1
|
Sezer A, Ozalp H, Imge Ucar-Goker B, Gencer A, Ozogul E, Cennet O, Yazici G, Arica Yegin B, Yabanoglu-Ciftci S. Protective role of transforming growth factor-Β3 (TGF-Β3) in the formation of radiation-induced capsular contracture around a breast implant: In vivo experimental study. Int J Pharm 2024; 665:124715. [PMID: 39284424 DOI: 10.1016/j.ijpharm.2024.124715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 08/27/2024] [Accepted: 09/11/2024] [Indexed: 09/21/2024]
Abstract
Postmastectomy radiotherapy causes capsular contracture due to fibroproliferation of the capsular tissue around the implant. In fibrosis, unlike normal wound healing, structural and functional disorders are observed in the tissues caused by excessive/irregular accumulation of extracellular matrix proteins. It has been reported that transforming growth factor-β3 (TGF-β3) prevents and reverses fibrosis in various tissues or provides scarless healing with its antifibrotic effect. Additionally, TGF-β3 has been shown to reduce fibrosis in radiotherapy-induced fibrosis syndrome. However, no study in the literature investigates the effects of exogenously applied TGF-β3 on capsular contracture in aesthetic or reconstructive breast implant application. TGF-β3, which has a very short half-life, has low bioavailability with parenteral administration. Within the scope of this study, free TGF-β3 was loaded into the nanoparticles to increase its low bioavailability and extend its duration of action by providing controlled release. The aim of this study is to investigate the preventive/improving effects of radiation induced capsular contracture using chitosan film formulations containing TGF-β3 loaded poly(lactic-co-glycolic acid)-b-poly(ethylene glycol) (PLGA-b-PEG) nanoparticles in implant-based breast reconstruction. In the characterization studies of nanoparticles, the particle size and zeta potential of the TGF-β3-loaded PLGA-b-PEG nanoparticle formulation selected to be used in the treatment group were found to be 123.60 ± 2.09 nm and -34.87 ± 1.42 mV, respectively. The encapsulation efficiency of the formulation was calculated as 99.91 %. A controlled release profile was obtained in in vitro release studies. Chitosan film formulations containing free TGF-β3 or TGF-β3-loaded PLGA-b-PEG nanoparticles were used in in vivo studies. In animal studies, rats were randomly distributed into 6 groups (n = 8) as sham, implant, implant + radiotherapy, implant + radiotherapy + chitosan film containing unloaded nanoparticles, implant + radiotherapy + chitosan film containing free TGF-β3, implant + radiotherapy + chitosan film containing TGF-β3 loaded nanoparticle. In all study groups, a 2 cm incision was made along the posterior axillary line at the thoracic vertebral level in rats to reach the lateral edge of the latissimus dorsi. The fascial attachment to the chest wall was then bluntly dissected to create a pocket for the implants. In the treatment groups, the wound was closed after films were placed on the outer surface of the implants. After administering prophylactic antibiotics, rats were subjected to irradiation with 10 Gy photon beams targeted to each implant site. Each implant and the surrounding excised tissue were subjected to the necessary procedures for histological (capsule thickness, cell density), immunohistochemical, and biochemical (α-SMA, vimentin, collagen type I and type III, TGF-β1 and TGF-β3: expression level/protein level) examinations. It was determined that the levels of TGF-β1 and TGF-β3 collagen type III, which decreased as a result of radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film formulations. Histological analyses, consistent with biochemical analyses, showed that thick collagen and fibrosis, which increased with radiotherapy, were brought to the control level with free TGF-β3 film and TGF-β3 nanoparticle film treatments. In biochemical analyses, the decrease in thick collagen was compatible with the decrease in the collagen type I/type III ratio in the free TGF-β3 film and TGF-β3 nanoparticle film groups. Changes in protein expression show that TGF-β3 loaded nanoparticles are more successful than free TGF-β3 in wound healing. In line with these results and the literature, it is thought that the balance of TGF-β1 and TGF-β3 should be maintained to ensure scarless wound healing with no capsule contracture.
Collapse
Affiliation(s)
- Aysima Sezer
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey
| | - Hulya Ozalp
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey
| | - Bercis Imge Ucar-Goker
- Kütahya Health Sciences University, Faculty of Medicine, Department of General Surgery, 43000 Kutahya, Turkey
| | - Ayse Gencer
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Ece Ozogul
- Hacettepe University, Department of Pathology, 06100 Ankara, Turkey
| | - Omer Cennet
- Hacettepe University, Faculty of Medicine, Department of General Surgery, 06100 Ankara, Turkey
| | - Gozde Yazici
- Hacettepe University, Faculty of Medicine, Department of Radiation Oncology, 06100 Ankara, Turkey
| | - Betul Arica Yegin
- Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Technology, 06100 Ankara, Turkey
| | - Samiye Yabanoglu-Ciftci
- Hacettepe University, Faculty of Pharmacy, Department of Biochemistry, 06100 Ankara, Turkey; Hacettepe University, Faculty of Pharmacy, Department of Pharmaceutical Biotechnology, 06100 Ankara, Turkey; Hacettepe University, Institute of Health Sciences, Department of One Health, 06100 Ankara, Turkey.
| |
Collapse
|
2
|
Pepelanova I. Tunable Hydrogels: Introduction to the World of Smart Materials for Biomedical Applications. ADVANCES IN BIOCHEMICAL ENGINEERING/BIOTECHNOLOGY 2021; 178:1-35. [PMID: 33903929 DOI: 10.1007/10_2021_168] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Hydrogels are hydrated polymers that are able to mimic many of the properties of living tissues. For this reason, they have become a popular choice of biomaterial in many biomedical applications including tissue engineering, drug delivery, and biosensing. The physical and biological requirements placed on hydrogels in these contexts are numerous and require a tunable material, which can be adapted to meet these demands. Tunability is defined as the use of knowledge-based tools to manipulate material properties in the desired direction. Engineering of suitable mechanical properties and integrating bioactivity are two major aspects of modern hydrogel design. Beyond these basic features, hydrogels can be tuned to respond to specific environmental cues and external stimuli, which are provided by surrounding cells or by the end user (patient, clinician, or researcher). This turns tunable hydrogels into stimulus-responsive smart materials, which are able to display adaptable and dynamic properties. In this book chapter, we will first shortly cover the foundation of hydrogel tunability, related to mechanical properties and biological functionality. Then, we will move on to stimulus-responsive hydrogel systems and describe their basic design, as well as give examples of their application in diverse biomedical fields. As both the understanding of underlying biological mechanisms and our engineering capacity mature, even more sophisticated tunable hydrogels addressing specific therapeutic goals will be developed.
