1
|
Cardoso VDO, Bistaffa MJ, Sterman RG, Lima LLD, Toldo GS, Cancino-Bernardi J, Zucolotto V. Nanomedicine Innovations for Lung Cancer Diagnosis and Therapy. ACS APPLIED MATERIALS & INTERFACES 2025; 17:13197-13220. [PMID: 40045524 PMCID: PMC11891907 DOI: 10.1021/acsami.4c16840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 12/13/2024] [Accepted: 12/16/2024] [Indexed: 03/12/2025]
Abstract
Lung cancer remains a challenge within the realm of oncology. Characterized by late-stage diagnosis and resistance to conventional treatments, the currently available therapeutic strategies encompass surgery, radiotherapy, chemotherapy, immunotherapy, and biological therapy; however, overall patient survival remains suboptimal. Nanotechnology has ushered in a new era by offering innovative nanomaterials with the potential to precisely target cancer cells while sparing healthy tissues. It holds the potential to reshape the landscape of cancer management, offering hope for patients and clinicians. The assessment of these nanotechnologies follows a rigorous evaluation process similar to that applied to chemical drugs, which includes considerations of their pharmacokinetics, pharmacodynamics, toxicology, and clinical effectiveness. However, because of the characteristics of nanoparticles, standard toxicological tests require modifications to accommodate their unique characteristics. Effective therapeutic strategies demand a profound understanding of the disease and consideration of clinical outcomes, physicochemical attributes of nanomaterials, nanobiointeractions, nanotoxicity, and regulatory compliance to ensure patient safety. This review explores the promise of nanomedicine in lung cancer treatment by capitalizing on its unique physicochemical properties. We address the multifaceted challenges of lung cancer and its tumor microenvironment and provide an overview of recent developments in nanoplatforms for early diagnosis and treatment that can enhance patient outcomes and overall quality of life.
Collapse
Affiliation(s)
- Valéria
Maria de Oliveira Cardoso
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Maria Julia Bistaffa
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Raquel González Sterman
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Lorena Leticia
Peixoto de Lima
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
| | - Gustavo Silveira Toldo
- Chemistry
Department, Laboratory in Bioanalytical of Nanosystems, Faculty of
Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Juliana Cancino-Bernardi
- Chemistry
Department, Laboratory in Bioanalytical of Nanosystems, Faculty of
Philosophy, Sciences and Letters of Ribeirão Preto, University of São Paulo, 14040-901 Ribeirão Preto, São Paulo, Brazil
| | - Valtencir Zucolotto
- Nanomedicine
and Nanotoxicology Group, São Carlos Institute of Physics, University of São Paulo, 13560-970 São Carlos, São Paulo, Brazil
- Comprehensive
Center for Precision Oncology, C2PO, University of São Paulo, São Paulo 01246-000, Brazil
| |
Collapse
|
2
|
Cognigni V, Pecci F, Lupi A, Pinterpe G, De Filippis C, Felicetti C, Cantini L, Berardi R. The Landscape of ALK-Rearranged Non-Small Cell Lung Cancer: A Comprehensive Review of Clinicopathologic, Genomic Characteristics, and Therapeutic Perspectives. Cancers (Basel) 2022; 14:4765. [PMID: 36230686 PMCID: PMC9563286 DOI: 10.3390/cancers14194765] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/22/2022] [Accepted: 09/26/2022] [Indexed: 11/17/2022] Open
Abstract
During the last decade, the identification of oncogenic driver mutations and the introduction of tyrosine kinase inhibitors (TKIs) in daily clinical practice have substantially revamped the therapeutic approach of oncogene-addicted, non-small cell lung cancer (NSCLC). Rearrangements in the anaplastic lymphoma kinase (ALK) gene are detected in around 3-5% of all NSCLC patients. Following the promising results of Crizotinib, a first-generation ALK inhibitor (ALK-i), other second-generation and more recently third-generation TKIs have been developed and are currently a landmark in NSCLC treatment, leading to a significant improvement in patients prognosis. As clinical trials have already demonstrated high efficacy of each ALK-i, both in terms of systemic and intracranial disease control, comparative studies between second and third generation ALK-i are still lacking, and primary or secondary ALK-i resistance inevitably limit their efficacy. Resistance to ALK-i can be due to ALK-dependent or ALK-independent mechanisms, including the activation of bypass signaling pathways and histological transformation: these findings may play an important role in the future to select patients' subsequent therapy. This review aims to provide an overview of underlying molecular alterations of ALK-i resistance and point out promising role of liquid biopsy in predicting tumor response and monitoring resistance mutations. The purpose of this review is also to summarize current approval for ALK-rearranged NSCLC patients, to help clinicians in making decisions on therapeutic sequence, and to deepen the role of clinicopathological and genomic characteristics influencing patients' prognosis during treatment with ALK-i.