Mind Centre, University of Sydney, 94 Mallett Street, Camperdown, New South Wales, 2050, Australia
| |
Collapse
|
20
|
Au WH, Miller-Fleming L, Sanchez-Martinez A, Lee JA, Twyning MJ, Prag HA, Raik L, Allen SP, Shaw PJ, Ferraiuolo L, Mortiboys H, Whitworth AJ. Activation of the Keap1/Nrf2 pathway suppresses mitochondrial dysfunction, oxidative stress, and motor phenotypes in C9orf72 ALS/FTD models. Life Sci Alliance 2024; 7:e202402853. [PMID: 38906677 PMCID: PMC11192839 DOI: 10.26508/lsa.202402853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/04/2024] [Accepted: 06/04/2024] [Indexed: 06/23/2024] Open
Abstract
Mitochondrial dysfunction is a common feature of C9orf72 amyotrophic lateral sclerosis/frontotemporal dementia (ALS/FTD); however, it remains unclear whether this is a cause or consequence of the pathogenic process. Analysing multiple aspects of mitochondrial biology across several Drosophila models of C9orf72-ALS/FTD, we found morphology, oxidative stress, and mitophagy are commonly affected, which correlated with progressive loss of locomotor performance. Notably, only genetic manipulations that reversed the oxidative stress levels were also able to rescue C9orf72 locomotor deficits, supporting a causative link between mitochondrial dysfunction, oxidative stress, and behavioural phenotypes. Targeting the key antioxidant Keap1/Nrf2 pathway, we found that genetic reduction of Keap1 or pharmacological inhibition by dimethyl fumarate significantly rescued the C9orf72-related oxidative stress and motor deficits. Finally, mitochondrial ROS levels were also elevated in C9orf72 patient-derived iNeurons and were effectively suppressed by dimethyl fumarate treatment. These results indicate that mitochondrial oxidative stress is an important mechanistic contributor to C9orf72 pathogenesis, affecting multiple aspects of mitochondrial function and turnover. Targeting the Keap1/Nrf2 signalling pathway to combat oxidative stress represents a therapeutic strategy for C9orf72-related ALS/FTD.
Collapse
Affiliation(s)
- Wing Hei Au
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | | | - James Ak Lee
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | | - Hiran A Prag
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
- Department of Medicine, University of Cambridge, Cambridge, UK
| | - Laura Raik
- MRC Mitochondrial Biology Unit, University of Cambridge, Cambridge, UK
| | - Scott P Allen
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Pamela J Shaw
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
- NIHR Sheffield Biomedical Research Centre, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Laura Ferraiuolo
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | - Heather Mortiboys
- Sheffield Institute for Translational Neuroscience (SITraN), School of Medicine and Population Health, University of Sheffield, Sheffield, UK
| | | |
Collapse
|
21
|
Torok J, Mezias C, Raj A. Directionality bias underpins divergent spatiotemporal progression of Alzheimer-related tauopathy in mouse models. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.04.597478. [PMID: 38895243 PMCID: PMC11185722 DOI: 10.1101/2024.06.04.597478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Mounting evidence implicates trans-synaptic connectome-based spread as a shared mechanism behind different tauopathic conditions, yet also suggests there is divergent spatiotemporal progression between them. A potential parsimonious explanation for this apparent contradiction could be that different conditions incur differential rates and directional biases in tau transmission along fiber tracts. In this meta-analysis we closely examined this hypothesis and quantitatively tested it using spatiotemporal tau pathology patterns from 11 distinct models across 4 experimental studies. For this purpose, we extended a network-based spread model by incorporating net directionality along the connectome. Our data unambiguously supports the directional transmission hypothesis. First, retrograde bias is an unambiguously better predictor of tau progression than anterograde bias. Second, while spread exhibits retrograde character, our best-fitting biophysical models incorporate the mixed effects of both retrograde- and anterograde-directed spread, with notable tau-strain-specific differences. We also found a nontrivial association between directionality bias and tau strain aggressiveness, with more virulent strains exhibiting less retrograde character. Taken together, our study implicates directional transmission bias in tau transmission along fiber tracts as a general feature of tauopathy spread and a strong candidate explanation for the diversity of spatiotemporal tau progression between conditions. This simple and parsimonious mechanism may potentially fill a critical gap in our knowledge of the spatiotemporal ramification of divergent tauopathies.
Collapse
Affiliation(s)
- Justin Torok
- University of California at San Francisco, Department of Radiology
| | | | - Ashish Raj
- University of California at San Francisco, Department of Radiology
| |
Collapse
|
22
|
Readman MR, Polden M, Gibbs MC, Donohue A, Chhetri SK, Crawford TJ. Oculomotor atypicalities in motor neurone disease: a systematic review. Front Neurosci 2024; 18:1399923. [PMID: 38988765 PMCID: PMC11233471 DOI: 10.3389/fnins.2024.1399923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 06/13/2024] [Indexed: 07/12/2024] Open
Abstract
Introduction Cognitive dysfunction is commonplace in Motor Neurone Disease (MND). However, due to the prominent motor symptoms in MND, assessing patients' cognitive function through traditional cognitive assessments, which oftentimes require motoric responses, may become increasingly challenging as the disease progresses. Oculomotor pathways are apparently resistant to pathological degeneration in MND. As such, abnormalities in oculomotor functions, largely driven by cognitive processes such as saccades and smooth pursuit eye movement, may be reflective of frontotemporal cognitive deficits in MND. Thus, saccadic and smooth pursuit eye movements may prove to be ideal mechanistic markers of cognitive function in MND. Methods To ascertain the utility of saccadic and smooth pursuit eye movements as markers of cognitive function in MND, this review summarizes the literature concerning saccadic and smooth pursuit eye movement task performance in people with MND. Results and discussion Of the 22 studies identified, noticeable patterns suggest that people with MND can be differentiated from controls based on antisaccade and smooth pursuit task performance, and thus the antisaccade task and smooth pursuit task may be potential candidates for markers of cognition in MND. However, further studies which ascertain the concordance between eye tracking measures and traditional measures of cognition are required before this assumption is extrapolated, and clinical recommendations are made. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=376620, identifier CRD42023376620.
Collapse
Affiliation(s)
- Megan Rose Readman
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool, United Kingdom
- National Institute of Health Research Applied Research Collaboration North West Coast, Liverpool, United Kingdom
| | - Megan Polden
- Department of Primary Care and Mental Health, The University of Liverpool, Liverpool, United Kingdom
- National Institute of Health Research Applied Research Collaboration North West Coast, Liverpool, United Kingdom
- Division of Health Research, Lancaster University, Lancaster, United Kingdom
| | - Melissa C Gibbs
- Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Aisling Donohue
- School of Psychology, Faculty of Health, Liverpool John Moores University, Liverpool, United Kingdom
| | - Suresh K Chhetri
- Lancashire and South Cumbria Motor Neurone Disease Care and Research Centre, Neurology Department, Lancashire Teaching Hospitals NHS Foundation Trust, Royal Preston Hospital, Preston, United Kingdom
| | - Trevor J Crawford
- Department of Psychology, Lancaster University, Lancaster, United Kingdom
| |
Collapse
|
23
|
Woodworth DC, Nguyen KM, Sordo L, Scambray KA, Head E, Kawas CH, Corrada MM, Nelson PT, Sajjadi SA. Comprehensive assessment of TDP-43 neuropathology data in the National Alzheimer's Coordinating Center database. Acta Neuropathol 2024; 147:103. [PMID: 38896163 PMCID: PMC11186885 DOI: 10.1007/s00401-024-02728-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 03/02/2024] [Accepted: 04/02/2024] [Indexed: 06/21/2024]
Abstract
TDP-43 proteinopathy is a salient neuropathologic feature in a subset of frontotemporal lobar degeneration (FTLD-TDP), in amyotrophic lateral sclerosis (ALS-TDP), and in limbic-predominant age-related TDP-43 encephalopathy neuropathologic change (LATE-NC), and is associated with hippocampal sclerosis of aging (HS-A). We examined TDP-43-related pathology data in the National Alzheimer's Coordinating Center (NACC) in two parts: (I) availability of assessments, and (II) associations with clinical diagnoses and other neuropathologies in those with all TDP-43 measures available. Part I: Of 4326 participants with neuropathology data collected using forms that included TDP-43 assessments, data availability was highest for HS-A (97%) and ALS (94%), followed by FTLD-TDP (83%). Regional TDP-43 pathologic assessment was available for 77% of participants, with hippocampus the most common region. Availability for the TDP-43-related measures increased over time, and was higher in centers with high proportions of participants with clinical FTLD. Part II: In 2142 participants with all TDP-43-related assessments available, 27% of participants had LATE-NC, whereas ALS-TDP or FTLD-TDP (ALS/FTLD-TDP) was present in 9% of participants, and 2% of participants had TDP-43 related to other pathologies ("Other TDP-43"). HS-A was present in 14% of participants, of whom 55% had LATE-NC, 20% ASL/FTLD-TDP, 3% Other TDP-43, and 23% no TDP-43. LATE-NC, ALS/FTLD-TDP, and Other TDP-43, were each associated with higher odds of dementia, HS-A, and hippocampal atrophy, compared to those without TDP-43 pathology. LATE-NC was associated with higher odds for Alzheimer's disease (AD) clinical diagnosis, AD neuropathologic change (ADNC), Lewy bodies, arteriolosclerosis, and cortical atrophy. ALS/FTLD-TDP was associated with higher odds of clinical diagnoses of primary progressive aphasia and behavioral-variant frontotemporal dementia, and cortical/frontotemporal lobar atrophy. When using NACC data for TDP-43-related analyses, researchers should carefully consider the incomplete availability of the different regional TDP-43 assessments, the high frequency of participants with ALS/FTLD-TDP, and the presence of other forms of TDP-43 pathology.
