1
|
Hoveidaei AH, Mosalamiaghili S, Sabaghian A, Hajiaghajani S, Farsani AS, Sahebi M, Poursalehian M, Nwankwo BO, Conway JD. Local antibiotic delivery: Recent basic and translational science insights in orthopedics. Bone 2025; 193:117416. [PMID: 39914596 DOI: 10.1016/j.bone.2025.117416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 01/26/2025] [Accepted: 01/28/2025] [Indexed: 03/05/2025]
Abstract
BACKGROUND Infections remain a significant challenge in orthopedic settings despite advancements in preventive measures. Antibiotics are the primary defense against infections, but optimal delivery methods to the infection site are still being investigated. This review aims to examine existing approaches for local drug delivery from a basic science perspective. RECENT FINDINGS Achieving adequate antibiotic concentration at the infection site is challenging due to compromised vasculature in ischemic conditions. Local administration methods, including antibiotic-loaded carriers such as impregnated bone grafts and various bone substitutes, are being explored as alternatives to systemic antibiotic use. SUMMARY Various materials, including polymethyl methacrylate (PMMA), hydroxyapatite, calcium phosphate/sulfate, bone glass, and hydrogel, are being investigated for local antibiotic delivery. Some of these materials possess inherent antibacterial properties due to their chemical interactions. The selection of appropriate antibiotics, their dosage, release kinetics from the carrier material, physical behavior of the material/graft, and biocompatibility are key areas for further investigation in basic science research.
Collapse
Affiliation(s)
- Amir Human Hoveidaei
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| | | | | | - Sina Hajiaghajani
- Student Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Mahdi Sahebi
- Students' Scientific Research Center (SSRC), Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Poursalehian
- Joint Reconstruction Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Basilia Onyinyechukwu Nwankwo
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA; Howard University Hospital, Department of Orthopaedic Surgery and Rehabilitation, Washington, DC, USA
| | - Janet D Conway
- International Center for Limb Lengthening, Rubin Institute for Advanced Orthopedics, Sinai Hospital of Baltimore, Baltimore, MD, USA.
| |
Collapse
|
2
|
Martin V, Francisca Bettencourt A, Santos C, Sousa Gomes P. Reviewing particulate delivery systems loaded with repurposed tetracyclines - From micro to nanoparticles. Int J Pharm 2024; 649:123642. [PMID: 38029863 DOI: 10.1016/j.ijpharm.2023.123642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 11/07/2023] [Accepted: 11/26/2023] [Indexed: 12/01/2023]
Abstract
Tetracyclines (TCs) are a class of broad-spectrum antibacterial agents recognized for their multifaceted properties, including anti-inflammatory, angiogenic and osteogenic effects. This versatility positions them as suitable candidates for drug repurposing, benefitting from well-characterized safety and pharmacological profiles. In the attempt to explore both their antibacterial and pleiotropic effects locally, innovative therapeutic strategies were set on engineering tetracycline-loaded micro and nanoparticles to tackle a vast number of clinical applications. Moreover, the conjoined drug carrier can function as an active component of the therapeutic approach, reducing off-target effects and accumulation, synergizing to an improvement of the therapeutic efficacy. In this comprehensive review we will critically evaluate recent advances involving the use of tetracyclines loaded onto micro- or nanoparticles, intended for biomedical applications, and discuss emerging approaches and current limitations associated with these drug carriers. Owing to their distinctive physical, chemical, and biological properties, these novel carriers have the potential to become a platform technology in personalized regenerative medicine and other therapeutic applications.
Collapse
Affiliation(s)
- Victor Martin
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal.
| | - Ana Francisca Bettencourt
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Avenida Prof. Gama Pinto, 1649-003 Lisboa, Portugal
| | - Catarina Santos
- CQE Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; EST Setúbal, CDP2T, Instituto Politécnico de Setúbal, Campus IPS, 2910 Setúbal, Portugal
| | - Pedro Sousa Gomes
- BoneLab-Laboratory for Bone Metabolism and Regeneration, Faculty of Dental Medicine, University of Porto, Rua Dr. Manuel Pereira da Silva, 4200-393 Porto, Portugal; LAQV/REQUIMTE, University of Porto, Praça Coronel Pacheco, 4050-453 Porto, Portugal
| |
Collapse
|
3
|
Srikamut P, Theerasilp M, Crespy D. Nanofibers as precursors for the rapid formation of hydrogels. Chem Commun (Camb) 2023; 59:9952-9955. [PMID: 37477117 DOI: 10.1039/d3cc01654d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Hydrogels can be used in surgeries, which require a support material to maintain the correct anatomy. One major limitation is however the time required for the preparation of hydrogels under urgent conditions. Herein, we report a new method for a very fast preparation of hydrogels at room temperature. Nanofibers of dextran containing vinyl groups produced by electrospinning are loaded with redox- or photo-initiators for radical polymerization. Once dissolved in water, the nanofibers yield hydrogels either spontaneously or upon irradiation with UV light. We also show that the nanofibers can be loaded with active fillers so that hydrogels embedding nanocapsules are obtained. This concept could be applied for the rapid preparation of functional hydrogels which are needed as implants.
