1
|
Méndez-Líter JA, de Eugenio LI, Nieto-Domínguez M, Prieto A, Martínez MJ. Hemicellulases from Penicillium and Talaromyces for lignocellulosic biomass valorization: A review. BIORESOURCE TECHNOLOGY 2021; 324:124623. [PMID: 33434871 DOI: 10.1016/j.biortech.2020.124623] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 12/21/2020] [Accepted: 12/23/2020] [Indexed: 05/26/2023]
Abstract
The term hemicellulose groups different polysaccharides with heterogeneous structures, mannans, xyloglucans, mixed-linkage β-glucans and xylans, which differ in their backbone and branches, and in the type and distribution of glycosidic linkages. The enzymatic degradation of these complex polymers requires the concerted action of multiple hemicellulases and auxiliary enzymes. Most commercial enzymes are produced by Trichoderma and Aspergillus species, but recent studies have disclosed Penicillium and Talaromyces as promising sources of hemicellulases. In this review, we summarize the current knowledge on the hemicellulolytic system of these genera, and the role of hemicellulases in the disruption and synthesis of glycosidic bonds. In both cases, the enzymes from Penicillium and Talaromyces represent an interesting alternative for valorization of lignocellulosic biomass in the current framework of circular economy.
Collapse
Affiliation(s)
- Juan A Méndez-Líter
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Laura I de Eugenio
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Manuel Nieto-Domínguez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Alicia Prieto
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - María Jesús Martínez
- Biotechnology for Lignocellulosic Biomass Group, Centro de Investigaciones Biológicas Margarita Salas (CIB-CSIC), c/ Ramiro de Maeztu 9, 28040 Madrid, Spain.
| |
Collapse
|
2
|
Coconi Linares N, Dilokpimol A, Stålbrand H, Mäkelä MR, de Vries RP. Recombinant production and characterization of six novel GH27 and GH36 α-galactosidases from Penicillium subrubescens and their synergism with a commercial mannanase during the hydrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 295:122258. [PMID: 31639625 DOI: 10.1016/j.biortech.2019.122258] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 10/09/2019] [Accepted: 10/10/2019] [Indexed: 06/10/2023]
Abstract
α-Galactosidases are important industrial enzymes for hemicellulosic biomass degradation or modification. In this study, six novel extracellular α-galactosidases from Penicillium subrubescens were produced in Pichia pastoris and characterized. All α-galactosidases exhibited high affinity to pNPαGal, and only AglE was not active towards galacto-oligomers. Especially AglB and AglD released high amounts of galactose from guar gum, carob galactomannan and locust bean, but combining α-galactosidases with an endomannanase dramatically improved galactose release. Structural comparisons to other α-galactosidases and homology modelling showed high sequence similarities, albeit significant differences in mechanisms of productive binding, including discrimination between various galactosides. To our knowledge, this is the first study of such an extensive repertoire of extracellular fungal α-galactosidases, to demonstrate their potential for degradation of galactomannan-rich biomass. These findings contribute to understanding the differences within glycoside hydrolase families, to facilitate the development of new strategies to generate tailor-made enzymes for new industrial bioprocesses.
Collapse
Affiliation(s)
- Nancy Coconi Linares
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Adiphol Dilokpimol
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
| | - Henrik Stålbrand
- Department of Biochemistry and Structural Biology, Lund University, PO Box 124, S-221 00 Lund, Sweden
| | - Miia R Mäkelä
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands; Department of Microbiology, University of Helsinki, P.O. Box 56, Viikinkaari 9, Helsinki, Finland
| | - Ronald P de Vries
- Fungal Physiology, Westerdijk Fungal Biodiversity Institute & Fungal Molecular Physiology, Utrecht University, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands.
| |
Collapse
|
3
|
Ladevèze S, Laville E, Despres J, Mosoni P, Potocki-Véronèse G. Mannoside recognition and degradation by bacteria. Biol Rev Camb Philos Soc 2016; 92:1969-1990. [PMID: 27995767 DOI: 10.1111/brv.12316] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Revised: 11/01/2016] [Accepted: 11/11/2016] [Indexed: 11/29/2022]
Abstract
Mannosides constitute a vast group of glycans widely distributed in nature. Produced by almost all organisms, these carbohydrates are involved in numerous cellular processes, such as cell structuration, protein maturation and signalling, mediation of protein-protein interactions and cell recognition. The ubiquitous presence of mannosides in the environment means they are a reliable source of carbon and energy for bacteria, which have developed complex strategies to harvest them. This review focuses on the various mannosides that can be found in nature and details their structure. It underlines their involvement in cellular interactions and finally describes the latest discoveries regarding the catalytic machinery and metabolic pathways that bacteria have developed to metabolize them.
