1
|
Jhaveri NS, Mastronardo MK, Collins J, Andersen EC. Development of a size-separation technique to isolate Caenorhabditis elegans embryos using mesh filters. PLoS One 2025; 20:e0318143. [PMID: 40273127 PMCID: PMC12021249 DOI: 10.1371/journal.pone.0318143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Accepted: 03/14/2025] [Indexed: 04/26/2025] Open
Abstract
The free-living nematode Caenorhabditis elegans has been routinely used to study gene functions, genetic interactions, and conserved signaling pathways. Most experiments require that the animals are synchronized to be at the same specific developmental stage. Bleach synchronization is traditionally used to obtain a population of staged embryos, but the method can have harmful effects on the embryos. The physical separation of differently sized animals is preferred but often difficult to perform because some developmental stages are the same sizes as others. Microfluidic device filters have been used as alternatives, but they are expensive and require customization to scale up the preparation of staged animals. Here, we present a protocol for the synchronization of embryos using mesh filters. Using filtration, we obtained a higher yield of embryos per plate than using the standard bleach synchronization protocol and at a scale beyond microfluidic devices. Importantly, filtration has no deleterious effects on downstream larval development assays. In conclusion, we have exploited the differences in the sizes of C. elegans developmental stages to isolate embryo cultures suitable for use in high-throughput assays.
Collapse
Affiliation(s)
- Nikita S. Jhaveri
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Maya K. Mastronardo
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - J.B. Collins
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Erik C. Andersen
- Department of Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
2
|
Lanier VJ, White AM, Faumont S, Lockery SR. Theory and practice of using cell strainers to sort Caenorhabditis elegans by size. PLoS One 2023; 18:e0280999. [PMID: 36757993 PMCID: PMC9910635 DOI: 10.1371/journal.pone.0280999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 01/12/2023] [Indexed: 02/10/2023] Open
Abstract
The nematode Caenorhabditis elegans is a model organism widely used in basic, translational, and industrial research. C. elegans development is characterized by five morphologically distinct stages, including four larval stages and the adult stage. Stages differ in a variety of aspects including size, gene expression, physiology, and behavior. Enrichment for a particular developmental stage is often the first step in experimental design. When many hundreds of worms are required, the standard methods of enrichment are to grow a synchronized population of hatchlings for a fixed time, or to sort a mixed population of worms according to size. Current size-sorting methods have higher throughput than synchronization and avoid its use of harsh chemicals. However, these size-sorting methods currently require expensive instrumentation or custom microfluidic devices, both of which are unavailable to the majority C. elegans laboratories. Accordingly, there is a need for inexpensive, accessible sorting strategies. We investigated the use of low-cost, commercially available cell strainers to filter C. elegans by size. We found that the probability of recovery after filtration as a function of body size for cell strainers of three different mesh sizes is well described by logistic functions. Application of these functions to predict filtration outcomes revealed non-ideal properties of filtration of worms by cell strainers that nevertheless enhanced filtration outcomes. Further, we found that serial filtration using a pair of strainers that have different mesh sizes can be used to enrich for particular larval stages with a purity close to that of synchronization, the most widely used enrichment method. Throughput of the cell strainer method, up to 14,000 worms per minute, greatly exceeds that of other enrichment methods. We conclude that size sorting by cell strainers is a useful addition to the array of existing methods for enrichment of particular developmental stages in C. elegans.