Collapse
Affiliation(s)
- Iliyana Pepelanova
- Institute of Technical Chemistry, Leibniz University of Hannover, Hanover, Germany.
| |
Collapse
|
3
|
Puthumana M, Santhana Gopala Krishnan P, Nayak SK. Chemical modifications of PLA through copolymerization. INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION 2020. [DOI: 10.1080/1023666x.2020.1830650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Manju Puthumana
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - P. Santhana Gopala Krishnan
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| | - Sanjay Kumar Nayak
- Department of Plastics Technology, Central Institute of Plastics Engineering and Technology, Institute of Plastics Technology, Chennai, India
| |
Collapse
|
4
|
Ozaltin K, Vargun E, Di Martino A, Capakova Z, Lehocky M, Humpolicek P, Kazantseva N, Saha P. Cell response to PLA scaffolds functionalized with various seaweed polysaccharides. INT J POLYM MATER PO 2020. [DOI: 10.1080/00914037.2020.1798443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Kadir Ozaltin
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
| | - Elif Vargun
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
- Faculty of Science, Chemistry Department, Mugla Sitki Kocman University, Mugla, Turkey
| | - Antonio Di Martino
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
- Research School of Chemistry and Applied Biomedical Sciences, Tomsk Polytechnic University, Tomsk, Russian Federation
| | - Zdenka Capakova
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
| | - Marian Lehocky
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
| | - Petr Humpolicek
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
| | - Natalia Kazantseva
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
| | - Petr Saha
- Centre of Polymer Systems, Tomas Bata University in Zlín, Zlin, Czech Republic
| |
Collapse
|
5
|
Li J, Wu C, Chu PK, Gelinsky M. 3D printing of hydrogels: Rational design strategies and emerging biomedical applications. MATERIALS SCIENCE AND ENGINEERING: R: REPORTS 2020; 140:100543. [DOI: 10.1016/j.mser.2020.100543] [Citation(s) in RCA: 370] [Impact Index Per Article: 74.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Bolotin DS, Korzhikov-Vlakh V, Sinitsyna E, Yunusova SN, Suslonov VV, Shetnev A, Osipyan A, Krasavin M, Kukushkin VY. Biocompatible zinc(II) 8-(dihydroimidazolyl)quinoline complex and its catalytic application for synthesis of poly(L,L-lactide). J Catal 2019. [DOI: 10.1016/j.jcat.2019.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
7
|
Maeda T, Kitagawa M, Hotta A, Koizumi S. Thermo-Responsive Nanocomposite Hydrogels Based on PEG- b-PLGA Diblock Copolymer and Laponite. Polymers (Basel) 2019; 11:E250. [PMID: 30960234 PMCID: PMC6419014 DOI: 10.3390/polym11020250] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 01/28/2019] [Accepted: 01/29/2019] [Indexed: 02/05/2023] Open
Abstract
Poly(ethylene glycol)-b-poly(d,l-lactide-co-glycolide) (PEG-b-PLGA) diblock copolymers are widely known as polymeric surfactants for biomedical applications, and exhibit high solubility in water compared to PLGA-b-PEG-b-PLGA triblock copolymers known as gelation agents. In order to overcome the difficulties in the preparation of thermo-responsive hydrogels based on PLGA-b-PEG-b-PLGA due to the low solubility in water, the fabrication of thermo-responsive hydrogels based on PEG-b-PLGA with high solubility in water was attempted by adding laponite to the PEG-b-PLGA solution. In detail, PEG-b-PLGA with high solubility in water (i.e., high PEG/PLGA ratio) were synthesized. Then, the nanocomposite solution based on PEG-b-PLGA and laponite (laponite/PEG-b-PLGA nanocomposite) was fabricated by mixing the PEG-b-PLGA solutions and the laponite suspensions. By using the test tube inversion method and dynamic mechanical analysis (DMA), it was found that thermo-responsive hydrogels could be obtained by using PEG-b-PLGA, generally known as polymeric surfactants, and that the gelation temperature was around the physiological temperature and could be regulated by changing the solution composition. Furthermore, from the structural analysis by small angle neutron scattering (SANS), PEG-b-PLGA was confirmed to be on the surface of the laponite platelets, and the thermosensitive PEG-b-PLGA on the laponite surface could trigger the thermo-responsive connection of the preformed laponite network.
Collapse
Affiliation(s)
- Tomoki Maeda
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
- Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Midori Kitagawa
- Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Atsushi Hotta
- Department of Mechanical Engineering, Keio University, 3-14-1, Hiyoshi, Kohoku-ku, Yokohama 223-8522, Japan.
| | - Satoshi Koizumi
- Frontier Research Center for Applied Atomic Sciences, Ibaraki University, 162-1 Shirakata, Tokai, Ibaraki 319-1106, Japan.
| |
Collapse
|
8
|
Dias ARM, Miranda BNMD, Cobas-Gomez H, Poço JGR, Rubio MRG, Oliveira AMD. Synthesis and characterization of amphiphilic block copolymers by transesterification for nanoparticle production. POLIMEROS 2019. [DOI: 10.1590/0104-1428.02918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Jubeli E, Khzam A, Yagoubi N. Cells integration onto scaffolds prepared from polyester based polymers – importance of polymer thermal properties in addition to hydrophilicity. INT J POLYM MATER PO 2018. [DOI: 10.1080/00914037.2018.1525549] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Emile Jubeli
- Faculty of Pharmacy, Paris-Sud University, Paris, France
| | - Afif Khzam
- Faculty of Pharmacy, Paris-Sud University, Paris, France
| | - Najet Yagoubi
- Faculty of Pharmacy, Paris-Sud University, Paris, France
| |
Collapse
|
10
|
Shen Y, Zhang J, Zhao Z, Zhao N, Liu F, Li Z. Preparation of Amphiphilic Poly(ethylene glycol)-b-poly(γ-butyrolactone) Diblock Copolymer via Ring Opening Polymerization Catalyzed by a Cyclic Trimeric Phosphazene Base or Alkali Alkoxide. Biomacromolecules 2018; 20:141-148. [DOI: 10.1021/acs.biomac.8b01239] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Yong Shen
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Jinbo Zhang
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhichao Zhao
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Na Zhao
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Fusheng Liu
- College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Zhibo Li
- Key Laboratory of Biobased Polymer Materials, Shandong Provincial Education Department, College of Polymer Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| |
Collapse
|
11
|
Yi M, Lu Q, Zhao Y, Cheng C, Zhang S. Synthesis and Self-Assembly of the pH-Responsive Anionic Copolymers for Enhanced Doxorubicin-Loading Capacity. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:7877-7886. [PMID: 29870261 DOI: 10.1021/acs.langmuir.8b01237] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Polyelectrolyte complex micelles self-assembled from an ionic polymer and oppositely charged small molecules are a promising drug delivery system. In this study, the anionic block copolymers composed of poly(ethylene glycol), poly(ε-caprolactone), and carboxyl modified poly(ε-caprolactone), COOH-PCEC, were designed to encapsulate doxorubicin (DOX) via electrostatic and hydrophobic interactions to form spherical micelles with a particle size of 90-140 nm. The higher payload capacity of these micelles than noncharged micelles of PCL-poly(ethylene glycol)-PCL (PCEC) was achieved, and it was strongly dependent on the composition of the micelles. In vitro drug release studies showed that the release of DOX from the micelles was faster at pH 5.5 than at pH 7.4, which was mainly due to the protonation of carboxyl groups and the solubility of DOX. Studies of intracellular uptake demonstrated that the DOX-loaded micelles could be internalized effectively by HeLa cells. In vitro cytotoxicity revealed that the blank COOH-PCEC micelles had a low cytotoxicity against both L929 and HeLa cells. However, the DOX-loaded micelles inhibited the growth of HeLa cells remarkably, demonstrating their potential for use as an efficient carrier for the delivery of DOX.