Collapse
Affiliation(s)
- Simon Ladevèze
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Elisabeth Laville
- LISBP, Université de Toulouse, CNRS, INRA, INSA, 31077, Toulouse, France
| | - Jordane Despres
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | - Pascale Mosoni
- INRA, UR454 Microbiologie, F-63122, Saint-Genès Champanelle, France
| | | |
Collapse
|
4
|
A novel promising strain of Trichoderma evansii (WF-3) for extracellular α-galactosidase production by utilizing different carbon sources under optimized culture conditions. BIOMED RESEARCH INTERNATIONAL 2014; 2014:461624. [PMID: 25126562 PMCID: PMC4121999 DOI: 10.1155/2014/461624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Revised: 06/17/2014] [Accepted: 06/17/2014] [Indexed: 11/18/2022]
Abstract
A potential fungal strain of Trichoderma sp. (WF-3) was isolated and selected for the production of α-galactosidase. Optimum conditions for mycelial growth and enzyme induction were determined. Basal media selected for the growth of fungal isolate containing different carbon sources like guar gum (GG), soya bean meal (SM), and wheat straw (WS) and combinations of these carbon substrates with basic sugars like galactose and sucrose were used to monitor their effects on α-galactosidase production. The results of this study indicated that galactose and sucrose enhanced the enzyme activity in guar gum (GG) and wheat straw (WS). Maximum α-galactosidase production (213.63 UmL−1) was obtained when the basic medium containing GG is supplemented with galactose (5 mg/mL). However, the presence of galactose and sucrose alone in the growth media shows no effect. Soya meal alone was able to support T. evansii to produce maximum enzyme activity (170.36 UmL−1). The incubation time, temperature, and pH for the maximum enzyme synthesis were found to be 120 h (5 days), 28°C, and 4.5–5.5, respectively. All the carbon sources tested exhibited maximum enzyme production at 10 mg/mL concentration. Among the metal ions tested, Hg was found to be the strongest inhibitor of the enzyme. Among the chelators, EDTA acted as stronger inhibitor than succinic acid.
Collapse
|
5
|
Katrolia P, Rajashekhara E, Yan Q, Jiang Z. Biotechnological potential of microbial α-galactosidases. Crit Rev Biotechnol 2013; 34:307-17. [DOI: 10.3109/07388551.2013.794124] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
6
|
Optimization of Culture Conditions for Some Identified Fungal Species and Stability Profile of α-Galactosidase Produced. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2013; 2013:920759. [PMID: 23424684 PMCID: PMC3568913 DOI: 10.1155/2013/920759] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Accepted: 12/07/2012] [Indexed: 11/17/2022]
Abstract
Microbial α-galactosidase preparations have implications in medicine and in the modification of various agricultural products as well. In this paper, four isolated fungal strains such as AL-3, WF-3, WP-4 and CL-4 from rhizospheric soil identified as Penicillium glabrum (AL-3), Trichoderma evansii (WF-3), Lasiodiplodia theobromae (WP-4) and Penicillium flavus (CL-4) based on their morphology and microscopic examinations, are screened for their potential towards α-galactosidases production. The culture conditions have been optimized and supplemented with specific carbon substrates (1%, w/v) by using galactose-containing polysaccharides like guar gum (GG), soya casein (SC) and wheat straw (WS). All strains significantly released galactose from GG, showing maximum production of enzyme at 7th day of incubation in rotary shaker (120 rpm) that is 190.3, 174.5, 93.9 and 28.8 U/mL, respectively, followed by SC and WS. The enzyme activity was stable up to 7days at −20°C, then after it declines. This investigation reveals that AL-3 show optimum enzyme activity in guar gum media, whereas WF-3 exhibited greater enzyme stability. Results indicated that the secretion of proteins, enzyme and the stability of enzyme activity varied not only from one strain to another but also differed in their preferences of utilization of different substrates.