Collapse
Affiliation(s)
- Vincent J. Lanier
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Amanda M. White
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Serge Faumont
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| | - Shawn R. Lockery
- Institute of Neuroscience, University of Oregon, Eugene, OR, United States of America
| |
Collapse
|
3
|
Hughes KJ, Vidal-Gadea AG. Methods for Modulating and Measuring Neuromuscular Exertion in C. elegans. Methods Mol Biol 2022; 2468:339-356. [PMID: 35320575 DOI: 10.1007/978-1-0716-2181-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The nematode C. elegans has been used widely to study the genetic and cellular basis of behavior. Yet the laboratory conditions under which it is typically studied offer only a narrow glimpse into the richness of natural behaviors this remarkable animal evolved over 500 million years of evolution. For example, burrowing behavior naturally occurs in the wild, but it remains understudied. Our group studies burrowing in an attempt to expand our understanding of the natural behavioral repertoire of C. elegans. Aside from being an interesting and tractable behavior, burrowing is experimentally useful and permits the titration of the muscular output exerted by C. elegans. Here we describe several burrowing assays that allow the modulation of muscular exertion. We used these to study both adaptive and pathological muscular processes such as muscle hypertrophy and dystrophy, respectively. We believe these assays will be of use for researchers studying the production of locomotion under normal and disease-challenged conditions.
Collapse
Affiliation(s)
- Kiley J Hughes
- School of Biological Sciences, Illinois State University, Normal, IL, USA
| | | |
Collapse
|
4
|
Oliveira NR, Moens T, Fonseca G, Nagata RM, Custódio MR, Gallucci F. Response of life-history traits of estuarine nematodes to the surfactant sodium dodecyl sulfate. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2020; 227:105609. [PMID: 32906060 DOI: 10.1016/j.aquatox.2020.105609] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/17/2020] [Accepted: 08/20/2020] [Indexed: 06/11/2023]
Abstract
Species responses to stress are expected to be dependent on their life-history strategy. In this study, we compare the responses of two free-living marine nematodes, Litoditis marina and Diplolaimella dievengatensis, both considered opportunistic, fast-growing, and stress-tolerant species, to the exposure to sublethal concentrations of sodium dodecyl sulfate (SDS) surfactant. Specifically, we evaluated the growth and reproduction rates, as well as the survival of individuals exposed from eggs and/or juveniles (J1) onwards. Exposure to SDS significantly affected the growth and reproduction rates of both species. However, whereas growth and reproduction rates of D. dievengatensis were significantly enhanced at low and intermediate concentrations of SDS (0.001% and 0.003%), for L. marina both parameters were significantly reduced by all SDS concentrations tested (0.001%, 0.003% and 0.006%). Exposure to SDS did not affect the survival of adult nematodes of D. dievengatensis, while for L. marina, survival of males exposed to 0.006% SDS was significantly reduced compared to the control. Responses of the life-history traits growth, fecundity and survival did not exhibit clear trade-offs. The contrasting responses of D. dievengatensis and L. marina indicate that biologically and ecologically similar species can have remarkably distinct tolerances to stress, and that, in agreement with recent studies, rhabditid nematodes cannot a priori be considered very stress tolerant. Consequently, single species traits and phylogenetic relatedness are poor predictors of nematode responses to toxic stress posed by anthropogenic activities.
Collapse
Affiliation(s)
- Nilvea Ramalho Oliveira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, trav. 14, n. 101, CEP 05508-090, Cidade Universitária, São Paulo - SP, Brazil; Universidade Federal do Rio Grande, Instituto de Ciências Biológicas, Av. Itália, km 8, CEP: 96203-900, Campus Carreiros, Rio Grande - RS, Brazil.