Collapse
Affiliation(s)
- Meijun Yi
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Qian Lu
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Yuping Zhao
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Chenqian Cheng
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| | - Shiping Zhang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of Ministry of Education, College of Chemistry and Materials Science , Northwest University , Xi'an 710127 , China
| |
Collapse
|
12
|
|
13
|
Ma F, Yuan CW, Ren XX, You CJ, Cao JH, Wu DY. 5,10,15,20-Tetrakis (4-carboxyphenyl) porphin-conjugated poly(l-lactic) acid/polyethylene oxide nanofiber membranes for photodynamic therapy. J Photochem Photobiol A Chem 2018. [DOI: 10.1016/j.jphotochem.2017.08.062] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Mattioli-Belmonte M, Giavaresi G, Biagini G, Virgili L, Giacomini M, Fini M, Giantomassi F, Natali D, Torricelli P, Giardino R. Tailoring Biomaterial Compatibility: In Vivo Tissue Response versus in Vitro Cell Behavior. Int J Artif Organs 2018; 26:1077-85. [PMID: 14738191 DOI: 10.1177/039139880302601205] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Biocompatibility relies essentially on surface phenomena, represented by cell-cell, cell-material and material (polymer)-protein interactions. An in vivo and in vitro experimental investigation was carried out on the biomaterials of two different classes with a good potential for in situ utilisation. Non-resorbable (Polypyrrole, Polyaniline, Polyimide) and resorbable (PLLA-PDXO-PLLA) materials for tissue engineering were studied for their overall tissue tolerance and cellular interactions. These non-resorbable polymers conceived for biosensor applications and implantable drug-delivery systems are intrinsically conductive. The PLLA-PDXO-PLLA triblock copolymer showed interesting tensile properties for bone and cartilage tissue engineering due to the presence of 1,5-dioxepan-2-one. In vitro and in vivo parallel studies showed an interesting correspondence: a) the cells in contact with the resorbable material that appeared to be capable of migratory-regenerative aspects in vitro exhibited good compatibility in vivo; whereas b) the non-resorbable materials, which are designed to remain in situ in vivo, were seen to have the potential to represent an adverse factor (inflammation, fibrotic reactions) that correlated with some aspects of cell behaviour in vitro.
Collapse
Affiliation(s)
- M Mattioli-Belmonte
- Institute of Normal Human Morphology, Polytechnic University of Marche, Ancona, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Liu K, Chen W, Yang T, Wen B, Ding D, Keidar M, Tang J, Zhang W. Paclitaxel and quercetin nanoparticles co-loaded in microspheres to prolong retention time for pulmonary drug delivery. Int J Nanomedicine 2017; 12:8239-8255. [PMID: 29180863 PMCID: PMC5691910 DOI: 10.2147/ijn.s147028] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
High drug resistance, poor water solubility, short half-life, and low local drug concentration are obstacles for successful delivery of chemotherapeutic drugs for lung cancer. A new method involving the use of nanoparticles (NPs) for pulmonary delivery is proposed. However, use of NPs is limited by the particle size range for pulmonary drug delivery considering that NPs cannot be deposited directly into the lungs. NPs polymerized into microspheres (polymeric microspheres, PMs) will result in suitable particle sizes and retain the advantages of nanodrugs after redispersion when applied in pulmonary delivery. We report the development of novel NPs in the form of PMs loaded with paclitaxel (PTX) and quercetin (QUE) double drugs based on the synthesis of oleic acid-conjugated chitosan (OA-CTS) for pulmonary delivery. This approach is aimed toward prolonging PTX retention time in the presence of QUE and bypassing P-glycoprotein drug efflux pumps. NPs loaded with PTX or QUE were prepared with 11% substitution degree using OA-CTS as the carrier by ionic cross-linking method, which NPs loaded with PTX or QUE were used in the preparation of PMs by spray-drying. The diameters of the PMs ranged from 1 to 5 μm which had uniform size range. Scanning electron microscopy showed that PMs were polymers formed by a large number of NPs and readily redispersed (after redispersion, size of NPs ranged between 250 and 350 nm) in water within 1 h. PMs displayed slow-release characteristics at pH 4.5 and 7.4. The in vivo pharmacokinetic and biodistribution studies suggested that PMs exhibit prolonged circulation time and a markedly high accumulation in the lung. The obtained results indicate that PMs can serve as a promising pulmonary delivery system for combined pharmacotherapy using hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Kang Liu
- College of Pharmacy, Weifang Medical University, Weifang
| | - Weijuan Chen
- Department of Pathology, People's Hospital of Shouguang, Shouguang, People's Republic of China
| | - Tingting Yang
- College of Pharmacy, Weifang Medical University, Weifang
| | - Baofang Wen
- College of Pharmacy, Weifang Medical University, Weifang
| | - Dejun Ding
- College of Pharmacy, Weifang Medical University, Weifang
| | - Michael Keidar
- Department of Mechanical and Aerospace Engineering, School of Engineering and Applied Science, The George Washington University, Washington, DC, USA
| | - Jinbao Tang
- College of Pharmacy, Weifang Medical University, Weifang
| | - Weifen Zhang
- College of Pharmacy, Weifang Medical University, Weifang
| |
Collapse
|
16
|
Kumari P, Jain S, Ghosh B, Zorin V, Biswas S. Polylactide-Based Block Copolymeric Micelles Loaded with Chlorin e6 for Photodynamic Therapy: In Vitro Evaluation in Monolayer and 3D Spheroid Models. Mol Pharm 2017; 14:3789-3800. [DOI: 10.1021/acs.molpharmaceut.7b00548] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Preeti Kumari
- Department of Pharmacy, Birla Institute of Technology & Science—Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| | - Shreya Jain
- Department of Pharmacy, Birla Institute of Technology & Science—Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| | - Balaram Ghosh
- Department of Pharmacy, Birla Institute of Technology & Science—Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| | - Vladimir Zorin
- Department
of Biophysics, Belarusian State University, 220030 Minsk, Belarus
| | - Swati Biswas
- Department of Pharmacy, Birla Institute of Technology & Science—Pilani, Hyderabad Campus, Jawahar Nagar, Shameerpet, Hyderabad 500078, Telangana, India
| |
Collapse
|
17
|
Sekerdag E, Lüle S, Bozdağ Pehlivan S, Öztürk N, Kara A, Kaffashi A, Vural I, Işıkay I, Yavuz B, Oguz KK, Söylemezoğlu F, Gürsoy-Özdemir Y, Mut M. A potential non-invasive glioblastoma treatment: Nose-to-brain delivery of farnesylthiosalicylic acid incorporated hybrid nanoparticles. J Control Release 2017; 261:187-198. [PMID: 28684169 DOI: 10.1016/j.jconrel.2017.06.032] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 05/29/2017] [Accepted: 06/28/2017] [Indexed: 11/26/2022]
Abstract
New drug delivery systems are highly needed in research and clinical area to effectively treat gliomas by reaching a high antineoplastic drug concentration at the target site without damaging healthy tissues. Intranasal (IN) administration, an alternative route for non-invasive drug delivery to the brain, bypasses the blood-brain-barrier (BBB) and eliminates systemic side effects. This study evaluated the antitumor efficacy of farnesylthiosalicylic acid (FTA) loaded (lipid-cationic) lipid-PEG-PLGA hybrid nanoparticles (HNPs) after IN application in rats. FTA loaded HNPs were prepared, characterized and evaluated for cytotoxicity. Rat glioma 2 (RG2) cells were implanted unilaterally into the right striatum of female Wistar rats. 10days later, glioma bearing rats received either no treatment, or 5 repeated doses of 500μM freshly prepared FTA loaded HNPs via IN or intravenous (IV) application. Pre-treatment and post-treatment tumor sizes were determined with MRI. After a treatment period of 5days, IN applied FTA loaded HNPs achieved a significant decrease of 55.7% in tumor area, equal to IV applied FTA loaded HNPs. Herewith, we showed the potential utility of IN application of FTA loaded HNPs as a non-invasive approach in glioblastoma treatment.