Collapse
Affiliation(s)
- Davis C Woodworth
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Katelynn M Nguyen
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Lorena Sordo
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Kiana A Scambray
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
| | - Elizabeth Head
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA
| | - Claudia H Kawas
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - María M Corrada
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA
- Department of Epidemiology and Biostatistics, University of California, Irvine, CA, USA
| | - Peter T Nelson
- Department of Pathology and Laboratory Medicine, University of Kentucky, Lexington, KY, USA
| | - S Ahmad Sajjadi
- Department of Neurology, University of California, Irvine, Office 364, Med Surge II Building, Irvine, CA, 92697, USA.
- Institute for Memory Impairments and Neurological Disorders, University of California, Irvine, CA, USA.
- Department of Pathology and Laboratory Medicine, University of California, Irvine, CA, USA.
| |
Collapse
|
24
|
Cullinane PW, Wrigley S, Bezerra Parmera J, Valerio F, Millner TO, Shaw K, De Pablo-Fernandez E, Warner TT, Jaunmuktane Z. Pathology of neurodegenerative disease for the general neurologist. Pract Neurol 2024; 24:188-199. [PMID: 38124186 DOI: 10.1136/pn-2023-003988] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/11/2023] [Indexed: 12/23/2023]
Abstract
Neurodegeneration refers to progressive dysfunction or loss of selectively vulnerable neurones from brain and spinal cord regions. Despite important advances in fluid and imaging biomarkers, the definitive diagnosis of most neurodegenerative diseases still relies on neuropathological examination. Not only has careful clinicopathological correlation shaped current clinical diagnostic criteria and informed our understanding of the natural history of neurodegenerative diseases, but it has also identified conditions with important public health implications, including variant Creutzfeldt-Jakob disease, iatrogenic amyloid-β and chronic traumatic encephalopathy. Neuropathological examination may also point to previously unsuspected genetic diagnoses with potential implications for living relatives. Moreover, detailed neuropathological assessment is crucial for research studies that rely on curated postmortem tissue to investigate the molecular mechanisms responsible for neurodegeneration and for biomarker discovery and validation. This review aims to elucidate the hallmark pathological features of neurodegenerative diseases commonly seen in general neurology clinics, such as Alzheimer's disease and Parkinson's disease; rare but well-known diseases, including progressive supranuclear palsy, corticobasal degeneration and multiple system atrophy and more recently described entities such as chronic traumatic encephalopathy and age-related tau astrogliopathy.
Collapse
Affiliation(s)
- Patrick W Cullinane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Sarah Wrigley
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Jacy Bezerra Parmera
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Department of Neurology, Hospital das Clínicas, Universidade de São Paulo, São Paulo, Brazil
| | - Fernanda Valerio
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Thomas O Millner
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Karen Shaw
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Eduardo De Pablo-Fernandez
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Thomas T Warner
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
| | - Zane Jaunmuktane
- Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, London, UK
- Queen Square Brain Bank for Neurological Disorders, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Van Es MA. Amyotrophic lateral sclerosis; clinical features, differential diagnosis and pathology. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:1-47. [PMID: 38802173 DOI: 10.1016/bs.irn.2024.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) is a late-onset syndrome characterized by the progressive degeneration of both upper motor neurons (UMN) and lower motor neurons (LMN). ALS forms a clinical continuum with frontotemporal dementia (FTD), in which there are progressive language deficits or behavioral changes. The genetics and pathology underlying both ALS and FTD overlap as well, with cytoplasmatic misvocalization of TDP-43 as the hallmark. ALS is diagnosed by exclusion. Over the years several diagnostic criteria have been proposed, which in essence all require a history of slowly progressive motor symptoms, with UMN and LMN signs on neurological examination, clear spread of symptoms through the body, the exclusion of other disorder that cause similar symptoms and an EMG that it is compatible with LMN loss. ALS is heterogeneous disorder that may present in multitude ways, which makes the diagnosis challenging. Therefore, a systematic approach in the diagnostic process is required in line with the most common presentations. Subsequently, assessing whether there are cognitive and/or behavioral changes within the spectrum of FTD and lastly determining the cause is genetic. This chapter, an outline on how to navigate this 3 step process.
Collapse
Affiliation(s)
- Michael A Van Es
- Department of Neurology, Brain Center UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Ke YD, van Hummel A, Au C, Chan G, Lee WS, van der Hoven J, Przybyla M, Deng Y, Sabale M, Morey N, Bertz J, Feiten A, Ippati S, Stevens CH, Yang S, Gladbach A, Haass NK, Kril JJ, Blair IP, Delerue F, Ittner LM. Targeting 14-3-3θ-mediated TDP-43 pathology in amyotrophic lateral sclerosis and frontotemporal dementia mice. Neuron 2024; 112:1249-1264.e8. [PMID: 38366598 DOI: 10.1016/j.neuron.2024.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 11/20/2023] [Accepted: 01/22/2024] [Indexed: 02/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are characterized by cytoplasmic deposition of the nuclear TAR-binding protein 43 (TDP-43). Although cytoplasmic re-localization of TDP-43 is a key event in the pathogenesis of ALS/FTD, the underlying mechanisms remain unknown. Here, we identified a non-canonical interaction between 14-3-3θ and TDP-43, which regulates nuclear-cytoplasmic shuttling. Neuronal 14-3-3θ levels were increased in sporadic ALS and FTD with TDP-43 pathology. Pathogenic TDP-43 showed increased interaction with 14-3-3θ, resulting in cytoplasmic accumulation, insolubility, phosphorylation, and fragmentation of TDP-43, resembling pathological changes in disease. Harnessing this increased affinity of 14-3-3θ for pathogenic TDP-43, we devised a gene therapy vector targeting TDP-43 pathology, which mitigated functional deficits and neurodegeneration in different ALS/FTD mouse models expressing mutant or non-mutant TDP-43, including when already symptomatic at the time of treatment. Our study identified 14-3-3θ as a mediator of cytoplasmic TDP-43 localization with implications for ALS/FTD pathogenesis and therapy.
Collapse
Affiliation(s)
- Yazi D Ke
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| | - Annika van Hummel
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Carol Au
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Gabriella Chan
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Wei Siang Lee
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Julia van der Hoven
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Magdalena Przybyla
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Yuanyuan Deng
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Miheer Sabale
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nicolle Morey
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Josefine Bertz
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Astrid Feiten
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Stefania Ippati
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Claire H Stevens
- School of Chemistry and Molecular Bioscience, University of Wollongong and Illawarra Health and Medical Research Institute, Wollongong, NSW 2522, Australia
| | - Shu Yang
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Amadeus Gladbach
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD 4102, Australia
| | - Jillian J Kril
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia; School of Medical Sciences, Faculty of Medicine and Health, University of Sydney, Sydney, NSW 2050, Australia
| | - Ian P Blair
- Centre for MND Research, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Fabien Delerue
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia
| | - Lars M Ittner
- Dementia Research Centre and Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, NSW 2109, Australia.
| |
Collapse
|
27
|
Jiménez-García AM, Bonnel G, Álvarez-Mota A, Arias N. Current perspectives on neuromodulation in ALS patients: A systematic review and meta-analysis. PLoS One 2024; 19:e0300671. [PMID: 38551974 PMCID: PMC10980254 DOI: 10.1371/journal.pone.0300671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 03/01/2024] [Indexed: 04/01/2024] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a progressive neurodegenerative disease that affects motor neurons, resulting in muscle weakness, paralysis, and eventually patient mortality. In recent years, neuromodulation techniques have emerged as promising potential therapeutic approaches to slow disease progression and improve the quality of life of ALS patients. A systematic review was conducted until August 8, 2023, to evaluate the neuromodulation methods used and their potential in the treatment of ALS. The search strategy was applied in the Cochrane Central database, incorporating results from other databases such as PubMed, Embase, CTgov, CINAHL, and ICTRP. Following the exclusion of papers that did not fulfil the inclusion criteria, a total of 2090 records were found, leaving a total of 10 studies. R software was used to conduct meta-analyses based on the effect sizes between the experimental and control groups. This revealed differences in muscle stretch measures with manual muscle testing (p = 0.012) and resting motor threshold (p = 0.0457), but not with voluntary isometric contraction (p = 0.1883). The functionality of ALS was also different (p = 0.007), but not the quality of life. Although intracortical facilitation was not seen in motor cortex 1 (M1) (p = 0.1338), short-interval intracortical inhibition of M1 was significant (p = 0.0001). BDNF showed no differences that were statistically significant (p = 0.2297). Neuromodulation-based treatments are proposed as a promising therapeutic approach for ALS that can produce effects on muscle function, spasticity, and intracortical connections through electrical, magnetic, and photonic stimulation. Photobiomodulation stands out as an innovative approach that uses specific wavelengths to influence mitochondria, with the aim of improving mitochondrial function and reducing excitotoxicity. The lack of reliable placebo controls and the variation in stimulation frequency are some of the drawbacks of neuromodulation.