| | - Tom Moens
- Ghent University, Department of Biology, Marine Biology Research Unit, Krijgslaan 281/S8, 9000 Ghent, Belgium
| | - Gustavo Fonseca
- Universidade Federal de São Paulo, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos - SP, Brazil
| | - Renato Mitsuo Nagata
- Universidade Federal do Rio Grande, Instituto de Oceanografia, Laboratório de Zooplâncton, Av. Itália, Km 8, CEP: 96203-900, Campus Carreiros, Rio Grande - RS, Brazil
| | - Márcio Reis Custódio
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, Rua do Matão, trav. 14, n. 101, CEP 05508-090, Cidade Universitária, São Paulo - SP, Brazil
| | - Fabiane Gallucci
- Universidade Federal de São Paulo, Instituto do Mar, Rua Carvalho de Mendonça, 144, CEP: 11070-100, Santos - SP, Brazil
| |
Collapse
|
5
|
de Pomerai DI, Iqbal N, Lafayette I, Nagarajan A, Kaviani Moghadam M, Fineberg A, Reader T, Greedy S, Smartt C, Thomas DWP. Microwave fields have little effect on α-synuclein aggregation in a Caenorhabditis elegans model of Parkinson's disease. Bioelectromagnetics 2016; 37:116-29. [PMID: 26879225 DOI: 10.1002/bem.21959] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 01/22/2016] [Indexed: 12/24/2022]
Abstract
Potential health effects of radiofrequency (RF) radiation from mobile phones arouse widespread public concern. RF fields from handheld devices near the brain might trigger or aggravate brain tumors or neurodegenerative diseases such as Parkinson's disease (PD). Aggregation of neural α-synuclein (S) is central to PD pathophysiology, and invertebrate models expressing human S have helped elucidate factors affecting the aggregation process. We have recently developed a transgenic strain of Caenorhabditis elegans carrying two S constructs: SC tagged with cyan (C) blue fluorescent protein (CFP), and SV with the Venus (V) variant of yellow fluorescent protein (YFP). During S aggregation in these SC+SV worms, CFP, and YFP tags are brought close enough to allow Foerster Resonance Energy Transfer (FRET). As a positive control, S aggregation was promoted at low Hg(2+) concentrations, whereas higher concentrations activated stress-response genes. Using two different exposure systems described previously, we tested whether RF fields (1.0 GHz CW, 0.002-0.02 W kg(-1); 1.8 GHz CW or GSM, 1.8 W kg(-1)) could influence S aggregation in SC+SV worms. YFP fluorescence in similar SV-only worms provided internal controls, which should show opposite changes due to FRET quenching during S aggregation. No statistically significant changes were observed over several independent runs at 2.5, 24, or 96 h. Although our worm model is sensitive to chemical promoters of aggregation, no similar effects were attributable to RF exposures.
Collapse
Affiliation(s)
| | - Nooria Iqbal
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Ivan Lafayette
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Archana Nagarajan
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | | | - April Fineberg
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Tom Reader
- School of Biology, University of Nottingham, Nottingham, United Kingdom
| | - Steve Greedy
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, United Kingdom
| | - Chris Smartt
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, United Kingdom
| | - David W P Thomas
- Department of Electrical and Electronic Engineering, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
6
|
Developing a rapid throughput screen for detection of nematicidal activity of plant cysteine proteinases: the role of Caenorhabditis elegans cystatins. Parasitology 2013; 141:164-80. [PMID: 24001183 DOI: 10.1017/s0031182013001364] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Plant cysteine proteinases (CPs) from papaya (Carica papaya) are capable of killing parasitic nematode worms in vitro and have been shown to possess anthelmintic effects in vivo. The acute damage reported in gastrointestinal parasites has not been found in free-living nematodes such as Caenorhabditis elegans nor among the free-living stages of parasitic nematodes. This apparent difference in susceptibility might be the result of active production of cysteine proteinase inhibitors (such as cystatins) by the free-living stages or species. To test this possibility, a supernatant extract of refined papaya latex (PLS) with known active enzyme content was used. The effect on wild-type (Bristol N2) and cystatin null mutant (cpi-1(-/-) and cpi-2(-/-)) C. elegans was concentration-, temperature- and time-dependent. Cysteine proteinases digested the worm cuticle leading to release of internal structures and consequent death. Both cystatin null mutant strains were highly susceptible to PLS attack irrespective of the temperature and concentration of exposure, whereas wild-type N2 worms were generally resistant but far more susceptible to attack at low temperatures. PLS was able to induce elevated cpi-1 and cpi-2 cystatin expression. We conclude that wild-type C. elegans deploy cystatins CPI-1 and CPI-2 to resist CP attack. The results suggest that the cpi-1 or cpi-2 null mutants (or a double mutant combination of the two) could provide a cheap and effective rapid throughput C. elegans-based assay for screening plant CP extracts for anthelmintic activity.