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Rossana Berardi
- Clinica Oncologica, Università Politecnica delle Marche, AOU Ospedali Riuniti, 60126 Ancona, Italy
| |
Collapse
|
3
|
Ma HC, Liu YH, Ding KL, Liu YF, Zhao WJ, Zhu YJ, Chang XS, Chen YD, Xiao ZZ, Yu YY, Zhou R, Zhang HB. Comparative efficacy and safety of first-line treatments for advanced non-small cell lung cancer with ALK-rearranged: a meta-analysis of clinical trials. BMC Cancer 2021; 21:1278. [PMID: 34836510 PMCID: PMC8620528 DOI: 10.1186/s12885-021-08977-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/30/2021] [Indexed: 11/28/2022] Open
Abstract
Background Whereas there are many pharmacological interventions prescribed for patients with advanced anaplastic lymphoma kinase (ALK)- rearranged non-small cell lung cancer (NSCLC), comparative data between novel generation ALK-tyrosine kinase inhibitors (TKIs) remain scant. Here, we indirectly compared the efficacy and safety of first-line systemic therapeutic options used for the treatment of ALK-rearranged NSCLC. Methods We included all phase 2 and 3 randomised controlled trials (RCTs) comparing any two or three treatment options. Eligible studies reported at least one of the following outcomes: progression free survival (PFS), overall survival (OS), objective response rate (ORR), or adverse events of grade 3 or higher (Grade ≥ 3 AEs). Subgroup analysis was conducted according to central nervous system (CNS) metastases. Results A total of 9 RCTs consisting of 2484 patients with 8 treatment options were included in the systematic review. Our analysis showed that alectinib (300 mg and 600 mg), brigatinib, lorlatinib and ensartinib yielded the most favorable PFS. Whereas there was no significant OS or ORR difference among the ALK-TKIs. According to Bayesian ranking profiles, lorlatinib, alectinib 600 mg and alectinib 300 mg had the best PFS (63.7%), OS (35.9%) and ORR (37%), respectively. On the other hand, ceritinib showed the highest rate of severe adverse events (60%). Conclusion Our analysis indicated that alectinib and lorlatinib might be associated with the best therapeutic efficacy in first-line treatment for major population of advanced NSCLC patients with ALK-rearrangement. However, since there is little comparative evidence on the treatment options, there is need for relative trials to fully determine the best treatment options as well as the rapidly evolving treatment landscape. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-08977-0.
Collapse
Affiliation(s)
- Hao-Chuan Ma
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yi-Hong Liu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Kai-Lin Ding
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yu-Feng Liu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Wen-Jie Zhao
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Yan-Juan Zhu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.,Guangdong Provincial Key Laboratory, of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China
| | - Xue-Song Chang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Ya-Dong Chen
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Zhen-Zhen Xiao
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Ya-Ya Yu
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China
| | - Rui Zhou
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China.,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Hai-Bo Zhang
- Department of Oncology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Traditional Chinese Medicine, Guangzhou, 510120, China. .,The Second Clinical Medical School, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou University of Chinese Medicine, Guangzhou, 510120, China. .,Guangdong Provincial Key Laboratory, of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou, 510120, China. .,State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China.