Collapse
|
7
|
Ferreira JG, Reis AP, Guimarães VM, Falkoski DL, Fialho LDS, de Rezende ST. Purification and characterization of Aspergillus terreus α-galactosidases and their use for hydrolysis of soymilk oligosaccharides. Appl Biochem Biotechnol 2011; 164:1111-25. [PMID: 21331589 DOI: 10.1007/s12010-011-9198-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2010] [Accepted: 02/03/2011] [Indexed: 10/18/2022]
Abstract
α-Galactosidases has the potential to hydrolyze α-1-6 linkages in raffinose family oligosaccharides (RFO). Aspergillus terreus cells cultivated on wheat bran produced three extracellular forms of α-galactosidases (E1, E2, and E3). E1 and E2 α-galactosidases presented maximal activities at pH 5, while E3 α-galactosidase was more active at pH 5.5. The E1 and E2 enzymes showed stability for 6 h at pH 4-7. Maximal activities were determined at 60, 55, and 50 °C, for E1, E2, and E3 α-galactosidase, respectively. E2 α-galactosidase retained 90% of its initial activity after 70 h at 50 °C. The enzymes hydrolyzed ρNPGal, melibiose, raffinose and stachyose, and E1 and E2 enzymes were able to hydrolyze guar gum and locust bean gum substrates. E1 and E3 α-galactosidases were completely inhibited by Hg²⁺, Ag⁺, and Cu²⁺. The treatment of RFO present in soy milk with the enzymes showed that E1 α-galactosidase reduced the stachyose content to zero after 12 h of reaction, while E2 promoted total hydrolysis of raffinose. The complete removal of the oligosaccharides in soy milk could be reached by synergistic action of both enzymes.
Collapse
Affiliation(s)
- Joana Gasperazzo Ferreira
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Viçosa, 36.570-000 Viçosa, Minas Gerais, Brazil
| | | | | | | | | | | |
Collapse
|
8
|
Fredslund F, Hachem MA, Larsen RJ, Sørensen PG, Coutinho PM, Lo Leggio L, Svensson B. Crystal structure of α-galactosidase from Lactobacillus acidophilus NCFM: insight into tetramer formation and substrate binding. J Mol Biol 2011; 412:466-80. [PMID: 21827767 DOI: 10.1016/j.jmb.2011.07.057] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 11/19/2022]
Abstract
Lactobacillus acidophilus NCFM is a probiotic bacterium known for its beneficial effects on human health. The importance of α-galactosidases (α-Gals) for growth of probiotic organisms on oligosaccharides of the raffinose family present in many foods is increasingly recognized. Here, the crystal structure of α-Gal from L. acidophilus NCFM (LaMel36A) of glycoside hydrolase (GH) family 36 (GH36) is determined by single-wavelength anomalous dispersion. In addition, a 1.58-Å-resolution crystallographic complex with α-d-galactose at substrate binding subsite -1 was determined. LaMel36A has a large N-terminal twisted β-sandwich domain, connected by a long α-helix to the catalytic (β/α)(8)-barrel domain, and a C-terminal β-sheet domain. Four identical monomers form a tightly packed tetramer where three monomers contribute to the structural integrity of the active site in each monomer. Structural comparison of LaMel36A with the monomeric Thermotoga maritima α-Gal (TmGal36A) reveals that O2 of α-d-galactose in LaMel36A interacts with a backbone nitrogen in a glycine-rich loop of the catalytic domain, whereas the corresponding atom in TmGal36A is from a tryptophan side chain belonging to the N-terminal domain. Thus, two distinctly different structural motifs participate in substrate recognition. The tetrameric LaMel36A furthermore has a much deeper active site than the monomeric TmGal36A, which possibly modulates substrate specificity. Sequence analysis of GH36, inspired by the observed structural differences, results in four distinct subgroups having clearly different active-site sequence motifs. This novel subdivision incorporates functional and architectural features and may aid further biochemical and structural analyses within GH36.