Collapse
|
7
|
Shen XN, Sznitman J, Krajacic P, Lamitina T, Arratia PE. Undulatory locomotion of Caenorhabditis elegans on wet surfaces. Biophys J 2012; 102:2772-81. [PMID: 22735527 DOI: 10.1016/j.bpj.2012.05.012] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2011] [Revised: 04/30/2012] [Accepted: 05/08/2012] [Indexed: 10/28/2022] Open
Abstract
The physical and biomechanical principles that govern undulatory movement on wet surfaces have important applications in physiology, physics, and engineering. The nematode Caenorhabditis elegans, with its highly stereotypical and functionally distinct sinusoidal locomotory gaits, is an excellent system in which to dissect these properties. Measurements of the main forces governing the C. elegans crawling gait on lubricated surfaces have been scarce, primarily due to difficulties in estimating the physical features at the nematode-gel interface. Using kinematic data and a hydrodynamic model based on lubrication theory, we calculate both the surface drag forces and the nematode's bending force while crawling on the surface of agar gels within a preexisting groove. We find that the normal and tangential surface drag coefficients during crawling are ∼222 and 22, respectively, and the drag coefficient ratio is ∼10. During crawling, the calculated internal bending force is time-periodic and spatially complex, exhibiting a phase lag with respect to the nematode's body bending curvature. This phase lag is largely due to viscous drag forces, which are higher during crawling as compared to swimming in an aqueous buffer solution. The spatial patterns of bending force generated during either swimming or crawling correlate well with previously described gait-specific features of calcium signals in muscle. Further, our analysis indicates that one may be able to control the motility gait of C. elegans by judiciously adjusting the magnitude of the surface drag coefficients.
Collapse
Affiliation(s)
- X N Shen
- Department of Mechanical Engineering and Applied Mechanics, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | | | | |
Collapse
|
8
|
Dawe AS, Bodhicharla RK, Graham NS, May ST, Reader T, Loader B, Gregory A, Swicord M, Bit-Babik G, de Pomerai DI. Low-intensity microwave irradiation does not substantially alter gene expression in late larval and adult Caenorhabditis elegans. Bioelectromagnetics 2009; 30:602-12. [PMID: 19533680 DOI: 10.1002/bem.20515] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Reports that low-intensity microwave radiation induces heat-shock reporter gene expression in the nematode, Caenorhabditis elegans, have recently been reinterpreted as a subtle thermal effect caused by slight heating. This study used a microwave exposure system (1.0 GHz, 0.5 W power input; SAR 0.9-3 mW kg(-1) for 6-well plates) that minimises temperature differentials between sham and exposed conditions (< or =0.1 degrees C). Parallel measurement and simulation studies of SAR distribution within this exposure system are presented. We compared five Affymetrix gene arrays of pooled triplicate RNA populations from sham-exposed L4/adult worms against five gene arrays of pooled RNA from microwave-exposed worms (taken from the same source population in each run). No genes showed consistent expression changes across all five comparisons, and all expression changes appeared modest after normalisation (< or =40% up- or down-regulated). The number of statistically significant differences in gene expression (846) was less than the false-positive rate expected by chance (1131). We conclude that the pattern of gene expression in L4/adult C. elegans is substantially unaffected by low-intensity microwave radiation; the minor changes observed in this study could well be false positives. As a positive control, we compared RNA samples from N2 worms subjected to a mild heat-shock treatment (30 degrees C) against controls at 26 degrees C (two gene arrays per condition). As expected, heat-shock genes are strongly up-regulated at 30 degrees C, particularly an hsp-70 family member (C12C8.1) and hsp-16.2. Under these heat-shock conditions, we confirmed that an hsp-16.2::GFP transgene was strongly up-regulated, whereas two non-heat-inducible transgenes (daf-16::GFP; cyp-34A9::GFP) showed little change in expression.