Collapse
Affiliation(s)
- Pichapak Srikamut
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Man Theerasilp
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| | - Daniel Crespy
- Department of Materials Science and Engineering, School of Molecular Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), Rayong 21210, Thailand.
| |
Collapse
|
4
|
Zhongguan H, Qiang Z, Zhang G, Nadeem A, Sen L, Ge Y. Cost-effective one-spot hydrothermal synthesis of graphene oxide nanoparticles for wastewater remediation: AI-enhanced approach for transition metal oxides. CHEMOSPHERE 2023:139064. [PMID: 37321457 DOI: 10.1016/j.chemosphere.2023.139064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 05/10/2023] [Accepted: 05/26/2023] [Indexed: 06/17/2023]
Abstract
This investigation presents a cost-efficient hydrothermal synthesis technique for producing graphene oxide nanoparticles (GO-NPs) that exhibit promising potential in wastewater treatment. The synthesis process involves a facile and expandable hydrothermal reactor that can be regulated using an AI-empowered methodology. The generated GO-NPs were characterised using X-ray diffraction (XRD), Fourier-transform infrared (FTIR) spectroscopy, Raman spectroscopy, and transmission electron microscopy (TEM), confirming their successful synthesis and high quality. The high degree of crystallinity observed in the GO-NPs can be attributed to the favourable reaction conditions facilitated by the hydrothermal synthesis. The TEM analysis showed that the GO-NPs had a homogeneous dispersion pattern and a consistent size distribution of approximately 10 nm. Carboxylation was employed to functionalize the GO-NPs, enhancing their reactivity towards diverse contaminants present in wastewater. The remediation potential of the GO-NPs for transition metal oxides, which are frequently found in wastewater, was assessed. The GO-NPs exhibited notable efficacy in remediating the transition metal oxides that were subjected to testing. The heightened efficacy of remediation can be attributed to the substantial surface area and elevated reactivity of the GO-NPs, in addition to their functionalization using carboxylic groups. The cost-effective and efficient synthesis method, coupled with the high remediation potential of the GO-NPs, makes them a highly promising contender for employment in wastewater remediation applications. The use of AI in regulating the hydrothermal synthesis procedure enables accurate manipulation of the reaction parameters, thereby augmenting the quality and uniformity of the resultant GO-NPs. The proposed method exhibits scalability potential for large-scale production of GO-NPs, presenting a viable remedy for the challenges associated with wastewater remediation.
Collapse
Affiliation(s)
| | - Zhou Qiang
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China
| | - Guodao Zhang
- Hangzhou Dianzi University, Hangzhou, Zhejiang, 310005, China
| | | | - Lin Sen
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China
| | - Yisu Ge
- Wenzhou Medical University, Ouhai District, Wenzhou, 325015, China.
| |
Collapse
|
5
|
Grzeczka A, Lech M, Wozniak G, Graczyk S, Kordowitzki P, Olejnik M, Gehrke M, Jaśkowski JM. Periodontitis Disease in Farmed Ruminants-Current State of Research. Int J Mol Sci 2023; 24:9763. [PMID: 37298712 PMCID: PMC10253686 DOI: 10.3390/ijms24119763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/27/2023] [Accepted: 05/30/2023] [Indexed: 06/12/2023] Open
Abstract
Periodontal disease in ruminants is common and occurs in farmed and wild animals. Periodontal lesions can result from the secretion of endotoxins by pathogenic bacteria and as consequences of immune system activity. Three main types of periodontitis have been described. The first is chronic inflammation involving mainly premolars and molars-periodontitis (PD). The second type is an acute inflammatory reaction occurring with calcification of the periosteum of the jawbone and swelling of the surrounding soft tissues (Cara inchada, CI-"swollen face"). Finally, a third type, similar to the first but located in the incisor area, is called "broken mouth" (BM). Etiological variation between the different types of periodontitis is indicated. This particularly manifests in the composition of the microbiome, which is characteristic of the different forms of periodontitis. The widespread detection of lesions has drawn attention to the current nature of the problem.