Collapse
Affiliation(s)
- Ana M. Jiménez-García
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, Madrid, Spain
| | - Gaspard Bonnel
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, Madrid, Spain
| | - Alicia Álvarez-Mota
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, Madrid, Spain
| | - Natalia Arias
- BRABE Group, Department of Psychology, Faculty of Life and Natural Sciences, University of Nebrija, Madrid, Spain
- Health Research Institute of the Principality of Asturias (Instituto de Investigación Universitaria del Principado de Asturias), Oviedo, Spain
- INEUROPA, Instituto de Neurociencias del Principado de Asturias, Plaza Feijoo, Oviedo, Spain
| |
Collapse
|
28
|
Brodtmann A, Hinton F, McLean C, Darby D. Phenocopy or variant? A longitudinal study of very slowly progressive frontotemporal dementia confirmed on genetic testing. BMJ Case Rep 2024; 17:e254962. [PMID: 38350701 PMCID: PMC10868319 DOI: 10.1136/bcr-2023-254962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024] Open
Affiliation(s)
- Amy Brodtmann
- Cognitive Health Initiative, Monash University Central Clinical School, Melbourne, Victoria, Australia
- Neurosciences, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne, Victoria, Australia
| | - Fairlie Hinton
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
| | - Catriona McLean
- Victorian Brain Bank, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- Anatomical Pathology, Alfred Health, Melbourne, Victoria, Australia
| | - David Darby
- Neurosciences, Eastern Cognitive Disorders Clinic, Box Hill Hospital, Melbourne, Victoria, Australia
- Neurosciences, Monash University Central Clinical School, Melbourne, Victoria, Australia
| |
Collapse
|
29
|
de Boer EMJ, Demaegd KC, de Bie CI, Veldink JH, van den Berg LH, van Es MA. Familial motor neuron disease: co-occurrence of PLS and ALS (-FTD). Amyotroph Lateral Scler Frontotemporal Degener 2024; 25:53-60. [PMID: 37679883 DOI: 10.1080/21678421.2023.2255621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 09/01/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE To report the frequency and characteristics of patients diagnosed with primary lateral sclerosis (PLS) with a positive family history for motor neuron diseases (MND) in the Netherlands and to compare our findings to the literature. METHODS Patients were identified through our ongoing, prospective population-based study on MND in The Netherlands, which also includes a standardized collection of patient characteristics, genetic testing, and family history. Only patients meeting the latest consensus criteria for definite PLS were included. The family history was considered positive for MND if any family members had been diagnosed with PLS, amyotrophic lateral sclerosis (ALS)(-FTD), or progressive muscular atrophy (PMA). Additionally, the literature was reviewed on PLS cases in which MND co-occurred within the same family. RESULTS We identified 392 definite PLS cases, resulting in 9 families with a PLS patient and a positive family history for MND (2.3%). In only one of these pedigrees, a pathogenic variant (C9orf72 repeat expansion) was found. Our literature review revealed 23 families with a co-occurrence of PLS and MND, with 12 of them having a potentially pathogenic genetic variant. CONCLUSIONS The consistent observation of PLS patients with a positive family history for MND, evident in both our study and the literature, implies the presence of shared underlying genetic factors between PLS and ALS. However, these factors are yet to be elucidated.
Collapse
Affiliation(s)
- Eva M J de Boer
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands and
| | - Koen C Demaegd
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands and
| | - Charlotte I de Bie
- Department of Genetics, University Medical Center Utrecht, Utrecht, the Netherlands
| | - Jan H Veldink
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands and
| | - Leonard H van den Berg
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands and
| | - Michael A van Es
- Department of Neurology, Brain Center Rudolf Magnus, University Medical Center Utrecht, Utrecht, The Netherlands and
| |
Collapse
|
30
|
Moreno-Roco J, del Valle L, Jiménez D, Acosta I, Castillo JL, Dharmadasa T, Kiernan MC, Matamala JM. Diagnostic utility of transcranial magnetic stimulation for neurodegenerative disease: a critical review. Dement Neuropsychol 2024; 17:e20230048. [PMID: 38189033 PMCID: PMC10768644 DOI: 10.1590/1980-5764-dn-2023-0048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/13/2023] [Accepted: 09/24/2023] [Indexed: 01/09/2024] Open
Abstract
Neurodegenerative diseases pose significant challenges due to their impact on brain structure, function, and cognition. As life expectancy rises, the prevalence of these disorders is rapidly increasing, resulting in substantial personal, familial, and societal burdens. Efforts have been made to optimize the diagnostic and therapeutic processes, primarily focusing on clinical, cognitive, and imaging characterization. However, the emergence of non-invasive brain stimulation techniques, specifically transcranial magnetic stimulation (TMS), offers unique functional insights and diagnostic potential. TMS allows direct evaluation of brain function, providing valuable information inaccessible through other methods. This review aims to summarize the current and potential diagnostic utility of TMS in investigating neurodegenerative diseases, highlighting its relevance to the field of cognitive neuroscience. The findings presented herein contribute to the growing body of research focused on improving our understanding and management of these debilitating conditions, particularly in regions with limited resources and a pressing need for innovative approaches.
Collapse
Affiliation(s)
- Javier Moreno-Roco
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Lucía del Valle
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Daniel Jiménez
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Hospital del Salvador, Servicio de Neurología, Santiago, Chile
| | - Ignacio Acosta
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Hospital del Salvador, Servicio de Neurología, Santiago, Chile
| | - José Luis Castillo
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
| | - Thanuja Dharmadasa
- University of Melbourne, The Florey Institute of Neuroscience and Mental Health, Parkville, Victoria, Australia
- The Royal Melbourne Hospital, Department of Neurology, Parkville, Victoria, Australia
- University of Sydney, Brain and Mind Centre, Sydney, Australia
| | - Matthew C. Kiernan
- University of Sydney, Brain and Mind Centre, Sydney, Australia
- Royal Prince Alfred Hospital, Department of Neurology, Sydney, AustraliaArgento
| | - José Manuel Matamala
- Universidad de Chile, Facultad de Medicina, Laboratorio de Neurología y Neurofisiología Traslacional, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Centro de Investigación Clínica Avanzado (CICA) Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Ciencias Neurológicas Oriente, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Departamento de Neurociencias, Santiago, Chile
- Universidad de Chile, Facultad de Medicina, Instituto de Neurociencia Biomédica (BNI), Santiago, Chile
| |
Collapse
|
31
|
Eisen A, Vucic S, Mitsumoto H. History of ALS and the competing theories on pathogenesis: IFCN handbook chapter. Clin Neurophysiol Pract 2023; 9:1-12. [PMID: 38213309 PMCID: PMC10776891 DOI: 10.1016/j.cnp.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/07/2023] [Accepted: 11/28/2023] [Indexed: 01/13/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a rapidly progressive neurodegenerative disorder of the human motor system, first described in the 19th Century. The etiology of ALS appears to be multifactorial, with a complex interaction of genetic, epigenetic, and environmental factors underlying the onset of disease. Importantly, there are no known naturally occurring animal models, and transgenic mouse models fail to faithfully reproduce ALS as it manifests in patients. Debate as to the site of onset of ALS remain, with three competing theories proposed, including (i) the dying-forward hypothesis, whereby motor neuron degeneration is mediated by hyperexcitable corticomotoneurons via an anterograde transsynaptic excitotoxic mechanism, (ii) dying-back hypothesis, proposing the ALS begins in the peripheral nervous system with a toxic factor(s) retrogradely transported into the central nervous system and mediating upper motor neuron dysfunction, and (iii) independent hypothesis, suggesting that upper and lower motor neuron degenerated independently. Transcranial magnetic stimulation studies, along with pathological and genetic findings have supported the dying forward hypothesis theory, although the science is yet to be settled. The review provides a historical overview of ALS, discusses phenotypes and likely pathogenic mechanisms.
Collapse
Affiliation(s)
- Andrew Eisen
- Division of Neurology, Department of Medicine, University of British Columbia, Canada
| | - Steve Vucic
- Director Brain and Nerve Research Center, Clinical School, University of Sydney, Australia
| | - Hiroshi Mitsumoto
- Wesley J. Howe Professor of Neurology, Columbia University, The Neurological Institute of New York, and New York-Presbyterian Hospital/Columbia University Medical Center, United States
| |
Collapse
|
32
|
Beswick E, Forbes D, Johnson M, Newton J, Dakin R, Glasmcher S, Abrahams S, Carson A, Chandran S, Pal S. Non-motor symptoms in motor neuron disease: prevalence, assessment and impact. Brain Commun 2023; 6:fcad336. [PMID: 38162906 PMCID: PMC10754319 DOI: 10.1093/braincomms/fcad336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/27/2023] [Accepted: 12/05/2023] [Indexed: 01/03/2024] Open
Abstract
People with motor neuron disease often experience non-motor symptoms that may occur secondary to, or distinct from, motor degeneration and that may significantly reduce quality of life, despite being under-recognized and evaluated in clinical practice. Non-motor symptoms explored in this population-based study include pain, fatigue, gastrointestinal issues, poor sleep, low mood, anxiety, problematic saliva, apathy, emotional lability, cognitive complaints and sexual dysfunction. People registered on the Clinical Audit Research and Evaluation of motor neuron disease platform, the Scottish Motor Neuron Disease Register, were invited to complete a questionnaire on non-motor symptoms and a self-reported Amyotrophic Lateral Sclerosis Functional Rating Scale. The questionnaire comprised a pre-defined list of 11 potential non-motor symptoms, with the opportunity to list additional symptoms. A total of 120 individuals participated in this cross-sectional study, a 39% response rate of those sent questionnaires (n = 311); 99% of participants recruited (n = 120) experienced at least one non-motor symptom, with 72% (n = 120) reporting five or more. The symptoms most often reported were pain and fatigue (reported by 76% of participants, respectively). The symptoms reported to be most impactful were gastrointestinal issues (reported as 'severe' by 54% of participants who experienced them), followed by pain and problematic saliva (51%, respectively). Lower Amyotrophic Lateral Sclerosis Functional Rating Scale scores, indicating more advanced disease and being a long survivor [diagnosed over 8 years ago; Black et al. (Genetic epidemiology of motor neuron disease-associated variants in the Scottish population. Neurobiol Aging. 2017;51:178.e11-178.e20.)], were significantly associated with reporting more symptoms; 73% of respondents were satisfied with the frequency that non-motor symptoms were discussed in clinical care; 80% of participants indicated they believe evaluation of non-motor symptom is important to include as outcomes in trials, independent of their personal experience of these symptoms. The preferred method of assessment was completing questionnaires, at home. The overwhelming majority of people with motor neuron disease report non-motor symptoms and these frequently co-occur. Pain, fatigue, gastrointestinal issues, sleep, mood, anxiety, problematic saliva, apathy, emotional lability, cognitive complaints and sexual dysfunction are prevalent. People with motor neuron disease who had worse physical function and those who were long survivors were more likely to report more symptoms. Where reported, these symptoms are frequent, impactful and a priority for people with motor neuron disease in clinical care and trial design.