Collapse
Affiliation(s)
- Adam S Dawe
- South African National Bioinformatics Institute, University of Western Cape, Cape Town, South Africa
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Dawe AS, Nylund R, Leszczynski D, Kuster N, Reader T, De Pomerai DI. Continuous wave and simulated GSM exposure at 1.8 W/kg and 1.8 GHz do not inducehsp16-1 heat-shock gene expression inCaenorhabditis elegans. Bioelectromagnetics 2008; 29:92-9. [PMID: 17902155 DOI: 10.1002/bem.20366] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Recent data suggest that there might be a subtle thermal explanation for the apparent induction by radiofrequency (RF) radiation of transgene expression from a small heat-shock protein (hsp16-1) promoter in the nematode, Caenorhabditis elegans. The RF fields used in the C. elegans study were much weaker (SAR 5-40 mW kg(-1)) than those routinely tested in many other published studies (SAR approximately 2 W kg(-1)). To resolve this disparity, we have exposed the same transgenic hsp16-1::lacZ strain of C. elegans (PC72) to higher intensity RF fields (1.8 GHz; SAR approximately 1.8 W kg(-1)). For both continuous wave (CW) and Talk-pulsed RF exposures (2.5 h at 25 degrees C), there was no indication that RF exposure could induce reporter expression above sham control levels. Thus, at much higher induced RF field strength (close to the maximum permitted exposure from a mobile telephone handset), this particular nematode heat-shock gene is not up-regulated. However, under conditions where background reporter expression was moderately elevated in the sham controls (perhaps as a result of some unknown co-stressor), we found some evidence that reporter expression may be reduced by approximately 15% following exposure to either Talk-pulsed or CW RF fields.
Collapse
Affiliation(s)
- Adam S Dawe
- Institute of Genetics, School of Biology, University of Nottingham, University Park, Nottingham, United Kingdom
| | | | | | | | | | | |
Collapse
|
10
|
Johnson SJ, Castan M, Proudfoot L, Barry DA, Christofi N. Acute toxicity of linear alkylbenzene to Caenorhabditis elegans Maupas, 1900 in soil. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2007; 79:41-4. [PMID: 17599232 DOI: 10.1007/s00128-007-9195-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2007] [Accepted: 04/04/2007] [Indexed: 05/16/2023]
Affiliation(s)
- S J Johnson
- Contaminated Land Assessment and Remediation Research Centre, Institute for Infrastructure and Environment, School of Engineering and Electronics, The University of Edinburgh, Edinburgh, UK.
| | | | | | | | | |
Collapse
|
11
|
Sochová I, Hofman J, Holoubek I. Using nematodes in soil ecotoxicology. ENVIRONMENT INTERNATIONAL 2006; 32:374-83. [PMID: 16213020 DOI: 10.1016/j.envint.2005.08.031] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2005] [Accepted: 08/19/2005] [Indexed: 05/04/2023]
Abstract
Nematodes represent a very abundant group of soil organisms and non-parasitic species are important for soil quality and in the soil food web. In recent years, it has been shown that nematodes are appropriate bioindicators of soil condition and they are also suitable organisms for laboratory toxicity testing. The aims of this paper are to overview and critically assess methods and approaches for researching soil nematode ecotoxicology. In natural ecosystems, nematode abundance and community structure analyses were proved to be sensitive indicators of stress caused by soil pollutants and ecological disturbance. Community structure analyses may be approached from a functional or ecological point of view; species are divided into groups according to their feeding habits or alternatively the maturity index is calculated according to their ecological strategy. Many environmental factors have the potential to affect nematode community, which consequently results in high space and time variability. This variance is major handicap in field ecotoxicological studies because pollutant-nematode relationships are obscured. For prospective risk assessment of chemicals, several toxicity tests with nematodes were developed and are increasingly used. Sensitivity of these tests is comparable to tests with other soil species (e.g. enchytraeids, earthworms and springtails) while tests are less demanding to space and time. Most studies have focused on metal toxicity but organic compounds are almost overlooked. Endpoints used in tests were often mortality, reproduction or movement, but more sublethal endpoints such as feeding or biomarkers have been used recently too. Although there is an increasing amount of knowledge in soil nematode ecotoxicology, there is still a lot of various issues in this topic to research.