Collapse
Affiliation(s)
| | | | | | | | | | - Małgorzata Olejnik
- Institute of Veterinary Medicine, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, 87-100 Torun, Poland; (A.G.); (M.L.); (G.W.); (S.G.); (P.K.); (M.G.); (J.M.J.)
| | | | | |
Collapse
|
6
|
Almasri D, Dahman Y. Prosthetic Joint Infections: Biofilm Formation, Management, and the Potential of Mesoporous Bioactive Glass as a New Treatment Option. Pharmaceutics 2023; 15:pharmaceutics15051401. [PMID: 37242643 DOI: 10.3390/pharmaceutics15051401] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/24/2023] [Accepted: 04/28/2023] [Indexed: 05/28/2023] Open
Abstract
Infection of prosthetic joints is one of the biggest challenges to a successful replacement of the joint after a total joint arthroplasty. Such infections are caused by bacterial colonies that are difficult to treat by systemic delivery of antibiotics. Local delivery of antibiotics can prove to be the solution to such a devastating outcome that impacts patients' health and ability to regain function in their joints as well as costs the healthcare system millions of dollars every year. This review will discuss prosthetic joint infections in detail with a focus on the development, management, and diagnosis of the infections. Surgeons often opt to use polymethacrylate cement locally to deliver antibiotics; however, due to the rapid release of antibiotics, non-biodegradability, and high chance of reinfection, the search for alternatives is in high demand. One of the most researched alternatives to current treatments is the use of biodegradable and highly compatible bioactive glass. The novelty of this review lies in its focus on mesoporous bioactive glass as a potential alternative to current treatments for prosthetic joint infection. Mesoporous bioactive glass is the focus of this review because it has a higher capacity to deliver biomolecules, stimulate bone growth, and treat infections after prosthetic joint replacement surgeries. The review also examines different synthesis methods, compositions, and properties of mesoporous bioactive glass, highlighting its potential as a biomaterial for the treatment of joint infections.
Collapse
Affiliation(s)
- Dana Almasri
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Yaser Dahman
- Department of Chemical Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| |
Collapse
|
7
|
Steadman W, Chapman PR, Schuetz M, Schmutz B, Trampuz A, Tetsworth K. Local Antibiotic Delivery Options in Prosthetic Joint Infection. Antibiotics (Basel) 2023; 12:752. [PMID: 37107114 PMCID: PMC10134995 DOI: 10.3390/antibiotics12040752] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 04/29/2023] Open
Abstract
Prosthetic Joint Infection (PJI) causes significant morbidity and mortality for patients globally. Delivery of antibiotics to the site of infection has potential to improve the treatment outcomes and enhance biofilm eradication. These antibiotics can be delivered using an intra-articular catheter or combined with a carrier substance to enhance pharmacokinetic properties. Carrier options include non-resorbable polymethylmethacrylate (PMMA) bone cement and resorbable calcium sulphate, hydroxyapatite, bioactive glass, and hydrogels. PMMA allows for creation of structural spacers used in multi-stage revision procedures, however it requires subsequent removal and antibiotic compatibility and the levels delivered are variable. Calcium sulphate is the most researched resorbable carrier in PJI, but is associated with wound leakage and hypercalcaemia, and clinical evidence for its effectiveness remains at the early stage. Hydrogels provide a versatile combability with antibiotics and adjustable elution profiles, but clinical usage is currently limited. Novel anti-biofilm therapies include bacteriophages which have been used successfully in small case series.