Collapse
Affiliation(s)
- Emily Beswick
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
| | - Deborah Forbes
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
| | - Micheala Johnson
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
| | - Judith Newton
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
| | - Rachel Dakin
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
| | - Stella Glasmcher
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
| | - Sharon Abrahams
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
- Human Cognitive Neurosciences, Psychology, School of Philosophy, Psychology and Language Sciences, the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Alan Carson
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
| | - Siddharthan Chandran
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
- UK Dementia Research Institute, the University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Suvankar Pal
- Centre for Clinical Brain Sciences, the University of Edinburgh, Edinburgh, UK
- Anne Rowling Regenerative Neurology Clinic, the University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for MND Research, the University of Edinburgh, Edinburgh, UK
| |
Collapse
|
33
|
Dratch L, Mu W, Wood EM, Morgan B, Massimo L, Clyburn C, Bardakjian T, Grossman M, Irwin DJ, Cousins KA. Evaluation of an educational conference for persons affected by hereditary frontotemporal degeneration and amyotrophic lateral sclerosis. PEC INNOVATION 2023; 2:100108. [PMID: 37214502 PMCID: PMC10194235 DOI: 10.1016/j.pecinn.2022.100108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 05/24/2023]
Abstract
Objective There are limited studies exploring the support and education needs of individuals at-risk for or diagnosed with hereditary frontotemporal degeneration (FTD) and/or amyotrophic lateral sclerosis (ALS). This study evaluated a novel conference for this population to assess conference efficacy, probe how participants assessed relevant resources, and identify outstanding needs of persons at-risk/diagnosed. Methods We implemented a post-conference electronic survey that probed participants' satisfaction, prior experience with resources, and unmet needs. Along with multiple-choice, free-text items were included to gather qualitative context. Results Survey completion rate was 31% (115/376 attendees who were emailed the survey). There was positive interest in pursuing genetic counseling among eligible responders: 61% indicated they planned to seek genetic counseling because of the conference, which was significantly more than those who were undecided (21%) or did not plan to seek genetic counseling (18%). Qualitative data demonstrated need for additional education, support, and research opportunities. Conclusion Conference reactions indicate this is a valued resource. Results indicated the importance of raising awareness about existing resources, and the need for further resource development, especially for at-risk communities. Innovation While most resources are developed for caregivers' needs, this unique program targets at-risk individuals and unites ALS and FTD communities.
Collapse
Affiliation(s)
- Laynie Dratch
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Weiyi Mu
- Department of Genetic Medicine, Johns Hopkins University, Baltimore, USA
| | | | - Brianna Morgan
- School of Nursing, University of Pennsylvania, Philadelphia, USA
| | - Lauren Massimo
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
- School of Nursing, University of Pennsylvania, Philadelphia, USA
| | - Cynthia Clyburn
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Tanya Bardakjian
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Murray Grossman
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - David J. Irwin
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| | - Katheryn A.Q. Cousins
- Penn Frontotemporal Degeneration Center, University of Pennsylvania, Philadelphia, USA
- Department of Neurology, University of Pennsylvania, Philadelphia, USA
| |
Collapse
|
34
|
Kahriman A, Bouley J, Tuncali I, Dogan EO, Pereira M, Luu T, Bosco DA, Jaber S, Peters OM, Brown RH, Henninger N. Repeated mild traumatic brain injury triggers pathology in asymptomatic C9ORF72 transgenic mice. Brain 2023; 146:5139-5152. [PMID: 37527465 PMCID: PMC11046056 DOI: 10.1093/brain/awad264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 07/06/2023] [Accepted: 07/24/2023] [Indexed: 08/03/2023] Open
Abstract
Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are fatal neurodegenerative diseases that represent ends of the spectrum of a single disease. The most common genetic cause of FTD and ALS is a hexanucleotide repeat expansion in the C9orf72 gene. Although epidemiological data suggest that traumatic brain injury (TBI) represents a risk factor for FTD and ALS, its role in exacerbating disease onset and course remains unclear. To explore the interplay between traumatic brain injury and genetic risk in the induction of FTD/ALS pathology we combined a mild repetitive traumatic brain injury paradigm with an established bacterial artificial chromosome transgenic C9orf72 (C9BAC) mouse model without an overt motor phenotype or neurodegeneration. We assessed 8-10 week-old littermate C9BACtg/tg (n = 21), C9BACtg/- (n = 20) and non-transgenic (n = 21) mice of both sexes for the presence of behavioural deficits and cerebral histopathology at 12 months after repetitive TBI. Repetitive TBI did not affect body weight gain, general neurological deficit severity, nor survival over the 12-month observation period and there was no difference in rotarod performance, object recognition, social interaction and acoustic characteristics of ultrasonic vocalizations of C9BAC mice subjected to repetitive TBI versus sham injury. However, we found that repetitive TBI increased the time to the return of the righting reflex, reduced grip force, altered sociability behaviours and attenuated ultrasonic call emissions during social interactions in C9BAC mice. Strikingly, we found that repetitive TBI caused widespread microglial activation and reduced neuronal density that was associated with loss of histological markers of axonal and synaptic integrity as well as profound neuronal transactive response DNA binding protein 43 kDa mislocalization in the cerebral cortex of C9BAC mice at 12 months; this was not observed in non-transgenic repetitive TBI and C9BAC sham mice. Our data indicate that repetitive TBI can be an environmental risk factor that is sufficient to trigger FTD/ALS-associated neuropathology and behavioural deficits, but not paralysis, in mice carrying a C9orf72 hexanucleotide repeat expansion.
Collapse
Affiliation(s)
- Aydan Kahriman
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - James Bouley
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Idil Tuncali
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Elif O Dogan
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Mariana Pereira
- Department of Psychological and Brain Sciences, University of Massachusetts, Amherst, MA 01003, USA
| | - Thuyvan Luu
- Department of Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Daryl A Bosco
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Samer Jaber
- Department of Pathology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Owen M Peters
- School of Biosciences, UK Dementia Research Institute, Cardiff University, Cardiff, CF24 4HQ, UK
| | - Robert H Brown
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| | - Nils Henninger
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
- Department of Psychiatry, University of Massachusetts Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
35
|
Doherty T, Yao Z, Khleifat AAL, Tantiangco H, Tamburin S, Albertyn C, Thakur L, Llewellyn DJ, Oxtoby NP, Lourida I, Ranson JM, Duce JA. Artificial intelligence for dementia drug discovery and trials optimization. Alzheimers Dement 2023; 19:5922-5933. [PMID: 37587767 DOI: 10.1002/alz.13428] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 05/26/2023] [Accepted: 07/05/2023] [Indexed: 08/18/2023]
Abstract
Drug discovery and clinical trial design for dementia have historically been challenging. In part these challenges have arisen from patient heterogeneity, length of disease course, and the tractability of a target for the brain. Applying big data analytics and machine learning tools for drug discovery and utilizing them to inform successful clinical trial design has the potential to accelerate progress. Opportunities arise at multiple stages in the therapy pipeline and the growing availability of large medical data sets opens possibilities for big data analyses to answer key questions in clinical and therapeutic challenges. However, before this goal is reached, several challenges need to be overcome and only a multi-disciplinary approach can promote data-driven decision-making to its full potential. Herein we review the current state of machine learning applications to clinical trial design and drug discovery, while presenting opportunities and recommendations that can break down the barriers to implementation.
Collapse
Affiliation(s)
- Thomas Doherty
- Eisai Europe Ltd, Hatfield, UK
- University of Westminster, London, UK
| | | | - Ahmad A L Khleifat
- Institute of Psychiatry, Psychology & Neuroscience, Department of Basic and Clinical Neuroscience, King's College London, London, UK
| | | | - Stefano Tamburin
- University of Verona, Department of Neurosciences, Biomedicine & Movement Sciences, Verona, Italy
| | - Chris Albertyn
- Department of Old Age Psychiatry, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, UK
| | - Lokendra Thakur
- Division of Genetics and Genomics, Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts, USA
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, USA
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - David J Llewellyn
- University of Exeter Medical School, Exeter, UK
- Alan Turing Institute, London, UK
| | - Neil P Oxtoby
- UCL Centre for Medical Image Computing, Department of Computer Science, University College London, London, UK
| | | | | | - James A Duce
- The ALBORADA Drug Discovery Institute, University of Cambridge, Cambridge Biomedical Campus, Cambridge, UK
| |
Collapse
|
36
|
Abstract
Although the past two decades have produced exciting discoveries in the genetics and pathology of amyotrophic lateral sclerosis (ALS), progress in developing an effective therapy remains slow. This review summarizes the critical discoveries and outlines the advances in disease characterization, diagnosis, imaging, and biomarkers, along with the current status of approaches to ALS care and treatment. Additional knowledge of the factors driving disease progression and heterogeneity will hopefully soon transform the care for patients with ALS into an individualized, multi-prong approach able to prevent disease progression sufficiently to allow for a dignified life with limited disability.