Collapse
Affiliation(s)
- Ivana Sochová
- RECETOX-Research Centre for Environmental Chemistry and Ecotoxicology, Masaryk University of Brno, Kamenice 126/3, 625 00 Brno, Czech Republic
| | | | | |
Collapse
|
12
|
Dawe AS, Smith B, Thomas DWP, Greedy S, Vasic N, Gregory A, Loader B, de Pomerai DI. A small temperature rise may contribute towards the apparent induction by microwaves of heat-shock gene expression in the nematode Caenorhabditis Elegans. Bioelectromagnetics 2006; 27:88-97. [PMID: 16342196 DOI: 10.1002/bem.20192] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
We have previously reported that low intensity microwave exposure (0.75-1.0 GHz CW at 0.5 W; SAR 4-40 mW/kg) can induce an apparently non-thermal heat-shock response in Caenorhabditis elegans worms carrying hsp16-1::reporter genes. Using matched copper TEM cells for both sham and exposed groups, we can detect only modest reporter induction in the latter exposed group (15-20% after 2.5 h at 26 degrees C, rising to approximately 50% after 20 h). Traceable calibration of our copper TEM cell by the National Physical Laboratory (NPL) reveals significant power loss within the cell (8.5% at 1.0 GHz), accompanied by slight heating of exposed samples (approximately 0.3 degrees C at 1.0 W). Thus, exposed samples are in fact slightly warmer (by < or =0.2 degrees C at 0.5 W) than sham controls. Following NPL recommendations, our TEM cell design was modified with the aim of reducing both power loss and consequent heating. In the modified silver-plated cell, power loss is only 1.5% at 1.0 GHz, and sample warming is reduced to approximately 0.15 degrees C at 1.0 W (i.e., < or =0.1 degrees C at 0.5 W). Under sham:sham conditions, there is no difference in reporter expression between the modified silver-plated TEM cell and an unmodified copper cell. However, worms exposed to microwaves (1.0 GHz and 0.5 W) in the silver-plated cell also show no detectable induction of reporter expression relative to sham controls in the copper cell. Thus, the 20% "microwave induction" observed using two copper cells may be caused by a small temperature difference between sham and exposed conditions. In worms incubated for 2.5 h at 26.0, 26.2, and 27.0 degrees C with no microwave field, there is a consistent and significant increase in reporter expression between 26.0 and 26.2 degrees C (by approximately 20% in each of the six independent runs), but paradoxically expression levels at 27.0 degrees C are similar to those seen at 26.0 degrees C. This surprising result is in line with other evidence pointing towards complex regulation of hsp16-1 gene expression across the sub-heat-shock range of 25-27.5 degrees C in C. elegans. We conclude that our original interpretation of a non-thermal effect of microwaves cannot be sustained; at least part of the explanation appears to be thermal.
Collapse
Affiliation(s)
- Adam S Dawe
- Institute of Genetics, School of Biology, University of Nottingham, Nottingham, United Kingdom
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Thompson G, de Pomerai DI. Toxicity of short-chain alcohols to the nematodeCaenorhabditis elegans: A comparison of endpoints. J Biochem Mol Toxicol 2005; 19:87-95. [PMID: 15849720 DOI: 10.1002/jbt.20060] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The toxicities of 4 short-chain alcohols--namely methanol, ethanol, iso-propanol and iso-butanol--were compared in the nematode Caenorhabditis elegans using several different ecotoxicological endpoints. Range-finding tests were conducted using transgenic PC161 worms carrying a double reporter construct (GFP plus lacZ) linked to the stress-inducible hsp16-1 promoter. These tests showed little response from the GFP reporter, but gave good dose-response curves for the lacZ reporter--showing clear induction at 0.5% v/v ethanol in an overnight assay, but only at 4% in a shorter 6-h assay. Comparison of the short-term dose-response curves shows a confusing pattern of differences between the four alcohols tested, although dose-dependence is evident across at least part of the concentration range. Feeding inhibition assays are somewhat inconclusive with regard to alcohol type, although iso-butanol and iso-propanol appear more toxic than ethanol, while methanol is least toxic. To resolve some of the remaining ambiguities, we also used a fecundity assay to show that iso-propanol is more toxic than ethanol, and a lethality assay to show that iso-butanol is more toxic than iso-propanol. Most of the endpoints studied are consistent with the following order of toxicity: iso-butanol > iso-propanol > ethanol > or = methanol.