Collapse
Affiliation(s)
- Emine Sekerdag
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Neuroscience Research Lab, Research Center for Translational Medicine, Koҫ University, Istanbul, Turkey.
| | - Sevda Lüle
- Institute of Neurological Sciences and Psychiatry, Hacettepe University, Ankara, Turkey; Neuroscience Center and Department of Pediatrics, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, USA
| | - Sibel Bozdağ Pehlivan
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Naile Öztürk
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Aslı Kara
- Department of Nanotechnology and Nanomedicine, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey; Department of Biology, Faculty of Art and Science, Hitit University, Çorum, Turkey
| | - Abbas Kaffashi
- Department of Nanotechnology and Nanomedicine, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Imran Vural
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Ilkay Işıkay
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Burҫin Yavuz
- Department of Pharmaceutical Technology, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Kader Karlı Oguz
- Department of Radiology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Figen Söylemezoğlu
- Department of Pathology, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| | - Yasemin Gürsoy-Özdemir
- Neuroscience Research Lab, Research Center for Translational Medicine, Koҫ University, Istanbul, Turkey; Department of Neurology, School of Medicine, Koҫ University, Istanbul, Turkey
| | - Melike Mut
- Department of Neurosurgery, Faculty of Medicine, Hacettepe University, Ankara, Turkey
| |
Collapse
|
18
|
Haggag YA, Faheem AM, Tambuwala MM, Osman MA, El-Gizawy SA, O’Hagan B, Irwin N, McCarron PA. Effect of poly(ethylene glycol) content and formulation parameters on particulate properties and intraperitoneal delivery of insulin from PLGA nanoparticles prepared using the double-emulsion evaporation procedure. Pharm Dev Technol 2017; 23:370-381. [DOI: 10.1080/10837450.2017.1295066] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Yusuf A. Haggag
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Ahmed M. Faheem
- Department of Pharmacy, Health and Well-being, University of Sunderland, Sunderland, UK
| | - Murtaza M. Tambuwala
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
| | - Mohamed A. Osman
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Sanaa A. El-Gizawy
- Department of Pharmaceutical Technology, Faculty of Pharmacy, University of Tanta, Tanta, Egypt
| | - Barry O’Hagan
- School of Biomedical Sciences, Ulster University, Cromore Road, Coleraine, Co. Londonderry, UK
| | - Nigel Irwin
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
| | - Paul A. McCarron
- School of Pharmacy and Pharmaceutical Sciences, Saad Centre for Pharmacy and Diabetes, Ulster University, Coleraine, Co. Londonderry, UK
| |
Collapse
|
19
|
Charoongchit P, Suksiriworapong J, Sripha K, Mao S, Sapin-Minet A, Maincent P, Junyaprasert VB. Self-aggregation of cationically modified poly( ε -caprolactone) 2 - co -poly(ethylene glycol) copolymers: Effect of cationic grafting ligand and poly( ε -caprolactone) chain length. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 72:444-455. [DOI: 10.1016/j.msec.2016.11.043] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 10/09/2016] [Accepted: 11/13/2016] [Indexed: 11/29/2022]
|
20
|
Jahandideh A, Muthukumarappan K. Star-shaped lactic acid based systems and their thermosetting resins; synthesis, characterization, potential opportunities and drawbacks. Eur Polym J 2017. [DOI: 10.1016/j.eurpolymj.2016.12.035] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
21
|
Houvenagel S, Picheth G, Dejean C, Brûlet A, Chennevière A, Couture O, Huang N, Moine L, Tsapis N. End-chain fluorination of polyesters favors perfluorooctyl bromide encapsulation into echogenic PEGylated nanocapsules. Polym Chem 2017. [DOI: 10.1039/c7py00400a] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Fluorination of polyesters favors the encapsulation efficiency of perfluorooctyl bromide into nanocapsules.