Collapse
Affiliation(s)
- Hristelina Ilieva
- Jefferson Weinberg ALS Center, Thomas Jefferson University, Philadelphia, PA, USA
| | | | - Justin Kwan
- National Institute of Neurological Disorders and Stroke, National Institute of Health, Bethesda, MD, USA
| |
Collapse
|
37
|
Necarsulmer JC, Simon JM, Evangelista BA, Chen Y, Tian X, Nafees S, Marquez AB, Jiang H, Wang P, Ajit D, Nikolova VD, Harper KM, Ezzell JA, Lin FC, Beltran AS, Moy SS, Cohen TJ. RNA-binding deficient TDP-43 drives cognitive decline in a mouse model of TDP-43 proteinopathy. eLife 2023; 12:RP85921. [PMID: 37819053 PMCID: PMC10567115 DOI: 10.7554/elife.85921] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023] Open
Abstract
TDP-43 proteinopathies including frontotemporal lobar degeneration (FTLD) and amyotrophic lateral sclerosis (ALS) are neurodegenerative disorders characterized by aggregation and mislocalization of the nucleic acid-binding protein TDP-43 and subsequent neuronal dysfunction. Here, we developed endogenous models of sporadic TDP-43 proteinopathy based on the principle that disease-associated TDP-43 acetylation at lysine 145 (K145) alters TDP-43 conformation, impairs RNA-binding capacity, and induces downstream mis-regulation of target genes. Expression of acetylation-mimic TDP-43K145Q resulted in stress-induced nuclear TDP-43 foci and loss of TDP-43 function in primary mouse and human-induced pluripotent stem cell (hiPSC)-derived cortical neurons. Mice harboring the TDP-43K145Q mutation recapitulated key hallmarks of FTLD, including progressive TDP-43 phosphorylation and insolubility, TDP-43 mis-localization, transcriptomic and splicing alterations, and cognitive dysfunction. Our study supports a model in which TDP-43 acetylation drives neuronal dysfunction and cognitive decline through aberrant splicing and transcription of critical genes that regulate synaptic plasticity and stress response signaling. The neurodegenerative cascade initiated by TDP-43 acetylation recapitulates many aspects of human FTLD and provides a new paradigm to further interrogate TDP-43 proteinopathies.
Collapse
Affiliation(s)
- Julie C Necarsulmer
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Jeremy M Simon
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Genetics, University of North CarolinaChapel HillUnited States
| | - Baggio A Evangelista
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Youjun Chen
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Xu Tian
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Sara Nafees
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Ariana B Marquez
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
| | - Huijun Jiang
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Ping Wang
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Deepa Ajit
- Department of Neurology, University of North CarolinaChapel HillUnited States
| | - Viktoriya D Nikolova
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Kathryn M Harper
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - J Ashley Ezzell
- Department of Cell Biology & Physiology, Histology Research Core Facility, University of North CarolinaChapel HillUnited States
| | - Feng-Chang Lin
- Department of Biostatistics, University of North CarolinaChapel HillUnited States
| | - Adriana S Beltran
- Department of Genetics, University of North CarolinaChapel HillUnited States
- Human Pluripotent Stem Cell Core, University of North CarolinaChapel HillUnited States
- Department of Pharmacology, University of North CarolinaChapel HillUnited States
| | - Sheryl S Moy
- Carolina Institute for Developmental Disabilities, University of North CarolinaChapel HillUnited States
- Department of Psychiatry, The University of North CarolinaChapel HillUnited States
| | - Todd J Cohen
- Department of Cell Biology and Physiology, University of North CarolinaChapel HillUnited States
- Department of Neurology, University of North CarolinaChapel HillUnited States
- UNC Neuroscience Center, University of North CarolinaChapel HillUnited States
- Department of Biochemistry and Biophysics, University of North CarolinaChapel HillUnited States
| |
Collapse
|
38
|
Vinceti G, Carbone C, Gallingani C, Fiondella L, Salemme S, Zucchi E, Martinelli I, Gianferrari G, Tondelli M, Mandrioli J, Chiari A, Zamboni G. The association between lifelong personality and clinical phenotype in the FTD-ALS spectrum. Front Neurosci 2023; 17:1248622. [PMID: 37859765 PMCID: PMC10582748 DOI: 10.3389/fnins.2023.1248622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 08/31/2023] [Indexed: 10/21/2023] Open
Abstract
Introduction Frontotemporal dementia (FTD) and amyotrophic lateral sclerosis (ALS) are two phenotypes of the same neurodegenerative disease, the FTD-ALS spectrum. What determines the development of one rather than the other phenotype is still unknown. Based on the clinical observation that patients' personality seems to differ between the two phenotypes, i.e., ALS patients tend to display kind, prosocial behaviors whereas FTD patients tend to present anti-social behaviors, and that these traits are often reported as pre-existing the disease onset by caregivers, we set up to study experimentally patients' personality in their premorbid life. Methods We first tested for differences between groups, then tested the association between premorbid personality and current functional organization of the brain. Premorbid personality of a cohort of forty patients, 27 FTD and 13 ALS, was explored through the NEO Personality Inventory 3 (NEO-PI-3), which analyses the five main personality factors, completed by the caregiver with reference to patient's personality 20 years before symptoms onset (premorbid). A subgroup of patients underwent a brain MRI including structural and resting-state functional MRI (rsfMRI). Results A significant difference between FTD and ALS in premorbid personality emerged in the Openness (133.92 FTD vs. 149.84 ALS, p = 0.01) and Extraversion (136.55 FTD vs. 150.53 ALS, p = 0.04) factors. This suggests that ALS patients had been, in their premorbid life, more open to new experiences, more sociable and optimistic than FTD patients. They also showed greater functional connectivity than both FTD and a control group in the Salience resting state network, over and above differences in gray matter atrophy. Finally, there was a positive correlation between premorbid Openness and functional connectivity in the Salience network across all patients, suggesting a possible association between premorbid personality and current functional organization of the brain, irrespective of the degree of atrophy. Discussion Our proof-of-concept results suggest that premorbid personality may eventually predispose to the development of one, rather than the other, phenotype in the FTD-ALS spectrum.
Collapse
Affiliation(s)
- Giulia Vinceti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Chiara Carbone
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Chiara Gallingani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Luigi Fiondella
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Simone Salemme
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Elisabetta Zucchi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Ilaria Martinelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giulia Gianferrari
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Manuela Tondelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Department of Primary Care, Azienda Unità Sanitaria Locale di Modena, Modena, Italy
| | - Jessica Mandrioli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Annalisa Chiari
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| | - Giovanna Zamboni
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, Ospedale Civile Baggiovara, Azienda Ospedaliero Universitaria di Modena, Modena, Italy
| |
Collapse
|
39
|
Maranzano A, Verde F, Colombo E, Poletti B, Doretti A, Bonetti R, Gagliardi D, Meneri M, Maderna L, Messina S, Corti S, Morelli C, Silani V, Ticozzi N. Regional spreading pattern is associated with clinical phenotype in amyotrophic lateral sclerosis. Brain 2023; 146:4105-4116. [PMID: 37075222 PMCID: PMC10545526 DOI: 10.1093/brain/awad129] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 03/01/2023] [Accepted: 04/01/2023] [Indexed: 04/21/2023] Open
Abstract
Increasing evidence shows that disease spreading in amyotrophic lateral sclerosis (ALS) follows a preferential pattern with more frequent involvement of contiguous regions from the site of symptom onset. The aim of our study was to assess if: (i) the burden of upper (UMN) and lower motor neuron (LMN) involvement influences directionality of disease spreading; (ii) specific patterns of disease progression are associated with motor and neuropsychological features of different ALS subtypes (classic, bulbar, primary lateral sclerosis, UMN-predominant, progressive muscular atrophy, flail arm, flail leg); and (iii) specific clinical features may help identify ALS subtypes, which remain localized to the site of onset for a prolonged time (regionally entrenching ALS). A single-centre, retrospective cohort of 913 Italian ALS patients was evaluated to assess correlations between directionality of the disease process after symptom onset and motor/neuropsychological phenotype. All patients underwent an extensive evaluation including the following clinical scales: Penn Upper Motor Neuron Score (PUMNS), MRC Scale for Muscle Strength and the Edinburgh Cognitive and Behavioural ALS Screen (ECAS). The most frequent initial spreading pattern was that towards adjacent horizontal regions (77.3%), which occurred preferentially in patients with lower MRC scores (P = 0.038), while vertical diffusion (21.1%) was associated with higher PUMNS (P < 0.001) and with reduced survival (P < 0.001). Non-contiguous disease spreading was associated with more severe UMN impairment (P = 0.003), while contiguous disease pattern with lower MRC scores. Furthermore, non-contiguous disease spreading was associated with more severe cognitive impairment in both executive and visuospatial ECAS domains. Individuals with regionally entrenching ALS were more frequently female (45.6% versus 36.9%; P = 0.028) and had higher frequencies of symmetric disease onset (40.3% versus 19.7%; P < 0.001) and bulbar phenotype (38.5% versus 16.4%; P < 0.001). Our study suggests that motor phenotypes characterized by a predominant UMN involvement are associated with a vertical pattern of disease progression reflecting ipsilateral spreading within the motor cortex, while those with predominant LMN involvement display more frequently a horizontal spreading from one side of the spinal cord to the other. These observations raise the hypothesis that one of the mechanisms underlying disease spreading in ALS pathology is represented by diffusion of toxic factors in the neuron microenvironment. Finally, it is possible that in our cohort, regionally entrenching ALS forms are mainly observed in patients with atypical bulbar phenotypes, characterized by a slowly progressive course and relatively benign prognosis.