Collapse
Affiliation(s)
- Grace Thompson
- Institute of Genetics, School of Biology, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom
| | | |
Collapse
|
14
|
de Pomerai DI, Dawe A, Djerbib L, Allan J, Brunt G, Daniells C. Growth and maturation of the nematode Caenorhabditis elegans following exposure to weak microwave fields. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00459-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
15
|
|
16
|
Easton A, Guven K, de Pomerai DI. Toxicity of the dithiocarbamate fungicide mancozeb to the nontarget soil nematode, Caenorhabditis elegans. J Biochem Mol Toxicol 2001; 15:15-25. [PMID: 11170311 DOI: 10.1002/1099-0461(2001)15:1<15::aid-jbt2>3.0.co;2-z] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
We have previously shown that the dithiocarbamate fungicide, Mancozeb, strongly induces lacZ reporter expression from an endogenous heat-shock promoter (hsp16) in the PC72 transgenic strain of the nematode Caenorhabditis elegans. Such evidence of organismal stress, in a nontarget species at subapplication concentrations, was much less apparent for the related fungicide, Maneb, which only weakly induced reporter expression. We now show that reporter induction by Mancozeb is marginal (<60%) after a few hours' exposure, but increases substantially (to almost 10-fold) after overnight exposure. In conjunction with our previous results using intermediate exposure periods, this suggests that the factor limiting reporter responses is likely to be a slow rate of uptake and/or metabolism of the fungicide. We confirm that a potentially toxic metabolite of dithiocarbamate fungicides, namely ethylenethiourea (ETU), has minimal toxicity toward C. elegans, even after prolonged exposure at high concentrations. We demonstrate that exposure to Mancozeb (but not ETU) significantly inhibits larval growth in C. elegans, although this parameter is not markedly more sensitive than reporter induction as a toxicological endpoint. Finally, we have used two-dimensional electrophoresis to show that high concentrations of both Maneb and Mancozeb drastically simplify the protein spot profile compared with controls. However, only in the latter case is there evidence of novel proteins being induced. Both fungicides appear toxic to C. elegans, but only Mancozeb induces a strong heat-shock response.
Collapse
Affiliation(s)
- A Easton
- School of Life and Environmental Sciences, University of Nottingham, University Park, UK
| | | | | |
Collapse
|
17
|
Guven K, Power RS, Avramides S, Allender R, de Pomerai DI. The toxicity of dithiocarbamate fungicides to soil nematodes, assessed using a stress-inducible transgenic strain of Caenorhabditis elegans. J Biochem Mol Toxicol 2000; 13:324-33. [PMID: 10487420 DOI: 10.1002/(sici)1099-0461(1999)13:6<324::aid-jbt6>3.0.co;2-q] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The dithiocarbamate fungicides maneb and mancozeb induce a short-term stress response in a transgenic Caenorhabditis elegans strain (PC72) carrying a reporter lacZ gene under the control of a homologous heat shock (hsp16) promoter. This response can be readily monitored as induced beta-galactosidase activity, either by in situ staining or by a quantitative fluorometric enzyme assay. Particularly strong responses are induced by mancozeb (three- to fivefold above controls at 500 microg mL(-1)), causing acute toxicity at concentrations comparable to those recommended for field application (2 mg mL(-1)). Although much of this fungicide is adsorbed by soil, sufficient (ca. 6%) enters the soil water compartment to cause mild stress in the transgenic worm assay. Among possible metabolites from mancozeb breakdown, neither Mn2+ nor ethylenethiourea (ETU) is particularly toxic even at 10% of the optimum mancozeb dosage. Stress responses to a range of other pesticides are also reported, and in several cases it is clear that a nontarget soil species (here, transgenic C. elegans) may be sensitive to low-level contamination.