| |
Collapse
|
4
|
Dalurzo ML, Avilés-Salas A, Soares FA, Hou Y, Li Y, Stroganova A, Öz B, Abdillah A, Wan H, Choi YL. Testing for EGFR Mutations and ALK Rearrangements in Advanced Non-Small-Cell Lung Cancer: Considerations for Countries in Emerging Markets. Onco Targets Ther 2021; 14:4671-4692. [PMID: 34511936 PMCID: PMC8420791 DOI: 10.2147/ott.s313669] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 08/08/2021] [Indexed: 12/24/2022] Open
Abstract
The treatment of patients with advanced non-small-cell lung cancer (NSCLC) in recent years has been increasingly guided by biomarker testing. Testing has centered on driver genetic alterations involving the epidermal growth factor receptor (EGFR) and anaplastic lymphoma kinase (ALK) rearrangements. The presence of these mutations is predictive of response to targeted therapies such as EGFR tyrosine kinase inhibitors (TKIs) and ALK TKIs. However, there are substantial challenges for the implementation of biomarker testing, particularly in emerging countries. Understanding the barriers to testing in NSCLC will be key to improving molecular testing rates worldwide and patient outcomes as a result. In this article, we review EGFR mutations and ALK rearrangements as predictive biomarkers for NSCLC, discuss a selection of appropriate tests and review the literature with respect to the global uptake of EGFR and ALK testing. To help improve testing rates and unify procedures, we review our experiences with biomarker testing in China, South Korea, Russia, Turkey, Brazil, Argentina and Mexico, and propose a set of recommendations that pathologists from emerging countries can apply to assist with the diagnosis of NSCLC.
Collapse
Affiliation(s)
- Mercedes L Dalurzo
- Department of Pathology, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | | | | | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, People’s Republic of China
| | - Yuan Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, People’s Republic of China
| | - Anna Stroganova
- N.N. Blokhin National Medical Research Centre of Oncology, Russian Academy of Medical Sciences, Moscow, Russia
| | - Büge Öz
- Cerrahpaşa School of Medicine, Istanbul University-Cerrahpaşa, Istanbul, Turkey
| | - Arif Abdillah
- Takeda Pharmaceuticals International AG – Singapore Branch, Singapore, Singapore
| | - Hui Wan
- Takeda Pharmaceuticals International AG – Singapore Branch, Singapore, Singapore
| | - Yoon-La Choi
- Department of Pathology and Translational Genomics, Samsung Medical Centre, Sungkyunkwan University School of Medicine, Seoul, South Korea
| |
Collapse
|
5
|
Raad S, Hanna N, Jalal S, Bendaly E, Zhang C, Nuguru S, Oueini H, Diab K. Endobronchial Ultrasound-Guided Transbronchial Needle Aspiration Use for Subclassification and Genotyping of Lung Non-Small-Cell Carcinoma. South Med J 2019; 111:484-488. [PMID: 30075474 DOI: 10.14423/smj.0000000000000846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
OBJECTIVES Endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA) is the primary method for the diagnosis and staging of lung cancer. The purpose of this study was to assess the yield of EBUS-TBNA in the subtyping and genotyping of lung adenocarcinoma. METHODS Sixty-nine patients at Indiana University Hospital and Sidney and Lois Eskenazi Hospital with possible or confirmed lung adenocarcinoma underwent EBUS-TBNA using a 21-gauge Olympus needle without suction. Samples were sent for molecular testing after rapid onsite specimen evaluation. A total of 6 to 10 passes were placed in a cell block. RESULTS Sixty-nine samples from patients with non-small-cell lung cancer were sent for molecular testing for epidermal growth factor receptor. Results were obtained in all of the patients. Mutations were found in three patients (4.3%). Fifty-eight samples were sent for V-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog (100% yield), 10 of which had mutations (17.2%). Fifty-one samples were sent for proto-oncogene tyrosine-protein kinase ROS testing (1 [7.8%] mutant). Tissue samples were inadequate in three patients (94.1% yield). Sixty-three samples were sent for anaplastic lymphoma receptor tyrosine kinase testing (3 [4.8%] mutant, 6 [9.5%] inadequate, 90.5% yield). CONCLUSIONS EBUS-TBNA with a 21-gauge needle is appropriate for the analysis of multiple mutations and the genotyping of lung adenocarcinoma.