Collapse
Affiliation(s)
- Alessio Maranzano
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| | - Federico Verde
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milan, 20122, Italy
| | - Eleonora Colombo
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| | - Barbara Poletti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| | - Alberto Doretti
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| | - Ruggero Bonetti
- Neurology Residency Program, Università degli Studi di Milano, Milan, 20122, Italy
| | - Delia Gagliardi
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milan, 20122, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Megi Meneri
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milan, 20122, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Luca Maderna
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| | - Stefano Messina
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| | - Stefania Corti
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milan, 20122, Italy
- Neurology Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, 20122, Italy
| | - Claudia Morelli
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
| | - Vincenzo Silani
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milan, 20122, Italy
| | - Nicola Ticozzi
- Department of Neurology and Laboratory of Neuroscience, IRCCS Istituto Auxologico Italiano, Milan, 20149, Italy
- Department of Pathophysiology and Transplantation, ‘Dino Ferrari’ Center, Università degli Studi di Milano, Milan, 20122, Italy
| |
Collapse
|
40
|
Kortazar-Zubizarreta I, Manero-Azua A, Afonso-Agüera J, Perez de Nanclares G. C9ORF72 Gene GGGGCC Hexanucleotide Expansion: A High Clinical Variability from Amyotrophic Lateral Sclerosis to Frontotemporal Dementia. J Pers Med 2023; 13:1396. [PMID: 37763163 PMCID: PMC10532825 DOI: 10.3390/jpm13091396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 09/15/2023] [Accepted: 09/16/2023] [Indexed: 09/29/2023] Open
Abstract
The expanded GGGGCC hexanucleotide repeat (HRE) in the non-coding region of the C9ORF72 gene (C9ORF72-HRE) is the most common genetic cause of familial forms of amyotrophic lateral sclerosis (ALS), FTD, and concurrent ALS and FTD (ALS-FTD), in addition to contributing to the sporadic forms of these diseases. Both syndromes overlap not only genetically, but also sharing similar clinical and neuropathological findings, being considered as a spectrum. In this paper we describe the clinical-genetic findings in a Basque family with different manifestations within the spectrum, our difficulties in reaching the diagnosis, and a narrative review, carried out as a consequence, of the main features associated with C9ORF72-HRE. Family members underwent a detailed clinical assessment, neurological examination, and genetic analysis by repeat-primed PCR. We studied 10 relatives of a symptomatic carrier of the C9ORF72-HRE expansion. Two of them presented the expansion in the pathological range, one of them was symptomatic whereas the other one remained asymptomatic at 72 years. Given the great intrafamilial clinical variability of C9ORF72-HRE, the characterization of patients and family members with particular clinical and genetic subgroups within ALS and FTD becomes a bottleneck for medication development, in particular for genetically focused medicines for ALS and FTD.
Collapse
Affiliation(s)
- Izaro Kortazar-Zubizarreta
- Department of Neurology, Bioaraba Health Research Institute, Araba University Hospital-Txagorritxu, 01009 Vitoria-Gasteiz, Spain
| | - Africa Manero-Azua
- Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain; (A.M.-A.); (G.P.d.N.)
| | - Juan Afonso-Agüera
- Department of Neurology, Central University Hospital of Asturias, 33006 Oviedo, Spain;
| | - Guiomar Perez de Nanclares
- Molecular (Epi) Genetics Laboratory, Bioaraba Health Research Institute, Araba University Hospital, 01009 Vitoria-Gasteiz, Spain; (A.M.-A.); (G.P.d.N.)
| |
Collapse
|
41
|
Beckers J, Tharkeshwar AK, Fumagalli L, Contardo M, Van Schoor E, Fazal R, Thal DR, Chandran S, Mancuso R, Van Den Bosch L, Van Damme P. A toxic gain-of-function mechanism in C9orf72 ALS impairs the autophagy-lysosome pathway in neurons. Acta Neuropathol Commun 2023; 11:151. [PMID: 37723585 PMCID: PMC10506245 DOI: 10.1186/s40478-023-01648-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Motor neurons (MNs), which are primarily affected in amyotrophic lateral sclerosis (ALS), are a specialized type of neurons that are long and non-dividing. Given their unique structure, these cells heavily rely on transport of organelles along their axons and the process of autophagy to maintain their cellular homeostasis. It has been shown that disruption of the autophagy pathway is sufficient to cause progressive neurodegeneration and defects in autophagy have been associated with various subtypes of ALS, including those caused by hexanucleotide repeat expansions in the C9orf72 gene. A more comprehensive understanding of the dysfunctional cellular mechanisms will help rationalize the design of potent and selective therapies for C9orf72-ALS. METHODS In this study, we used induced pluripotent stem cell (iPSC)-derived MNs from C9orf72-ALS patients and isogenic control lines to identify the underlying mechanisms causing dysregulations of the autophagy-lysosome pathway. Additionally, to ascertain the potential impact of C9orf72 loss-of-function on autophagic defects, we characterized the observed phenotypes in a C9orf72 knockout iPSC line (C9-KO). RESULTS Despite the evident presence of dysfunctions in several aspects of the autophagy-lysosome pathway, such as disrupted lysosomal homeostasis, abnormal lysosome morphology, inhibition of autophagic flux, and accumulation of p62 in C9orf72-ALS MNs, we were surprised to find that C9orf72 loss-of-function had minimal influence on these phenotypes. Instead, we primarily observed impairment in endosome maturation as a result of C9orf72 loss-of-function. Additionally, our study shed light on the pathological mechanisms underlying C9orf72-ALS, as we detected an increased TBK1 phosphorylation at S172 in MNs derived from C9orf72 ALS patients. CONCLUSIONS Our data provides further insight into the involvement of defects in the autophagy-lysosome pathway in C9orf72-ALS and strongly indicate that those defects are mainly due to the toxic gain-of-function mechanisms underlying C9orf72-ALS.
Collapse
Affiliation(s)
- Jimmy Beckers
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium.
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium.
| | - Arun Kumar Tharkeshwar
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Department of Human Genetics, KU Leuven, Louvain, Belgium
| | - Laura Fumagalli
- Center for Molecular Neurology, Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Matilde Contardo
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Evelien Van Schoor
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
| | - Raheem Fazal
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Dietmar Rudolf Thal
- Laboratory of Neuropathology, Department of Imaging and Pathology, Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Department of Pathology, University Hospitals Leuven, Louvain, Belgium
| | - Siddharthan Chandran
- UK Dementia Research Institute, University of Edinburgh, Edinburgh, EH16 4SB, UK
- Centre for Clinical Brain Sciences, University of Edinburgh, Edinburgh, EH16 4SB, UK
| | - Renzo Mancuso
- Center for Molecular Neurology, Microglia and Inflammation in Neurological Disorders (MIND) Lab, VIB, Antwerp, Belgium
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
| | - Ludo Van Den Bosch
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium
| | - Philip Van Damme
- Department of Neurosciences, Experimental Neurology and Leuven Brain Institute (LBI), KU Louvain - University of Leuven, Leuven, Belgium.
- Center for Brain and Disease Research, Laboratory of Neurobiology, VIB, Leuven, Belgium.
- Department of Neurology, University Hospitals Leuven, Louvain, Belgium.
| |
Collapse
|
42
|
Liu XD, Jin T, Tao Y, Zhang M, Zheng HL, Liu QQ, Yang KH, Wei RN, Li SY, Huang Y, Xue ZY, Hao LY, Wang QH, Yang L, Lin FQ, Shen W, Tao YX, Wang HJ, Cao JL, Pan ZQ. DHX9/DNA-tandem repeat-dependent downregulation of ciRNA-Fmn1 in the dorsal horn is required for neuropathic pain. Acta Pharmacol Sin 2023; 44:1748-1767. [PMID: 37095197 PMCID: PMC10462628 DOI: 10.1038/s41401-023-01082-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/22/2023] [Indexed: 04/26/2023]
Abstract
Circular RNAs (ciRNAs) are emerging as new players in the regulation of gene expression. However, how ciRNAs are involved in neuropathic pain is poorly understood. Here, we identify the nervous-tissue-specific ciRNA-Fmn1 and report that changes in ciRNA-Fmn1 expression in spinal cord dorsal horn neurons play a key role in neuropathic pain after nerve injury. ciRNA-Fmn1 was significantly downregulated in ipsilateral dorsal horn neurons after peripheral nerve injury, at least in part because of a decrease in DNA helicase 9 (DHX9), which regulates production of ciRNA-Fmn1 by binding to DNA-tandem repeats. Blocking ciRNA-Fmn1 downregulation reversed nerve-injury-induced reductions in both the binding of ciRNA-Fmn1 to the ubiquitin ligase UBR5 and the level of ubiquitination of albumin (ALB), thereby abrogating the nerve-injury-induced increase of ALB expression in the dorsal horn and attenuating the associated pain hypersensitivities. Conversely, mimicking downregulation of ciRNA-Fmn1 in naïve mice reduced the UBR5-controlled ubiquitination of ALB, leading to increased expression of ALB in the dorsal horn and induction of neuropathic-pain-like behaviors in naïve mice. Thus, ciRNA-Fmn1 downregulation caused by changes in binding of DHX9 to DNA-tandem repeats contributes to the genesis of neuropathic pain by negatively modulating UBR5-controlled ALB expression in the dorsal horn.