Collapse
Affiliation(s)
- K Guven
- Biology Department, Science Faculty, Dicle University, Diyarbakir, Turkey
| | | | | | | | | |
Collapse
|
18
|
Oxygenated perfluorocarbon promotes nematode growth and stress-sensitivity in a two-phase liquid culture system. Enzyme Microb Technol 1999. [DOI: 10.1016/s0141-0229(99)00052-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Power RS, David HE, Mutwakil MHAZ, Fletcher K, Daniells C, Nowell MA, Dennis JL, Martinelli A, Wiseman R, Wharf E, de Pomerai DI. Stress-inducible transgenic nematodes as biomonitors of soil and water pollution. J Biosci 1998. [DOI: 10.1007/bf02936145] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Daniells C, Duce I, Thomas D, Sewell P, Tattersall J, de Pomerai D. Transgenic nematodes as biomonitors of microwave-induced stress. Mutat Res 1998; 399:55-64. [PMID: 9635489 DOI: 10.1016/s0027-5107(97)00266-2] [Citation(s) in RCA: 64] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transgenic nematodes (Caenorhabditis elegans strain PC72), carrying a stress-inducible reporter gene (Escherichia coli beta-galactosidase) under the control of a C. elegans hsp16 heat-shock promoter, have been used to monitor toxicant responses both in water and soil. Because these transgenic nematodes respond both to heat and toxic chemicals by synthesising an easily detectable reporter product, they afford a useful preliminary screen for stress responses (whether thermal or non-thermal) induced by microwave radiation or other electromagnetic fields. We have used a transverse electromagnetic (TEM) cell fed from one end by a source and terminated at the other end by a matched load. Most studies were conducted using a frequency of 750 MHz, at a nominal power setting of 27 dBm. The TEM cell was held in an incubator at 25 degrees C inside a shielded room; corresponding controls were shielded and placed in the same 25 degrees C incubator; additional baseline controls were held at 15 degrees C (worm growth temperature). Stress responses were measured in terms of beta-galactosidase (reporter) induction above control levels. The time-course of response to continuous microwave radiation showed significant differences from 25 degrees C controls both at 2 and 16 h, but not at 4 or 8 h. Using a 5 x 5 multiwell plate array exposed for 2 h, the 25 microwaved samples showed highly significant responses compared with a similar control array. The wells most strongly affected were those in the rows closest to the source, whereas the most distant row did not rise above control levels, suggesting a shadow effect. These differential responses are difficult to reconcile with general heating effects, although localised power absorption affords a possible explanation. Experiments in which the frequency and/or power settings were varied suggested a greater response at 21 than at 27 dBm, both at 750 and 300 MHz, although extremely variable responses were observed at 24 dBm and 750 MHz. Thus, lower power levels tended, if anything, to induce larger responses (with the above-mentioned exception), which is opposite to the trend anticipated for any simple heating effect. These results are reproducible and data acquisition is both rapid and simple. The evidence accrued to date suggests that microwave radiation causes measurable stress to transgenic nematodes, presumably reflecting increased levels of protein damage within cells (the common signal thought to trigger hsp gene induction). The response levels observed are comparable to those observed with moderate concentrations (ppm) of metal ions such as Zn2+ and Cu2+. We conclude that this approach deserves further and more detailed investigation, but that it has already demonstrated clear biological effects of microwave radiation in terms of the activation of cellular stress responses (hsp gene induction).
Collapse
Affiliation(s)
- C Daniells
- Department of Life Science, University of Nottingham, University Park, UK
| | | | | | | | | | | |
Collapse
|