Collapse
Affiliation(s)
- Sophie Houvenagel
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Guilherme Picheth
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Camille Dejean
- BioCIS
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Annie Brûlet
- Laboratoire Léon Brillouin
- UMR12 CEA-CNRS
- CEA Saclay
- Gif sur Yvette
- France
| | | | - Olivier Couture
- Institut Langevin
- ESPCI Paris
- CNRS (UMR 7587)
- INSERM (U979)
- Paris
| | - Nicolas Huang
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Laurence Moine
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| | - Nicolas Tsapis
- Institut Galien Paris-Sud
- CNRS
- Univ. Paris-Sud
- Université Paris-Saclay
- 92296 Châtenay-Malabry
| |
Collapse
|
22
|
Leclercq L, Vert M. Comparison between protein repulsions by diblock PLA-PEO and albumin nanocoatings using OWLS. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 28:177-193. [DOI: 10.1080/09205063.2016.1262160] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Laurent Leclercq
- Faculty of Pharmacy, IBMM-UMR CNRS 5247, University of Montpellier – CNRS, Montpellier Cedex 5, France
| | - Michel Vert
- Faculty of Pharmacy, IBMM-UMR CNRS 5247, University of Montpellier – CNRS, Montpellier Cedex 5, France
| |
Collapse
|
23
|
Lins LC, Wianny F, Livi S, Hidalgo IA, Dehay C, Duchet-Rumeau J, Gérard JF. Development of Bioresorbable Hydrophilic–Hydrophobic Electrospun Scaffolds for Neural Tissue Engineering. Biomacromolecules 2016; 17:3172-3187. [DOI: 10.1021/acs.biomac.6b00820] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Luanda Chaves Lins
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Florence Wianny
- Inserm,
Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Sébastien Livi
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Idalba Andreina Hidalgo
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Colette Dehay
- Inserm,
Stem Cell and Brain Research Institute U1208, Univ Lyon, Université Claude Bernard Lyon 1, 69500 Bron, France
| | - Jannick Duchet-Rumeau
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| | - Jean-François Gérard
- Ingénierie
des Matériaux Polymères CNRS, UMR 5223; INSA Lyon, Université de Lyon, F-69621 Villeurbanne, France
| |
Collapse
|
24
|
Korley JN, Yazdi S, McHugh K, Kirk J, Anderson J, Putnam D. One-step synthesis, biodegradation and biocompatibility of polyesters based on the metabolic synthon, dihydroxyacetone. Biomaterials 2016; 98:41-52. [DOI: 10.1016/j.biomaterials.2016.04.042] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2016] [Revised: 04/19/2016] [Accepted: 04/29/2016] [Indexed: 10/21/2022]
|
25
|
Arami S, Rashidi MR, Mahdavi M, Fathi M, Entezami AA. Synthesis and characterization of Fe3O4-PEG-LAC-chitosan-PEI nanoparticle as a survivin siRNA delivery system. Hum Exp Toxicol 2016; 36:227-237. [DOI: 10.1177/0960327116646618] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The limited effectiveness of the conventional methods for cancer treatment makes the researchers to find novel safe and effective therapeutic strategies. One of these strategies is to use small interfering RNAs (siRNAs). A major challenge here is the siRNA delivery into the cells. The purpose of this study was to design and prepare a biocompatible, biodegradable, and safe nanosized particle for siRNA delivery into human breast cancer MCF-7 and leukemia K562 cells. Chemically synthesized magnetic nanoparticles containing polyethyleneglycol-lactate polymer (PEG-LAC), chitosan, and polyethyleneimine (PEI) were successfully prepared and used as a gene delivery vehicle. The nanoparticles were characterized by Fourier transform infrared spectroscopy and zeta potential. The Fe3O4-PEG-LAC-chitosan-PEI nanoparticle showed efficient and stable survivin siRNA loading in gel retardation assay. The cytotoxicity of the prepared nanoparticle was studied using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium bromide assay and was compared with that of mitoxantrone (MTX) in combination with the prepared siRNA delivery system to evaluate the possible synergic effect of MTX and survivin siRNA. The nanoparticles with and without noncomplementary siRNA showed low toxicity against both cell lines; however, a twofold decrease was observed in cell survival percent after MTX addition to MCF-7 cells treated with either nanoparticle itself or complexed with noncomplementary siRNA. While survivin siRNA nanoplex caused threefold decrease in the cell survival percent, its combination with MTX did not result in a significant increase in the cytotoxic effect. Therefore, Fe3O4-PEG-LAC-chitosan-PEI nanoparticle should be considered as a potential carrier for enhanced survivin siRNA delivery into MCF-7 and K562 cells.
Collapse
Affiliation(s)
- S Arami
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - MR Rashidi
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Mahdavi
- Department of Biology, Faculty of Natural Science, University Of Tabriz, Tabriz, Iran
| | - M Fathi
- Laboratory of Polymer, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | - AA Entezami
- Laboratory of Polymer, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| |
Collapse
|
26
|
Li H, Wang P, Wang X, Yin T, Zhou G, Shuai X, Zheng R. Perfluorooctyl bromide traces self-assembled with polymeric nanovesicles for blood pool ultrasound imaging. Biomater Sci 2016; 4:979-88. [PMID: 27121357 DOI: 10.1039/c6bm00080k] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
A novel perfluorooctyl bromide (PFOB)-loaded nanovesicle with a size of about 500 nm was prepared by self-assembly of an amphiphilic block copolymer, poly(ethylene oxide)-b-poly(d,l-lactic acid) (PEG-PDLLA), for blood pool ultrasound imaging. The excellent compatibility of PFOB with the hydrophobic PDLLA block makes PFOB uniformly distribute and integrate well within the nanovesicle shell. In theory, both the compressibility and shell density of the nanovesicle as ultrasound scatterers are enhanced, resulting in much higher echo intensity compared to the other PFOB nanoparticles. In vitro and in vivo imaging results illustrate that these polymeric nanovesicles with extremely low content of PFOB show quite a good contrast-enhancing effect even if highly diluted in blood. Therefore this PFOB-loaded polymeric nanovesicle is anticipated to be applicable as an ultrasound contrast agent for normal angiography and specific imaging of capillary-abundant organs or tissues (e.g. tumors).
Collapse
Affiliation(s)
- Hao Li
- Institute of Electronic Paper Display, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
27
|
Suksiriworapong J, Phoca K, Ngamsom S, Sripha K, Moongkarndi P, Junyaprasert VB. Comparison of poly(ε-caprolactone) chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl-poly(ethylene glycol) 1000 succinate nanoparticles for enhancement of quercetin delivery to SKBR3 breast cancer cells. Eur J Pharm Biopharm 2016; 101:15-24. [PMID: 26802701 DOI: 10.1016/j.ejpb.2016.01.008] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 01/11/2016] [Accepted: 01/14/2016] [Indexed: 01/10/2023]
Abstract
This study aimed to investigate the effect of the different hydrophobic chain lengths of poly(ε-caprolactone)-co-d-α-tocopheryl polyethylene glycol 1000 succinate (P(CL)-TPGS) copolymers on the nanoparticle properties and delivery efficiency of quercetin to SKBR3 breast cancer cells. The 5:1, 10:1 and 20:1 P(CL)-TPGS copolymers were fabricated and found to be composed of 25.0%, 45.2% and 66.8% of hydrophobic P(CL) chains with respect to the polymer chain, respectively. The DSC measurement indicated the microphase separation of P(CL) and TPGS segments. The crystallization of P(CL) segment occurred when the P(CL) chain was higher than 25% due to the restricted mobility of P(CL) by TPGS. The longer P(CL) chain had the higher crystallinity while decreasing the crystallinity of TPGS segment. The increasing P(CL) chain length increased the particle size of P(CL)-TPGS nanoparticles from 20 to 205 nm and enhanced the loading capacity of quercetin due to the more hydrophobicity of the nanoparticle core. The release of quercetin was retarded by an increase in P(CL) chain length associated with the increasing hydrophobicity and crystallinity of P(CL)-TPGS copolymers. The P(CL)-TPGS nanoparticles potentiated the toxicity of quercetin to SKBR3 cells by at least 2.9 times compared to the quercetin solution. The cellular uptake of P(CL)-TPGS nanoparticles by SKBR3 cells occurred through cholesterol-dependent endocytosis. The 10:1 P(CL)-TPGS nanoparticles showed the highest toxicity and uptake efficiency and could be potentially used for the delivery of quercetin to breast cancer cells.