Collapse
Affiliation(s)
- Folmer Fredslund
- Department of Systems Biology, Enzyme and Protein Chemistry, Technical University of Denmark, Søltofts Plads, Building 224, DK-2800 Kongens Lyngby, Denmark
| | | | | | | | | | | | | |
Collapse
|
9
|
Cloning and heterologous expression of the extracellular alpha-galactosidase from Aspergillus fumigatus in Aspergillus sojae under the control of gpdA promoter. ACTA ACUST UNITED AC 2010. [DOI: 10.1016/j.molcatb.2009.09.012] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
10
|
Svastits-Dücső L, Nguyen QD, Lefler DD, Rezessy-Szabó JM. Effects of galactomannan as carbon source on production of α-galactosidase by Thermomyces lanuginosus: Fermentation, purification and partial characterisation. Enzyme Microb Technol 2009. [DOI: 10.1016/j.enzmictec.2009.07.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
11
|
A novel protease-resistant α-galactosidase with high hydrolytic activity from Gibberella sp. F75: gene cloning, expression, and enzymatic characterization. Appl Microbiol Biotechnol 2009; 83:875-84. [DOI: 10.1007/s00253-009-1939-2] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2008] [Revised: 02/12/2009] [Accepted: 03/01/2009] [Indexed: 10/21/2022]
|
12
|
Rajoka MI, Awan MS, Saleem M, Ayub N. Solid-state fermentation-supported enhanced production of α-galactosidase by a deoxyglucose-resistant mutant of Aspergillus niger and thermostabilization of the production process. World J Microbiol Biotechnol 2008. [DOI: 10.1007/s11274-008-9886-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
Filho M, Pessela BC, Mateo C, Carrascosa AV, Fernandez-Lafuente R, Guisán JM. Reversible immobilization of a hexameric α-galactosidase from Thermus sp. strain T2 on polymeric ionic exchangers. Process Biochem 2008. [DOI: 10.1016/j.procbio.2008.05.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
14
|
Sinitsyna OA, Fedorova EA, Vakar IM, Kondratieva EG, Rozhkova AM, Sokolova LM, Bubnova TM, Okunev ON, Chulkin AM, Vinetsky YP, Sinitsyn AP. Isolation and characterization of extracellular alpha-galactosidases from Penicillium canescens. BIOCHEMISTRY (MOSCOW) 2008; 73:97-106. [PMID: 18294137 DOI: 10.1134/s000629790801015x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Two alpha-galactosidases were purified to homogeneity from the enzymatic complex of the mycelial fungus Penicillium canescens using chromatography on different sorbents. Substrate specificity, pH- and temperature optima of activity, stability under different pH and temperature conditions, and the influence of effectors on the catalytic properties of both enzymes were investigated. Genes aglA and aglC encoding alpha-galactosidases from P. canescens were isolated, and amino acid sequences of the proteins were predicted. In vitro feed testing (with soybean meal and soybean byproducts enriched with galactooligosaccharides as substrates) demonstrated that both alpha-galactosidases from P. canescens could be successfully used as feed additives. alpha-Galactosidase A belonging to the 27th glycosyl hydrolase family hydrolyzed galactopolysaccharides (galactomannans) and alpha-galactosidase C belonging to the 36th glycosyl hydrolase family hydrolyzed galactooligosaccharides (stachyose, raffinose, etc.) of soybean with good efficiency, thus improving the digestibility of fodder.