Collapse
Affiliation(s)
- Samih Raad
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Nasser Hanna
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Shadia Jalal
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Edmond Bendaly
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Chen Zhang
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Shashank Nuguru
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Houssam Oueini
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| | - Khalil Diab
- Department of Medicine, the Division of Hematology and Oncology, Indiana University School of Medicine, Indianapolis, Marion General Hospital Cancer Center, Marion, the Department of Pathology and Laboratory Medicine, Indiana University School of Medicine, Indianapolis, the Pulmonary Medicine, Parkview Hospital, Fort Wayne, and the Division of Pulmonary, Critical Care, Sleep, and Occupational Medicine, Indiana University School of Medicine, Indianapolis, IN
| |
Collapse
|
6
|
Girard N, Cozzone D, de Leotoing L, Tournier C, Vainchtock A, Tehard B, Cortot AB. Extra cost of brain metastases (BM) in patients with non-squamous non-small cell lung cancer (NSCLC): a French national hospital database analysis. ESMO Open 2018; 3:e000414. [PMID: 30233822 PMCID: PMC6135444 DOI: 10.1136/esmoopen-2018-000414] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/12/2018] [Accepted: 07/13/2018] [Indexed: 11/03/2022] Open
Abstract
Purpose To assess the incremental cost associated with the management of patients with primary non-squamous non-small cell lung cancer (NSCLC) with brain metastases at the time of diagnosis. Methods Data were extracted from the French Hospital medical information database (Programme de Médicalisation des Systèmes d'Information (PMSI)). Patients with non-squamous NSCLC were identified through a diagnosis of lung cancer and a prescription of bevacizumab or pemetrexed. All such patients hospitalised with lung cancer for the first time in 2013 and with metastases identified at the first hospitalisation were eligible. Two cohorts were identified, one with brain metastases (group B: n=971) and one with metastases at other sites (group A: n=1529). For each patient, total in-hospital medical resource consumption associated with the initial hospitalisation in 2013 and with any follow-up stays in the following 24 months was documented. Costs were attributed from official French national tariffs and expressed in 2017 euros. Results The mean number of hospitalisations per patient in the 24-moth follow-up period was 17 in group A and 21 in group B. >99% of patients in both groups received chemotherapy. 58% of patients in group B and 13% in group A were managed by radiotherapy. 37% in group B and 24% in group A received palliative care. The associated cost was €2979 per patient-month for patients in group B and €2426 for patients in group A, representing a differential cost of €553 per month. Radiotherapy (+€164/month) and palliative care (+€130/month) were the principal drivers of the incremental cost. Conclusions The presence of brain metastases at the time of diagnosis of non-squamous NSCLC carries a significant burden, and ways of lowering this burden are needed.
Collapse
Affiliation(s)
- Nicolas Girard
- Université de Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Institut Curie, Paris, France
| | | | | | | | | | | | - Alexis B Cortot
- CHU Lille, Thoracic Oncology Department, Univ. Lille, Lille, France
| |
Collapse
|
7
|
Lee DH, Tsao MS, Kambartel KO, Isobe H, Huang MS, Barrios CH, Khattak A, de Marinis F, Kothari S, Arunachalam A, Cao X, Burke T, Valladares A, de Castro J. Molecular testing and treatment patterns for patients with advanced non-small cell lung cancer: PIvOTAL observational study. PLoS One 2018; 13:e0202865. [PMID: 30148862 PMCID: PMC6110501 DOI: 10.1371/journal.pone.0202865] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 08/10/2018] [Indexed: 01/03/2023] Open
Abstract
Background The goals of this multinational retrospective study were to describe treatment patterns and survival outcomes by receipt of molecular testing and molecular status of patients with advanced non-small cell lung cancer (NSCLC). Methods This chart review study, conducted in Italy, Spain, Germany, Australia, Japan, Korea, Taiwan, and Brazil, included 1440 patients with newly diagnosed advanced (stage IIIB/IV) NSCLC initiating systemic therapy from January 2011 through June 2013, with follow-up until July 2016. We evaluated treatment patterns and survival by histology, line of therapy, molecular testing, and test results for epidermal growth factor receptor (EGFR) mutation and/or anaplastic lymphoma kinase (ALK) rearrangement. Country-specific data were analyzed descriptively and presented as ranges (lowest to highest country). Overall survival (OS) was estimated using Kaplan-Meier method. Results Patients with ≥1 molecular test varied from 43% (Brazil) to 85% (Taiwan). Numerically greater proportions of patients who were female, Asian, or never/former-smokers, and those with nonsquamous histology or stage-IV NSCLC, received a test. Testing was common for nonsquamous NSCLC (54%, Brazil, to 91%, Taiwan), with positive EGFR and ALK tests from 17% (Brazil and Spain) to 67% (Taiwan) and from 0% (Brazil) to 60% (Taiwan), respectively. First-line treatment regimens for nonsquamous NSCLC with positive EGFR/ALK tests included targeted therapy for 30% (Germany) to 89% (Japan); with negative/inconclusive test results, platinum-based combinations for 88% (Japan) to 98% (Brazil); and if not tested, platinum-based combinations for 80% (Australia) to 95% (Japan), except in Taiwan, where 44% received single agents. Median OS from first-line therapy initiation was 10.0 (Japan) to 26.7 (Taiwan) months for those tested and 7.6 (Australia/Brazil) to 19.3 (Taiwan) months for those not tested. Conclusions We observed substantial variation among countries in testing percentages, treatment patterns, and survival outcomes. Efforts to optimize molecular testing rates should be implemented in the context of each country’s health care scenario.