Collapse
Affiliation(s)
- Jiraphong Suksiriworapong
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand; Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand.
| | - Kittisak Phoca
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Supakanda Ngamsom
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Kittisak Sripha
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Primchanien Moongkarndi
- Department of Microbiology, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| | - Varaporn Buraphacheep Junyaprasert
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand; Center of Excellence in Innovative Drug Delivery and Nanomedicine, Faculty of Pharmacy, Mahidol University, Rajathevi, Bangkok 10400, Thailand
| |
Collapse
|
28
|
Kessler M, Groll J, Tessmar J. Application of Linear and Branched Poly(Ethylene Glycol)-Poly(Lactide) Block Copolymers for the Preparation of Films and Solution Electrospun Meshes. Macromol Biosci 2015; 16:441-50. [DOI: 10.1002/mabi.201500238] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/16/2015] [Indexed: 11/10/2022]
Affiliation(s)
- Martina Kessler
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Juergen Groll
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Joerg Tessmar
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| |
Collapse
|
29
|
Synthesis and evaluation of MePEG-PCL diblock copolymers: surface properties and controlled release behavior. Prog Biomater 2015; 4:89-100. [PMID: 26566467 PMCID: PMC4636528 DOI: 10.1007/s40204-015-0040-4] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Accepted: 07/31/2015] [Indexed: 10/28/2022] Open
Abstract
The amphiphilic block copolymers are composed of various combinations of hydrophilic and hydrophobic block unimers. The variation in unimer ratio alters the surface as well as micelle-forming properties of the block copolymers. These nanoscopic micelles have the ability to encapsulate hydrophobic compounds and act as potential drug carrier. MePEG-PCL copolymers with various block lengths were synthesized by ring-opening polymerization and characterized by 1HNMR, GPC, WXRD and DSC. The number average molecular weight of the block copolymer was found to vary from 7511 to 21,270 as determined by GPC and 1HNMR studies. The surface topology of the polymer films was determined by AFM analysis, which shows a smoother surface with increased MePEG contents in the block copolymers. The protein-binding assay indicates a better biocompatibility of the block copolymers in comparison to MePEG or PCL alone. The CMC of the block copolymer provides the information about micelle formations for encapsulation of hydrophobic materials and affects the in vitro release.
Collapse
|
30
|
Kessler M, Esser E, Groll J, Tessmar J. Bilateral PLA/alginate membranes for the prevention of postsurgical adhesions. J Biomed Mater Res B Appl Biomater 2015; 104:1563-1570. [DOI: 10.1002/jbm.b.33503] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Revised: 06/29/2015] [Accepted: 07/30/2015] [Indexed: 11/07/2022]
Affiliation(s)
- Martina Kessler
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Eva Esser
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Jürgen Groll
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| | - Jörg Tessmar
- Department for Functional Materials in Medicine and Dentistry; University of Wuerzburg; Pleicherwall 2 97070 Wuerzburg Germany
| |
Collapse
|
31
|
Amphiphilic multiblock copolymers of PLLA, PEO and PPO blocks: Synthesis, properties and cell affinity. Eur Polym J 2015. [DOI: 10.1016/j.eurpolymj.2015.03.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
32
|
Stanković M, Hiemstra C, de Waard H, Zuidema J, Steendam R, Frijlink HW, Hinrichs WL. Protein release from water-swellable poly(d,l-lactide-PEG)-b-poly(ϵ-caprolactone) implants. Int J Pharm 2015; 480:73-83. [DOI: 10.1016/j.ijpharm.2015.01.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 12/26/2014] [Accepted: 01/04/2015] [Indexed: 10/24/2022]
|
33
|
Chow WS, Ng K, Mohd Ishak ZA, Hashim H, Mohd Noor SNF. Human Gingival Fibroblasts Cell Viability of Poly(Lactic Acid) Powder Reinforced PMMA/Hydroxyapatite Biocomposites. INT J POLYM MATER PO 2014. [DOI: 10.1080/00914037.2014.936590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
34
|
Zuo DY, Zhang L, Yi CH, Zuo HT. Effects of compatibility of poly(l
-lactic-acid) and thermoplastic polyurethane on mechanical property of blend fiber. POLYM ADVAN TECHNOL 2014. [DOI: 10.1002/pat.3382] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Dan-Ying Zuo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| | - Lei Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| | - Chang-Hai Yi
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| | - Han-Tao Zuo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies; Wuhan Textile University; Hubei 430073 China
| |
Collapse
|
35
|
Abstract
This study evaluated thein vitrodegradation of pellet, powder and plates of poly-L-DL-lactic acid (PLDLLA) after two processing methods. Part of the material was reduced to powder by cryogenic milling and part of it molded injected in plate form. The crystallinity was evaluated by Differential Scanning Calorimetry (DSC), Fourier Transform Infrared Spectroscopy (FTIR), X-Ray Diffraction (XRD), and Gel Permeation Chromatography (GPC) before and after immersion in simulated body fluid for 30, 60, and 90 days. The glass transition temperature (Tg) of the pellets and the powder were 61.5°C, 66°C. The Tgs of the plates ranged from 59.55°C to 63.06°C. Their endothermic peaks were observed at 125°C and 120°C, which was not identified to the plates samples. The FTIR spectrum showed bands of amorphous and crystalline content. The XRD results showed a peak related to the crystalline content, and a wide reflection related to the amorphous content. The milling process increased the crystallinity and the molding injection decreased it.
Collapse
|
36
|
Yang J, Liang Y, Han CC. Crystallization-driven surface segregation and surface structures in poly(L-lactide)-block-poly(ethylene glycol) copolymer thick films. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2014; 30:394-401. [PMID: 24328957 DOI: 10.1021/la4041387] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
In this work, we used poly(L-lactide)-block-poly(ethylene glycol) (PLLA-b-PEG) copolymer thick films to investigate the effect of crystallization on surface segregation, surface crystal orientation, and morphology by attenuated total reflection Fourier transform infrared spectroscopy (ATR-FTIR), reflection optical microscopy (ROM), and two-dimensional grazing incident wide-angle X-ray scattering (2D GIWAXS) methods. ATR-FTIR results indicated that the surface fraction of PLLA block increased from 0.48 to 0.79 when T(c,PLLA) increased from 70 to 110 °C. Polarized ATR-FTIR and 2D GIWAXS results indicated that PLLA crystal lamellae preferentially oriented parallel to the film surface with increasing T(c,PLLA). The surface crystallinity of PLLA was almost independent of T(c,PLLA), while the surface crystallinity of PEG decreased with increasing T(c,PLLA). On the basis of surface crystal orientation and crystallization kinetics, we suggested that the excess of PLLA component at the surface was mainly dominated by a coupling effect of crystallization behavior and surface segregation.