Collapse
Affiliation(s)
- O A Sinitsyna
- Faculty of Chemistry, Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Pessela BC, Mateo C, Filho M, Carrascosa AV, Fernandez-Lafuente R, Guisán JM. Stabilization of the quaternary structure of a hexameric alpha-galactosidase from Thermus sp. T2 by immobilization and post-immobilization techniques. Process Biochem 2008. [DOI: 10.1016/j.procbio.2007.11.013] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
16
|
Filho M, Pessela BC, Mateo C, Carrascosa AV, Fernandez-Lafuente R, Guisán JM. Immobilization–stabilization of an α-galactosidase from Thermus sp. strain T2 by covalent immobilization on highly activated supports: Selection of the optimal immobilization strategy. Enzyme Microb Technol 2008. [DOI: 10.1016/j.enzmictec.2007.10.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Cao Y, Yang P, Shi P, Wang Y, Luo H, Meng K, Zhang Z, Wu N, Yao B, Fan Y. Purification and characterization of a novel protease-resistant α-galactosidase from Rhizopus sp. F78 ACCC 30795. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2007.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Cloning and expression analysis of a predicted toxin gene fromPhotorhabdus sp. HB78. ANN MICROBIOL 2007. [DOI: 10.1007/bf03175066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
19
|
Molecular cloning and characterization of a novel α-galactosidase gene from Penicillium sp. F63 CGMCC 1669 and expression in Pichia pastoris. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.10.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
20
|
Pessela BC, Fernández-Lafuente R, Torres R, Mateo C, Fuentes M, Filho M, Vian A, García JL, Guisán JM, Carrascosa AV. Production of a Thermoresistant Alpha-galactosidase fromThermussp. Strain T2 for Food Processing. FOOD BIOTECHNOL 2007. [DOI: 10.1080/08905430701191221] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
21
|
Rezessy-Szabó JM, Nguyen QD, Hoschke A, Braet C, Hajós G, Claeyssens M. A novel thermostable α-galactosidase from the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b: Purification and characterization. Biochim Biophys Acta Gen Subj 2007; 1770:55-62. [PMID: 17008008 DOI: 10.1016/j.bbagen.2006.06.022] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2006] [Revised: 06/02/2006] [Accepted: 06/10/2006] [Indexed: 10/24/2022]
Abstract
High levels of an extracellular alpha-galactosidase are produced by the thermophilic fungus Thermomyces lanuginosus CBS 395.62/b when grown in submerse culture and induced by sucrose. The enzyme was purified 114-fold from the culture supernatant by (NH(4))(2)SO(4) fractionation, and by chromatographical steps including Sepharose CL-6B gel filtration, DEAE-Sepharose FF anion-exchange, Q-Sepharose FF anion-exchange and Superose 12 gel filtration. The purified enzyme exhibits apparent homogeneity as judged by sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE) and iso-electric focusing (IEF). The native molecular weight of the monomeric alpha-galactosidase is 93 kDa with an isoelectric point of 3.9. The enzyme displays a pH and temperature optimum of 5-5.5 and 65 degrees C, respectively. The purified enzyme retains more than 90% of its activity at 45 degrees C in a pH range from 5.5 to 9.0. The enzyme proves to be a glycoprotein and its carbohydrate content is 5.3%. Kinetic parameters were determined for the substrates p-nitrophenyl-alpha-galactopyranoside, raffinose and stachyose and very similar K(m) values of 1.13 mM, 1.61 mM and 1.17 mM were found. Mn(++) ions activates enzyme activity, whereas inhibitory effects can be observed with Ca(++), Zn(++) and Hg(++). Five min incubation at 65 degrees with 10 mM Ag(+) results in complete inactivation of the purified alpha-galactosidase. Amino acid sequence alignment of N-terminal sequence data allows the alpha-galactosidase from Thermomyces lanuginosus to be classified in glycosyl hydrolase family 36.
Collapse
Affiliation(s)
- Judit M Rezessy-Szabó
- Department of Brewing and Distilling, Faculty of Food Science, Corvinus University of Budapest, H-1118 Budapest, Ménesi út 45, Hungary.
| | | | | | | | | | | |
Collapse
|
22
|
Pessela BC, Mateo C, Filho M, Carrascosa A, Fernández-Lafuente R, Guisan JM. Selective adsorption of large proteins on highly activated IMAC supports in the presence of high imidazole concentrations: Purification, reversible immobilization and stabilization of thermophilic α- and β-galactosidases. Enzyme Microb Technol 2007. [DOI: 10.1016/j.enzmictec.2006.04.019] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
23
|
Foucault M, Watzlawick H, Mattes R, Haser R, Gouet P. Crystallization and preliminary X-ray diffraction studies of two thermostable alpha-galactosidases from glycoside hydrolase family 36. Acta Crystallogr Sect F Struct Biol Cryst Commun 2006; 62:100-3. [PMID: 16511274 PMCID: PMC2150962 DOI: 10.1107/s1744309105042582] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2005] [Accepted: 12/20/2005] [Indexed: 11/10/2022]
Abstract
alpha-Galactosidases from thermophilic organisms have gained interest owing to their applications in the sugar industry. The alpha-galactosidases AgaA, AgaB and AgaA A355E mutant from Geobacillus stearothermophilus have been overexpressed in Escherichia coli. Crystals of AgaB and AgaA A355E have been obtained by the vapour-diffusion method and synchrotron data have been collected to 2.0 and 2.8 A resolution, respectively. Crystals of AgaB belong to space group I222 or I2(1)2(1)2(1), with unit-cell parameters a = 87.5, b = 113.3, c = 161.6 A. Crystals of AgaA A355E belong to space group P3(1)21 or P3(2)21, with unit-cell parameters a = b = 150.1, c = 233.2 A.