Collapse
Affiliation(s)
- Xiao-Dan Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
- Department of Anesthesiology, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, 511518, China
| | - Tong Jin
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Yang Tao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ming Zhang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Hong-Li Zheng
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Qiao-Qiao Liu
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ke-Hui Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Ru-Na Wei
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Si-Yuan Li
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yue Huang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Zhou-Ya Xue
- Department of Anesthesiology, Yancheng Affiliated Hospital of Xuzhou Medical University, Yancheng, 224001, China
| | - Ling-Yun Hao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Qi-Hui Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Li Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fu-Qing Lin
- Department of Pain, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China
| | - Wen Shen
- Department of Pain, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, 221006, China
| | - Yuan-Xiang Tao
- Department of Anesthesiology, New Jersey Medical School, Rutgers, The State University of New Jersey, Newark, NJ, USA
| | - Hong-Jun Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| | - Zhi-Qiang Pan
- Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, 221004, China.
| |
Collapse
|
43
|
Nag S, Schneider JA. Limbic-predominant age-related TDP43 encephalopathy (LATE) neuropathological change in neurodegenerative diseases. Nat Rev Neurol 2023; 19:525-541. [PMID: 37563264 PMCID: PMC10964248 DOI: 10.1038/s41582-023-00846-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/26/2023] [Indexed: 08/12/2023]
Abstract
TAR DNA-binding protein 43 (TDP43) is a focus of research in late-onset dementias. TDP43 pathology in the brain was initially identified in amyotrophic lateral sclerosis and frontotemporal lobar degeneration, and later in Alzheimer disease (AD), other neurodegenerative diseases and ageing. Limbic-predominant age-related TDP43 encephalopathy (LATE), recognized as a clinical entity in 2019, is characterized by amnestic dementia resembling AD dementia and occurring most commonly in adults over 80 years of age. Neuropathological findings in LATE, referred to as LATE neuropathological change (LATE-NC), consist of neuronal and glial cytoplasmic TDP43 localized predominantly in limbic areas with or without coexisting hippocampal sclerosis and/or AD neuropathological change and without frontotemporal lobar degeneration or amyotrophic lateral sclerosis pathology. LATE-NC is frequently associated with one or more coexisting pathologies, mainly AD neuropathological change. The focus of this Review is the pathology, genetic risk factors and nature of the cognitive impairments and dementia in pure LATE-NC and in LATE-NC associated with coexisting pathologies. As the clinical and cognitive profile of LATE is currently not easily distinguishable from AD dementia, it is important to develop biomarkers to aid in the diagnosis of this condition in the clinic. The pathogenesis of LATE-NC should be a focus of future research to form the basis for the development of preventive and therapeutic strategies.
Collapse
Affiliation(s)
- Sukriti Nag
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| | - Julie A Schneider
- Rush Alzheimer's Disease Center, Department of Pathology (Neuropathology), Rush University Medical Center, Chicago, IL, USA.
| |
Collapse
|
44
|
Pinkerton M, Lourenco G, Pacheco MT, Halliday GM, Kiernan MC, Tan RH. Survival in sporadic ALS is associated with lower p62 burden in the spinal cord. J Neuropathol Exp Neurol 2023; 82:769-773. [PMID: 37414530 PMCID: PMC10440721 DOI: 10.1093/jnen/nlad051] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/08/2023] Open
Abstract
The autophagy marker p62 appears as a consistent component of pathological aggregates in amyotrophic lateral sclerosis (ALS) and its modulation to facilitate protein degradation has been proposed as a potential therapeutic target. Importantly, recent studies have implicated diffuse phosphorylated TDP-43 inclusions that are immuno-negative for p62 in more rapid disease, highlighting the need for better understanding of p62 involvement in ALS pathogenesis. The present study set out to assess p62 pathology in the motor neurons of 31 patients with sporadic ALS that had either a short (<2 years) or longer (4-7 years) disease duration to determine its association with pTDP-43 pathology, motor neuron loss, and survival in sporadic disease. Our results identified significantly more cytoplasmic p62 aggregates in the spinal cord of patients with a shorter survival. Disease duration demonstrated a negative association with p62 burden and density of remaining motor neurons in the spinal cord, suggesting that survival in sporadic ALS is associated with the successful clearance of lower motor neurons with p62 aggregates. These findings implicate the autophagy pathway in ALS survival and provide support for further study of p62 as a potential prognostic biomarker in ALS.
Collapse
Affiliation(s)
- Monica Pinkerton
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Guinevere Lourenco
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | | | - Glenda M Halliday
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| | - Matthew C Kiernan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, New South Wales, Australia
| | - Rachel H Tan
- Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Faculty of Medicine and Health, School of Medical Sciences, University of Sydney, Camperdown, New South Wales, Australia
| |
Collapse
|
45
|
De Marchi F, Tondo G, Corrado L, Menegon F, Aprile D, Anselmi M, D’Alfonso S, Comi C, Mazzini L. Neuroinflammatory Pathways in the ALS-FTD Continuum: A Focus on Genetic Variants. Genes (Basel) 2023; 14:1658. [PMID: 37628709 PMCID: PMC10454262 DOI: 10.3390/genes14081658] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/18/2023] [Accepted: 08/18/2023] [Indexed: 08/27/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal dementia (FDT) are progressive neurodegenerative disorders that, in several cases, overlap in clinical presentation, and genetic and pathological disease mechanisms. About 10-15% of ALS cases and up to 40% of FTD are familial, usually with dominant traits. ALS and FTD, in several cases, share common gene mutations, such as in C9ORF72, TARDBP, SQSTM-1, FUS, VCP, CHCHD10, and TBK-1. Also, several mechanisms are involved in ALS and FTD pathogenesis, such as protein misfolding, oxidative stress, and impaired axonal transport. In addition, neuroinflammation and neuroinflammatory cells, such as astrocytes, oligodendrocytes, microglia, and lymphocytes and, overall, the cellular microenvironment, have been proposed as pivotal players in the pathogenesis the ALS-FTD spectrum disorders. This review overviews the current evidence regarding neuroinflammatory markers in the ALS/FTD continuum, focusing on the neuroinflammatory pathways involved in the genetic cases, moving from post-mortem reports to in vivo biofluid and neuroimaging data. We further discuss the potential link between genetic and autoimmune disorders and potential therapeutic implications.
Collapse
Affiliation(s)
- Fabiola De Marchi
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| | - Giacomo Tondo
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Lucia Corrado
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Federico Menegon
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Davide Aprile
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
| | - Matteo Anselmi
- Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy; (F.M.); (M.A.)
| | - Sandra D’Alfonso
- Department of Health Sciences, University of Eastern Piedmont, 28100 Novara, Italy; (L.C.); (S.D.)
| | - Cristoforo Comi
- Neurology Unit, Department of Translational Medicine, S. Andrea Hospital, University of Piemonte Orientale, 13100 Vercelli, Italy; (G.T.); (D.A.); (C.C.)
- Interdisciplinary Research Center of Autoimmune Diseases (IRCAD), University of Piemonte Orientale, 28100 Novara, Italy
| | - Letizia Mazzini
- ALS Center, Neurology Unit, Department of Translational Medicine, University of Piemonte Orientale, 28100 Novara, Italy;
| |
Collapse
|
46
|
Willemse SW, Harley P, van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, van Damme P, Ingre C, van Rheenen W, Veldink JH, Kiernan MC, Al-Chalabi A, van den Berg LH, Fratta P, van Es MA. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry 2023; 94:649-656. [PMID: 36737245 PMCID: PMC10359588 DOI: 10.1136/jnnp-2022-330504] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - Koen C Demaegd
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip van Damme
- Department of Neurology, KU Leuven Hospital, Leuven, Belgium
- Laboratory of Neurobiology, VIB KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
47
|
Seidel M, Rajkumar S, Steffke C, Noeth V, Agarwal S, Roger K, Lipecka J, Ludolph A, Guerrera CI, Boeckers T, Catanese A. Propranolol reduces the accumulation of cytotoxic aggregates in C9orf72-ALS/FTD in vitro models. CURRENT RESEARCH IN NEUROBIOLOGY 2023; 5:100105. [PMID: 37576491 PMCID: PMC10412779 DOI: 10.1016/j.crneur.2023.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 06/23/2023] [Accepted: 07/26/2023] [Indexed: 08/15/2023] Open
Abstract
Mutations in the C9orf72 gene are the most common cause of familial amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). The pathogenetic mechanisms linked to this gene are a direct consequence of an aberrant intronic expansion of a GGGGCC hexanucleotide located between the 1a and 1b non-coding exons, which can be transcribed to form cytotoxic RNA foci or even translated into aggregation-prone dipeptide repeat proteins. Importantly, the abnormal length of these repeats affects also the expression levels of C9orf72 itself, which suggests haploinsufficiency as additional pathomechanism. Thus, it appears that both toxic gain of function and loss of function are distinct but still coexistent features contributing to the insurgence of the disease in case of C9orf72 mutations. In this study, we aimed at identifying a strategy to address both aspects of the C9orf72-related pathobiochemistry and provide proof-of-principle information for a better understanding of the mechanisms leading to neuronal loss. By using primary neurons overexpressing toxic poly(GA), the most abundant protein product of the GGGGCC repeats, we found that the antiarrhythmic drug propranolol could efficiently reduce the accumulation of aberrant aggregates and increase the survival of C9orf72-related cultures. Interestingly, the improved catabolism appeared to not depend on major degradative pathways such as autophagy and the proteasome. By analyzing the proteome of poly(GA)-expressing neurons after exposure to propranolol, we found that the drug increased lysosomal degradation through a mechanism directly involving C9orf72 protein, whose levels were increased after treatment. Further confirmation of the beneficial effect of the beta blocker on aggregates' accumulation and survival of hiPSC-derived C9orf72-mutant motoneurons strengthened the finding that addressing both facets of C9orf72 pathology might represent a valid strategy for the treatment of these ALS/FTD cases.