Collapse
Affiliation(s)
- Jingjing Yang
- State Key Laboratory of Polymer Physics and Chemistry, Joint Laboratory of Polymer Science and Materials, The Beijing National Laboratory for Molecular Sciences, and Institute of Chemistry, Chinese Academy of Sciences , Beijing 100080, China
| | | | | |
Collapse
|
37
|
Mondal A, Mandal B. Synthesis and characterization of crosslinked poly(vinyl alcohol)/poly(allylamine)/2-amino-2-hydroxymethyl-1,3-propanediol/polysulfone composite membrane for CO2/N2 separation. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.06.052] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
Cespi M, Casettari L, Bonacucina G, Giorgioni G, Perinelli DR, Palmieri GF. Evaluation of methoxy polyethylene glycol-polylactide diblock copolymers as additive in hypromellose film coating. POLYM ADVAN TECHNOL 2013. [DOI: 10.1002/pat.3182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Marco Cespi
- School of Pharmacy; University of Camerino; Camerino Macerata Italy
| | - Luca Casettari
- Department of Biomolecular Sciences; University of Urbino; Urbino Pesaro e Urbino Italy
| | | | | | | | | |
Collapse
|
39
|
Bhushan B, Schricker SR. A review of block copolymer-based biomaterials that control protein and cell interactions. J Biomed Mater Res A 2013; 102:2467-80. [PMID: 23893878 DOI: 10.1002/jbm.a.34887] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 07/11/2013] [Accepted: 07/17/2013] [Indexed: 11/07/2022]
Abstract
Block copolymers posses the ability to phase separate into micro and nanoscale patterns resulting in nonhomogeneous surfaces and solids. This nonhomogeneity has been harnessed to improve mechanical properties, control degradation, and add functionality to biomaterials. The ability of block copolymers to generate a wide variety of surface chemistries and morphologies can also be harnessed to control protein adsorption, protein conformation, and cell adhesion. Proteins and cells will respond to periodically structured surfaces, so block copolymers have a great deal of potential as biomaterials. This review will explore the ability of block copolymers to control specific biological responses such as cell adhesion, protein adsorption and conformation, parameters that govern the overall host response to a material. In addition, some of the specific applications of block copolymer, antithrombogenic materials and their ability to pattern proteins, will be discussed.
Collapse
Affiliation(s)
- Bharat Bhushan
- Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics, The Ohio State University, Columbus, Ohio, 43210
| | | |
Collapse
|
40
|
Kutikov AB, Song J. An amphiphilic degradable polymer/hydroxyapatite composite with enhanced handling characteristics promotes osteogenic gene expression in bone marrow stromal cells. Acta Biomater 2013; 9:8354-64. [PMID: 23791675 PMCID: PMC3745304 DOI: 10.1016/j.actbio.2013.06.013] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2013] [Revised: 05/31/2013] [Accepted: 06/10/2013] [Indexed: 01/13/2023]
Abstract
Electrospun polymer/hydroxyapatite (HA) composites combining biodegradability with osteoconductivity are attractive for skeletal tissue engineering applications. However, most biodegradable polymers such as poly(lactic acid) (PLA) are hydrophobic and do not blend with adequate interfacial adhesion with HA, compromising the structural homogeneity, mechanical integrity and biological performance of the composite. To overcome this challenge, we combined a hydrophilic polyethylene glycol (PEG) block with poly(d,l-lactic acid) to improve the adhesion of the degradable polymer with HA. The amphiphilic triblock copolymer PLA-PEG-PLA (PELA) improved the stability of HA-PELA suspension at 25wt.% HA content, which was readily electrospun into HA-PELA composite scaffolds with uniform fiber dimensions. HA-PELA was highly extensible (failure strain>200% vs. <40% for HA-PLA), superhydrophilic (∼0° water contact angle vs. >100° for HA-PLA), and exhibited an 8-fold storage modulus increase (unlike deterioration for HA-PLA) upon hydration, owing to the favorable interaction between HA and PEG. HA-PELA also better promoted osteochondral lineage commitment of bone marrow stromal cells in unstimulated culture and supported far more potent osteogenic gene expression upon induction than HA-PLA. We demonstrate that the chemical incorporation of PEG is an effective strategy to improve the performance of degradable polymer/HA composites for bone tissue engineering applications.
Collapse
Affiliation(s)
- Artem B. Kutikov
- Department of Orthopedics & Physical Rehabilitation, Department of Cell and Developmental Biology. University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| | - Jie Song
- Department of Orthopedics & Physical Rehabilitation, Department of Cell and Developmental Biology. University of Massachusetts Medical School, 55 Lake Ave North, Worcester, MA 01655, USA
| |
Collapse
|
41
|
Leclercq L, Modena E, Vert M. Adsorption of proteins at physiological concentrations on pegylated surfaces and the compatibilizing role of adsorbed albumin with respect to other proteins according to optical waveguide lightmode spectroscopy (OWLS). JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2013; 24:1499-518. [DOI: 10.1080/09205063.2013.772045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
- Laurent Leclercq
- a Faculty of Pharmacy, Max Mousseron Institute of Biomolecules , UMR CNRS 5247, University Montpellier 1, Team CRBA, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5 , France
| | - Enrico Modena
- a Faculty of Pharmacy, Max Mousseron Institute of Biomolecules , UMR CNRS 5247, University Montpellier 1, Team CRBA, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5 , France
| | - Michel Vert
- a Faculty of Pharmacy, Max Mousseron Institute of Biomolecules , UMR CNRS 5247, University Montpellier 1, Team CRBA, 15 Avenue Charles Flahault, BP 14491, 34093, Montpellier Cedex 5 , France
| |
Collapse
|
42
|
Issarachot O, Suksiriworapong J, Sripha K, Junyaprasert VB. Modification of tricomponent and dicomponent poly(ε-caprolactone)-co-poly(ethylene glycol) with methotrexate and folic acid. J Appl Polym Sci 2012. [DOI: 10.1002/app.38781] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
43
|
Wang C, Ravi S, Martinez G, Chinnasamy V, Raulji P, Howell M, Davis Y, Seehra MS, Mohapatra S. Dual-purpose magnetic micelles for MRI and gene delivery. J Control Release 2012; 163:82-92. [PMID: 22561339 PMCID: PMC3632302 DOI: 10.1016/j.jconrel.2012.04.030] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2012] [Revised: 04/11/2012] [Accepted: 04/13/2012] [Indexed: 12/14/2022]
Abstract
Gene therapy is a promising therapeutic approach for treating disease, but the efficient delivery of genes to desired locations with minimal side effects remains a challenge. In addition to gene therapy, it is also highly desirable to provide sensitive imaging information in patients for disease diagnosis, screening and post-therapy monitoring. Here, we report on the development of dual-purpose chitosan and polyethyleneimine (PEI) coated magnetic micelles (CP-mag-micelles) that can deliver nucleic acid-based therapeutic agents and also provide magnetic resonance imaging (MRI). These 'theranostic' CP-mag-micelles are composed of monodisperse hydrophobic superparamagnetic iron oxide nanoparticles (SPIONs) loaded into the cores of micelles that are self-assembled from a block copolymer of poly (D, L-lactide) (PLA) and monomethoxy polyethylene glycol (mPEG). For efficient loading and protection of the nucleic acids the micelles were coated with cationic polymers, such as chitosan and PEI. The morphology and size distribution of the CP-mag-micelles were characterized and their potential for use as an MRI-probe was tested using an MRI scanner. The T(2) relaxivity of mag-micelles was similar to CP-mag-micelles confirming that coating with cationic polymers did not alter magnetism. Nanoparticles coated with chitosan:PEI at a weight ratio of 5:5 showed higher transfection efficiency in HEK293, 3T3 and PC3 cells than with weight ratios of 3:7 or 7:3. CP-mag-micelles are biocompatible, can be delivered to various organs and are safe. A single injection of CP-mag-micelles carrying reporter plasmids in vivo expressed genes for at least one week. Collectively, our results demonstrate that a structural reinforcement of SPIONs loaded in the core of an mPEG-PLA micelle coated with cationic polymers provides efficient DNA delivery and enhanced MRI potential, and affords a promising candidate for theranostics in the future.