Collapse
Affiliation(s)
- M. Foucault
- Institut de Biologie et Chimie des Protéines, CNRS–UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07, France
| | - H. Watzlawick
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - R. Mattes
- Institut für Industrielle Genetik, Universität Stuttgart, Allmandring 31, D-70569 Stuttgart, Germany
| | - R. Haser
- Institut de Biologie et Chimie des Protéines, CNRS–UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07, France
| | - P. Gouet
- Institut de Biologie et Chimie des Protéines, CNRS–UCBL, UMR 5086, Laboratoire de Bio-Cristallographie IFR128 ‘BioSciences Lyon-Gerland’, 7 Passage du Vercors, 69367 Lyon CEDEX 07, France
- Correspondence e-mail:
| |
Collapse
|
24
|
Wang CL, Li DF, Lu WQ, Wang YH, Lai CH. Influence of cultivating conditions on the alpha-galactosidase biosynthesis from a novel strain of Penicillium sp. in solid-state fermentation. Lett Appl Microbiol 2004; 39:369-75. [PMID: 15355541 DOI: 10.1111/j.1472-765x.2004.01594.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
AIMS The work is intended to achieve optimum culture conditions of alpha-galactosidase production by a mutant strain Penicillium sp. in solid-state fermentation (SSF). METHODS AND RESULTS Certain fermentation parameters involving incubation temperature, moisture content, initial pH value, inoculum and load size of medium, and incubation time were investigated separately. The optimal temperature and moisture level for alpha-galactosidase biosynthesis was found to be 30 degrees C and 50%, respectively. The range of pH 5.5-6.5 was favourable. About 40-50 g of medium in 250-ml flask and inoculum over 1.0 x 10(6) spores were suitable for enzyme production. Seventy-five hours of incubation was enough for maximum alpha-galactosidase production. Substrate as wheat bran supplemented with soyabean meal and beet pulp markedly improved the enzyme yield in trays. CONCLUSIONS Under optimum culture conditions, the alpha-galactosidase activity from Penicillium sp. MAFIC-6 indicated 185.2 U g(-1) in tray of SSF. SIGNIFICANT AND IMPACT OF THE STUDY The process on alpha-galactosidase production in laboratory scale may have a potentiality of scaling-up.
Collapse
Affiliation(s)
- C L Wang
- National Feed Engineering and Technology Research Centre, China Agricultural University, Beijing, China
| | | | | | | | | |
Collapse
|
25
|
Shabalin KA, Kulminskaya AA, Savel’ev AN, Shishlyannikov SM, Neustroev KN. Enzymatic properties of α-galactosidase from Trichoderma reesei in the hydrolysis of galactooligosaccharides. Enzyme Microb Technol 2002. [DOI: 10.1016/s0141-0229(01)00482-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
26
|
Ademark P, de Vries RP, Hägglund P, Stålbrand H, Visser J. Cloning and characterization of Aspergillus niger
genes encoding an α-galactosidase and a β-mannosidase involved in galactomannan degradation. ACTA ACUST UNITED AC 2001; 268:2982-90. [PMID: 11358516 DOI: 10.1046/j.1432-1327.2001.02188.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alpha-galactosidase (EC 3.2.1.22) and beta-mannosidase (EC 3.2.1.25) participate in the hydrolysis of complex plant saccharides such as galacto(gluco)mannans. Here we report on the cloning and characterization of genes encoding an alpha-galactosidase (AglC) and a beta-mannosidase (MndA) from Aspergillus niger. The aglC and mndA genes code for 747 and 931 amino acids, respectively, including the eukaryotic signal sequences. The predicted isoelectric points of AglC and MndA are 4.56 and 5.17, and the calculated molecular masses are 79.674 and 102.335 kDa, respectively. Both AglC and MndA contain several putative N-glycosylation sites. AglC was assigned to family 36 of the glycosyl hydrolases and MndA was assigned to family 2. The expression patterns of aglC and mndA and two other genes encoding A. niger alpha-galactosidases (aglA and aglB) during cultivation on galactomannan were studied by Northern analysis. A comparison of gene expression on monosaccharides in the A. niger wild-type and a CreA mutant strain showed that the carbon catabolite repressor protein CreA has a strong influence on aglA, but not on aglB, aglC or mndA. AglC and MndA were purified from constructed overexpression strains of A. niger, and the combined action of these enzymes degraded a galactomanno-oligosaccharide into galactose and mannose. The possible roles of AglC and MndA in galactomannan hydrolysis is discussed.