Collapse
Affiliation(s)
- Mira Seidel
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Sandeep Rajkumar
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Christina Steffke
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
| | - Vivien Noeth
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Shreya Agarwal
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- International Graduate School in Molecular Medicine, Ulm University, Ulm, Germany
| | - Kevin Roger
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Joanna Lipecka
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Albert Ludolph
- Department of Neurology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Chiara Ida Guerrera
- Proteomics Platform Necker, Université Paris Cité - Structure Fédérative de Recherche Necker, INSERM US24/CNRS UAR3633, Paris, France
| | - Tobias Boeckers
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| | - Alberto Catanese
- Institute of Anatomy and Cell Biology, Ulm University School of Medicine, Ulm, Germany
- Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), Ulm site, Ulm, Germany
| |
Collapse
|
48
|
Antoniani F, Cimino M, Mediani L, Vinet J, Verde EM, Secco V, Yamoah A, Tripathi P, Aronica E, Cicardi ME, Trotti D, Sterneckert J, Goswami A, Carra S. Loss of PML nuclear bodies in familial amyotrophic lateral sclerosis-frontotemporal dementia. Cell Death Discov 2023; 9:248. [PMID: 37454169 DOI: 10.1038/s41420-023-01547-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/20/2023] [Accepted: 07/04/2023] [Indexed: 07/18/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) and Frontotemporal Dementia (FTD) are two neurodegenerative disorders that share genetic causes and pathogenic mechanisms. The critical genetic players of ALS and FTD are the TARDBP, FUS and C9orf72 genes, whose protein products, TDP-43, FUS and the C9orf72-dipeptide repeat proteins, accumulate in form of cytoplasmic inclusions. The majority of the studies focus on the understanding of how cells control TDP-43 and FUS aggregation in the cytoplasm, overlooking how dysfunctions occurring at the nuclear level may influence the maintenance of protein solubility outside of the nucleus. However, protein quality control (PQC) systems that maintain protein homeostasis comprise a cytoplasmic and a nuclear arm that are interconnected and share key players. It is thus conceivable that impairment of the nuclear arm of the PQC may have a negative impact on the cytoplasmic arm of the PQC, contributing to the formation of the cytoplasmic pathological inclusions. Here we focused on two stress-inducible condensates that act as transient deposition sites for misfolding-prone proteins: Promyelocytic leukemia protein (PML) nuclear bodies (PML-NBs) and cytoplasmic stress granules (SGs). Upon stress, PML-NBs compartmentalize misfolded proteins, including defective ribosomal products (DRiPs), and recruit chaperones and proteasomes to promote their nuclear clearance. SGs transiently sequester aggregation-prone RNA-binding proteins linked to ALS-FTD and mRNAs to attenuate their translation. We report that PML assembly is impaired in the human brain and spinal cord of familial C9orf72 and FUS ALS-FTD cases. We also show that defective PML-NB assembly impairs the compartmentalization of DRiPs in the nucleus, leading to their accumulation inside cytoplasmic SGs, negatively influencing SG dynamics. Although it is currently unclear what causes the decrease of PML-NBs in ALS-FTD, our data highlight the existence of a cross-talk between the cytoplasmic and nuclear PQC systems, whose alteration can contribute to SG accumulation and cytoplasmic protein aggregation in ALS-FTD.
Collapse
Affiliation(s)
- Francesco Antoniani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Cimino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mediani
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Jonathan Vinet
- Centro Interdipartimentale Grandi Strumenti (CIGS), University of Modena and Reggio Emilia, Modena, Italy
| | - Enza M Verde
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Valentina Secco
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Alfred Yamoah
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Priyanka Tripathi
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany
| | - Eleonora Aronica
- Amsterdam UMC location University of Amsterdam, Department of (Neuro)Pathology, Amsterdam Neuroscience, Meibergdreef 9, Amsterdam, the Netherlands
| | - Maria E Cicardi
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Davide Trotti
- Weinberg ALS Center, Vickie and Jack Farber Institute for Neuroscience, Department of Neuroscience, Thomas Jefferson University, Philadelphia, PA, USA
| | - Jared Sterneckert
- Center for Regenerative Therapies TU Dresden, Technische Universität Dresden, Dresden, Germany
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany
| | - Anand Goswami
- Institute of Neuropathology, RWTH Aachen University Hospital, Aachen, Germany.
- Department of Neurology, Center for Motor Neuron Biology and Disease, Columbia University, 10032, New York, NY, USA.
- Department of Neurology, Eleanor and Lou Gehrig ALS Center, Columbia University, 10032, New York, NY, USA.
| | - Serena Carra
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
- Medical Faculty Carl Gustav Carus of TU Dresden, Dresden, Germany.
| |
Collapse
|
49
|
Zitser J, Brown EG, Ostrem JL, Tanner CM, Rowe JB, Nguyen V, Rosen H, Geschwind MD, Bledsoe IO. Parkinsonism of uncertain clinical significance (PUCS): A proposed new diagnostic entity. J Neurol Sci 2023; 451:120696. [PMID: 37352617 DOI: 10.1016/j.jns.2023.120696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 05/22/2023] [Accepted: 05/25/2023] [Indexed: 06/25/2023]
Affiliation(s)
- Jennifer Zitser
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA; Movement Disorders Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Israel.
| | - Ethan G Brown
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Jill L Ostrem
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Caroline M Tanner
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA; Movement Disorders Unit, Department of Neurology, Tel Aviv Sourasky Medical Center, affiliated to the Sackler Faculty of Medicine, Tel-Aviv University, Israel; San Francisco VA Health Care System, San Francisco, CA, USA
| | - James B Rowe
- Department of Clinical Neurosciences, Cambridge University Hospitals NHS Foundation Trust and Medical Research Council Cognition and Brain Sciences Unit, University of Cambridge, Cambridge, United Kingdom
| | - Vy Nguyen
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Howie Rosen
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Michael D Geschwind
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA
| | - Ian O Bledsoe
- Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, USA
| |
Collapse
|
50
|
Maier PM, Iggena D, Meyer T, Finke C, Ploner CJ. Memory-guided navigation in amyotrophic lateral sclerosis. J Neurol 2023:10.1007/s00415-023-11753-8. [PMID: 37154895 DOI: 10.1007/s00415-023-11753-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 04/29/2023] [Indexed: 05/10/2023]
Abstract
BACKGROUND Previous studies have yielded inconsistent results about hippocampal involvement in non-demented patients with amyotrophic lateral sclerosis (ALS). We hypothesized that testing of memory-guided spatial navigation i.e., a highly hippocampus-dependent behaviour, might reveal behavioural correlates of hippocampal dysfunction in non-demented ALS patients. METHODS We conducted a prospective study of spatial cognition in 43 non-demented ALS outpatients (11f, 32 m, mean age 60.0 years, mean disease duration 27.0 months, mean ALSFRS-R score 40.0) and 43 healthy controls (14f, 29 m, mean age 57.0 years). Participants were tested with a virtual memory-guided navigation task derived from animal research ("starmaze") that has previously been used in studies of hippocampal function. Participants were further tested with neuropsychological tests of visuospatial memory (SPART, 10/36 Spatial Recall Test), fluency (5PT, five-point test) and orientation (PTSOT, Perspective Taking/Spatial Orientation Test). RESULTS Patients successfully learned and navigated the starmaze from memory, both in conditions that forced memory of landmarks (success: patients 50.7%, controls 47.7%, p = 0.786) and memory of path sequences (success: patients 96.5%, controls 94.0%, p = 0.937). Measures of navigational efficacy (latency, path error and navigational uncertainty) did not differ between groups (p ≥ 0.546). Likewise, SPART, 5PT and PTSOT scores did not differ between groups (p ≥ 0.238). CONCLUSIONS This study found no behavioural correlate for hippocampal dysfunction in non-demented ALS patients. These findings support the view that the individual cognitive phenotype of ALS may relate to distinct disease subtypes rather than being a variable expression of the same underlying condition.
Collapse
Affiliation(s)
- Patrizia M Maier
- Department of Neurology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Deetje Iggena
- Department of Neurology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Thomas Meyer
- Department of Neurology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
| | - Carsten Finke
- Department of Neurology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany
- Faculty of Philosophy, Berlin School of Mind and Brain, Humboldt-Universität zu Berlin, Berlin, Germany
| | - Christoph J Ploner
- Department of Neurology, Charité - Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
| |
Collapse
|