Collapse
Affiliation(s)
- Chunyan Wang
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
- Nanomedicine Research Center, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Sowndharya Ravi
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Gary.V. Martinez
- H.Lee Moffit Cancer Center and Research Institute, Tampa, FL, 33612, USA
| | - Vignesh Chinnasamy
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Payal Raulji
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Mark Howell
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Yvonne Davis
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| | - Mohindar S. Seehra
- Department of Physics, West Virginia University, Morgantown, WV, 26506, USA
| | - Subhra Mohapatra
- Molecular Medicine Department, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
- Nanomedicine Research Center, College of Medicine, University of South Florida, 12901 Bruce B. Downs Blvd., Tampa, FL, 33612, USA
| |
Collapse
|
44
|
Composite polylactic-methacrylic Acid copolymer nanoparticles for the delivery of methotrexate. JOURNAL OF DRUG DELIVERY 2012; 2012:579629. [PMID: 22919501 PMCID: PMC3418700 DOI: 10.1155/2012/579629] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 05/10/2012] [Indexed: 11/17/2022]
Abstract
The purpose of this study was to develop poly(lactic acid)-methacrylic acid copolymeric nanoparticles with the potential to serve as nanocarrier systems for methotrexate (MTX) used in the chemotherapy of primary central nervous system lymphoma (PCNSL). Nanoparticles were prepared by a double emulsion solvent evaporation technique employing a 3-Factor Box-Behnken experimental design strategy. Analysis of particle size, absolute zeta potential, polydispersity (Pdl), morphology, drug-loading capacity (DLC), structural transitions through FTIR spectroscopy, and drug release kinetics was undertaken. Molecular modelling elucidated the mechanisms of the experimental findings. Nanoparticles with particle sizes ranging from 211.0 to 378.3 nm and a recovery range of 36.8-86.2 mg (Pdl ≤ 0.5) were synthesized. DLC values were initially low (12 ± 0.5%) but were finally optimized to 98 ± 0.3%. FTIR studies elucidated the comixing of MTX within the nanoparticles. An initial burst release (50% of MTX released in 24 hours) was obtained which was followed by a prolonged release phase of MTX over 84 hours. SEM images revealed near-spherical nanoparticles, while TEM micrographs revealed the presence of MTX within the nanoparticles. Stable nanoparticles were formed as corroborated by the chemometric modelling studies undertaken.
Collapse
|
45
|
Santoveña A, Alvarez-Lorenzo C, Concheiro A, Llabrés M, Fariña JB. Structural properties of biodegradable polyesters and rheological behaviour of their dispersions and films. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2012; 16:629-41. [PMID: 16001721 DOI: 10.1163/1568562053783768] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
This paper focuses on the dependence of the rheological properties of PLA-PEG and PLGA dispersions and films on the polymer structural properties, in order to obtain useful information to predict and explain the performance of polyester films as drug-delivery systems. In this study, one PLA-PEG and three PLGA polymers of different molecular mass were synthesized and characterized by NMR, GPC, DSC and TGA-FT-IR. To characterize the viscoelastic behaviour of concentrated solutions in dichloromethane and of the films obtained by a solvent-casting technique, oscillatory shear rheometry was used. The polymer dispersions showed a characteristic Newtonian viscous behaviour, but with different consistency index depending on the nature of the polymer. Freshly prepared, PLGA and PLA-PEG films had elastic modulus (G') greater than viscous modulus (G"). The decrease in both moduli caused by an increase in temperature from 25 to 37 degrees C was especially marked for the polymers with T(g) below or around 25 degrees C (PLGA 27 kDa and PLA-PEG 27 kDa). After being immersed in pH 7.4 aqueous solution for one week, PLGA films showed a significant increase in both G' and G", due to the promotion of polymer-polymer interactions in a non-solvent medium. In contrast, the PLA-PEG film became softer and more hydrated, due to the amphiphilic character of the polymer. The water taken up by the film acted as a plasticizer and induced the softening of the system. These results suggest that the presence of PEG chains exerts a strong influence on the mechanical properties of polyesters films and, possibly, the performance as coating or matrices of drug-delivery systems.
Collapse
Affiliation(s)
- A Santoveña
- Departamento de Ingeniería Química y Tecnología Farmacéutica, Facultad de Farmacia, Universidad de La Laguna, La Laguna 38200, Tenerife, Spain
| | | | | | | | | |
Collapse
|
46
|
Shen T, Lu M, Zhou D, Liang L. Effect of reactive blocked polyisocyanate on the properties of solvent cast blends from poly(lactic acid) and poly(ethylene glycol). J Appl Polym Sci 2012. [DOI: 10.1002/app.36276] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
47
|
Schädlich A, Rose C, Kuntsche J, Caysa H, Mueller T, Göpferich A, Mäder K. How Stealthy are PEG-PLA Nanoparticles? An NIR In Vivo Study Combined with Detailed Size Measurements. Pharm Res 2011; 28:1995-2007. [DOI: 10.1007/s11095-011-0426-5] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/08/2011] [Indexed: 10/18/2022]
|
48
|
Suksiriworapong J, Sripha K, Kreuter J, Junyaprasert VB. Investigation of Polymer and Nanoparticle Properties with Nicotinic Acid and p-Aminobenzoic Acid Grafted on Poly(ε-caprolactone)-Poly(ethylene glycol)-Poly(ε-caprolactone) via Click Chemistry. Bioconjug Chem 2011; 22:582-94. [DOI: 10.1021/bc100270m] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
| | | | - Jörg Kreuter
- Institute of Pharmaceutical Technology, Goethe-University, Max-von-Laue-Str. 9 (Biozentrum), D-60438 Frankfurt am Main, Germany
| | | |
Collapse
|
49
|
Physically crosslinked polyvinyl alcohol–dextran blend xerogels: Morphology and thermal behavior. Carbohydr Polym 2011. [DOI: 10.1016/j.carbpol.2010.11.018] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
50
|
Lin Y, Zhang A, Wang L. Synthesis and characterization of star-shaped poly(ethylene glycol)-block-poly(L-lactic acid) copolymers by melt polycondensation. J Appl Polym Sci 2011. [DOI: 10.1002/app.35465] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|