Collapse
Affiliation(s)
- Dae Ho Lee
- Asan Medical Center, Seoul, Republic of Korea
| | - Ming-Sound Tsao
- University Health Network, Princess Margaret Cancer Centre, Toronto, Canada
| | | | - Hiroshi Isobe
- KKR Sapporo Medical Center, Sapporo-shi, Hokkaido, Japan
| | - Ming-Shyan Huang
- Kaohsiung Medical University Hospital, College of Medicine, Kaohsiung Medical University, Taiwan
| | | | - Adnan Khattak
- Fiona Stanley Hospital, Murdoch, Western Australia, Australia
| | | | - Smita Kothari
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Ashwini Arunachalam
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., Kenilworth, NJ, United States of America
- * E-mail:
| | - Xiting Cao
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., Kenilworth, NJ, United States of America
| | - Thomas Burke
- Center for Observational and Real World Evidence (CORE), Merck & Co., Inc., Kenilworth, NJ, United States of America
| | | | | |
Collapse
|
8
|
A novel EGFR-TKI inhibitor (cAMP-H 3BO 3complex) combined with thermal therapy is a promising strategy to improve lung cancer treatment outcomes. Oncotarget 2017; 8:56327-56337. [PMID: 28915593 PMCID: PMC5593564 DOI: 10.18632/oncotarget.17628] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2017] [Accepted: 04/21/2017] [Indexed: 12/20/2022] Open
Abstract
Purpose Although EGFR-TKIs (epidermal growth factor receptor tyrosine kinase inhibitors) induce favorable responses as first-line non-small cell lung cancer treatments, drug resistance remains a serious problem. Meanwhile, thermal therapy also shows promise as a cancer therapy strategy. Here we combine a novel EGFR-TKI treatment with thermal therapy to improve lung cancer treatment outcomes. Results The results suggest that the cAMP-H3BO3 complex effectively inhibits EGFR auto-phosphorylation, while inducing apoptosis and cell cycle arrest in vitro. Compared to the negative control, tumor growth was significantly suppressed in mice treated with oxidative phosphorylation uncoupler thyroxine sodium and either cAMP-H3BO3 complex or cAMP-H3BO3 complex (P < 0.05). Moreover, the body temperature increase induced by treatment with thyroxine sodium inhibited tumor growth. Immunohistochemical analyses showed that A549 cell apoptosis was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in the other groups. Moreover,Ca2+ content analysis showed that the Ca2+ content of tumor tissue was significantly higher in the cAMP-H3BO3 complex plus thyroxine sodium treatment group than in other groups. Materials and Methods Inhibition of EGFR auto-phosphorylation by cAMP and cAMP-H3BO3 complex was studied using autoradiography and western blot. The antitumor activity of the novel EGFR inhibitor (cAMP-H3BO3 complex) with or without an oxidative phosphorylation uncoupler (thyroxine sodium) was investigated in vitro and in a nude mouse xenograft lung cancer model incorporating human A549 cells. Conclusions cAMP-H3BO3 complex is a novel EGFR-TKI. Combination therapy using cAMP-H3BO3 with thyroxine sodium-induced thermal therapy may improve lung cancer treatment outcomes.
Collapse
|