Collapse
Affiliation(s)
- P Ademark
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | | | | | |
Collapse
|
27
|
Puchart V, Vrsanská M, Bhat MK, Biely P. Purification and characterization of alpha-galactosidase from a thermophilic fungus Thermomyces lanuginosus. BIOCHIMICA ET BIOPHYSICA ACTA 2001; 1524:27-37. [PMID: 11078955 DOI: 10.1016/s0304-4165(00)00138-0] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
An extracellular alpha-galactosidase was purified to electrophoretic homogeneity from a locust bean gum-spent culture fluid of a mannanolytic strain of the thermophilic fungus Thermomyces lanuginosus. Molecular mass of the enzyme is 57 kDa. The pure enzyme which has a glycoprotein nature, afforded several forms on IEF, indicating its microheterogeneity. Isoelectric point of the major form was 5.2. Enzyme is the most active against aryl alpha-D-galactosides but efficiently hydrolyzed alpha-glycosidically linked non-reducing terminal galactopyranosyl residues occurring in natural substrates such as melibiose, raffinose, stachyose, and fragments of galactomannan. In addition, the enzyme is able to catalyze efficient degalactosylation of polymeric galactomannans leading to precipitation of the polymers. Stereochemical course of hydrolysis of two substrates, 4-nitrophenyl alpha-galactopyranoside and galactosyl(1)mannotriose, followed by (1)H NMR spectroscopy, pointed out the alpha-anomer of D-galactose was the primary product of hydrolysis from which the beta-anomer was formed by mutarotation. Hence the enzyme is a retaining glycosyl hydrolase. In accord with its retaining character the enzyme catalyzed transgalactosylation from 4-nitrophenyl alpha-galactopyranoside as a glycosyl donor. Amino acid sequence alignment of N-terminal and two internal sequences suggested that the enzyme is a member of family 27 of glycosyl hydrolases.
Collapse
Affiliation(s)
- V Puchart
- Institute of Chemistry, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | | | | |
Collapse
|
28
|
Ademark P, Larsson M, Tjerneld F, Stålbrand H. Multiple α-galactosidases from Aspergillus niger: purification, characterization and substrate specificities. Enzyme Microb Technol 2001. [DOI: 10.1016/s0141-0229(01)00415-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
29
|
Fridjonsson O, Mattes R. Production of recombinant alpha-galactosidases in Thermus thermophilus. Appl Environ Microbiol 2001; 67:4192-8. [PMID: 11526023 PMCID: PMC93147 DOI: 10.1128/aem.67.9.4192-4198.2001] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2001] [Accepted: 06/26/2001] [Indexed: 11/20/2022] Open
Abstract
A Thermus thermophilus selector strain for production of thermostable and thermoactive alpha-galactosidase was constructed. For this purpose, the native alpha-galactosidase gene (agaT) of T. thermophilus TH125 was inactivated to prevent background activity. In our first attempt, insertional mutagenesis of agaT by using a cassette carrying a kanamycin resistance gene led to bacterial inability to utilize melibiose (alpha-galactoside) and galactose as sole carbohydrate sources due to a polar effect of the insertional inactivation. A Gal(+) phenotype was assumed to be essential for growth on melibiose. In a Gal(-) background, accumulation of galactose or its metabolite derivatives produced from melibiose hydrolysis could interfere with the growth of the host strain harboring recombinant alpha-galactosidase. Moreover, the AgaT(-) strain had to be Km(s) for establishment of the plasmids containing alpha-galactosidase genes and the kanamycin resistance marker. Therefore, a suitable selector strain (AgaT(-) Gal(+) Km(s)) was generated by applying integration mutagenesis in combination with phenotypic selection. To produce heterologous alpha-galactosidase in T. thermophilus, the isogenes agaA and agaB of Bacillus stearothermophilus KVE36 were cloned into an Escherichia coli-Thermus shuttle vector. The region containing the E. coli plasmid sequence (pUC-derived vector) was deleted before transformation of T. thermophilus with the recombinant plasmids. As a result, transformation efficiency and plasmid stability were improved. However, growth on minimal agar medium containing melibiose was achieved only following random selection of the clones carrying a plasmid-based mutation that had promoted a higher copy number and greater stability of the plasmid.
Collapse
|
30
|
Fridjonsson O, Watzlawick H, Gehweiler A, Rohrhirsch T, Mattes R. Cloning of the gene encoding a novel thermostable alpha-galactosidase from Thermus brockianus ITI360. Appl Environ Microbiol 1999; 65:3955-63. [PMID: 10473401 PMCID: PMC99726 DOI: 10.1128/aem.65.9.3955-3963.1999] [Citation(s) in RCA: 60] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/1999] [Accepted: 06/29/1999] [Indexed: 11/20/2022] Open
Abstract
An alpha-galactosidase gene from Thermus brockianus ITI360 was cloned, sequenced, and expressed in Escherichia coli, and the recombinant protein was purified. The gene, designated agaT, codes for a 476-residue polypeptide with a calculated molecular mass of 53, 810 Da. The native structure of the recombinant enzyme (AgaT) was estimated to be a tetramer. AgaT displays amino acid sequence similarity to the alpha-galactosidases of Thermotoga neapolitana and Thermotoga maritima and a low-level sequence similarity to alpha-galactosidases of family 36 in the classification of glycosyl hydrolases. The enzyme is thermostable, with a temperature optimum of activity at 93 degrees C with para-nitrophenyl-alpha-galactopyranoside as a substrate. Half-lives of inactivation at 92 and 80 degrees C are 100 min and 17 h, respectively. The pH optimum is between 5.5 and 6.5. The enzyme displayed high affinity for oligomeric substrates. The K(m)s for melibiose and raffinose at 80 degrees C were determined as 4.1 and 11.0 mM, respectively. The alpha-galactosidase gene in T. brockianus ITI360 was inactivated by integrational mutagenesis. Consequently, no alpha-galactosidase activity was detectable in crude extracts of the mutant strain, and it was unable to use melibiose or raffinose as a single carbohydrate source.
Collapse
Affiliation(s)
- O Fridjonsson
- Institut für Industrielle Genetik, Universität Stuttgart, 70569 Stuttgart, Germany.
| | | | | | | | | |
Collapse
|
31
|
Maras M, van Die I, Contreras R, van den Hondel CA. Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconj J 1999; 16:99-107. [PMID: 10612410 DOI: 10.1023/a:1026436424881] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Filamentous fungi are commonly used in the fermentation industry for large scale production of glycoproteins. Several of these proteins can be produced in concentrations up to 20-40 g per litre. The production of heterologous glycoproteins is at least one or two orders of magnitude lower but research is in progress to increase the production levels. In the past years the structure of protein-linked carbohydrates of a number of fungal proteins has been elucidated, showing the presence of oligo-mannosidic and high-mannose chains, sometimes with typical fungal modifications. A start has been made to engineer the glycosylation pathway in filamentous fungi to obtain strains that show a more mammalian-like type of glycosylation. This mini review aims to cover the current knowledge of glycosylation in filamentous fungi, and to show the possibilities to produce glycoproteins with these organisms with a more mammalian-like type of glycosylation for research purposes or pharmaceutical applications.
Collapse
Affiliation(s)
- M Maras
- Department of Molecular Biology, Universiteit Gent, Belgium
| | | | | | | |
Collapse
|