Collapse
Affiliation(s)
- William Steadman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Paul R. Chapman
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Herston Infectious Disease Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Infectious Diseases, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
| | - Michael Schuetz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- Faculty of Health, Queensland University of Technology, Brisbane 4059, Australia
| | - Beat Schmutz
- Jamieson Trauma Institute, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Mechanical, Medical and Process Engineering, Faculty of Engineering, Queensland University of Technology, Brisbane 4000, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane 4059, Australia
- Australian Research Council Training Centre for Multiscale 3D Imaging, Modelling, and Manufacturing, Queensland University of Technology, Brisbane 4059, Australia
| | - Andrej Trampuz
- Center for Musculoskeletal Surgery, Septic Unit Charité-Universitätsmedizin, 10117 Berlin, Germany
| | - Kevin Tetsworth
- Department of Orthopaedics, Royal Brisbane and Women’s Hospital, Herston, Brisbane 4029, Australia
- School of Medicine, University of Queensland, Brisbane 4029, Australia
| |
Collapse
|
8
|
The Local Release of Teriparatide Incorporated in 45S5 Bioglass Promotes a Beneficial Effect on Osteogenic Cells and Bone Repair in Calvarial Defects in Ovariectomized Rats. J Funct Biomater 2023; 14:jfb14020093. [PMID: 36826892 PMCID: PMC9964758 DOI: 10.3390/jfb14020093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 01/24/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
With the increase in the population's life expectancy, there has also been an increase in the rate of osteoporosis, which has expanded the search for strategies to regenerate bone tissue. The ultrasonic sonochemical technique was chosen for the functionalization of the 45S5 bioglass. The samples after the sonochemical process were divided into (a) functionalized bioglass (BG) and (b) functionalized bioglass with 10% teriparatide (BGT). Isolated mesenchymal cells (hMSC) from femurs of ovariectomized rats were differentiated into osteoblasts and submitted to in vitro tests. Bilateral ovariectomy (OVX) and sham ovariectomy (Sham) surgeries were performed in fifty-five female Wistar rats. After a period of 60 days, critical bone defects of 5.0 mm were created in the calvaria of these animals. For biomechanical evaluation, critical bone defects of 3.0 mm were performed in the tibias of some of these rats. The groups were divided into the clot (control) group, the BG group, and the BGT group. After the sonochemical process, the samples showed modified chemical topographic and morphological characteristics, indicating that the surface was chemically altered by the functionalization of the particles. The cell environment was conducive to cell adhesion and differentiation, and the BG and BGT groups did not show cytotoxicity. In addition, the experimental groups exhibited characteristics of new bone formation with the presence of bone tissue in both periods, with the BGT group and the OVX group statistically differing from the other groups (p < 0.05) in both periods. Local treatment with the drug teriparatide in ovariectomized animals promoted positive effects on bone tissue, and longitudinal studies should be carried out to provide additional information on the biological performance of the mutual action between the bioglass and the release of the drug teriparatide.
Collapse
|
9
|
Chauhan A, Alam MA, Kaur A, Malviya R. Advancements and Utilizations of Scaffolds in Tissue Engineering and Drug Delivery. Curr Drug Targets 2023; 24:13-40. [PMID: 36221880 DOI: 10.2174/1389450123666221011100235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/02/2022] [Accepted: 03/09/2022] [Indexed: 11/22/2022]
Abstract
The drug development process requires a thorough understanding of the scaffold and its three-dimensional structure. Scaffolding is a technique for tissue engineering and the formation of contemporary functioning tissues. Tissue engineering is sometimes referred to as regenerative medicine. They also ensure that drugs are delivered with precision. Information regarding scaffolding techniques, scaffolding kinds, and other relevant facts, such as 3D nanostructuring, are discussed in depth in this literature. They are specific and demonstrate localized action for a specific reason. Scaffold's acquisition nature and flexibility make it a new drug delivery technology with good availability and structural parameter management.
Collapse
Affiliation(s)
- Akash Chauhan
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Md Aftab Alam
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Awaneet Kaur
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| | - Rishabha Malviya
- Department of Pharmacy, School of Medical and Allied Sciences, Galgotias University, Greater Noida, Uttar Pradesh, India
| |
Collapse
|
10
|
Gupta S, Majumdar S, Krishnamurthy S. Bioactive glass: A multifunctional delivery system. J Control Release 2021; 335:481-497. [PMID: 34087250 DOI: 10.1016/j.jconrel.2021.05.043] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/28/2021] [Accepted: 05/29/2021] [Indexed: 12/18/2022]
Abstract
Bioactive glasses (BAGs) were invented five decades ago and have been widely used clinically in orthopedic and stomatology. However, in the past two decades, BAGs have been explored immensely by several researchers worldwide as a multifunctional delivery system for a multitude of therapeutics ranging from metal ions to small molecules (e.g., drugs) and macromolecules (e.g., DNA). The impetus for devising a BAG-based delivery system in the 21st century is based upon the facilitative properties it offers for entrapment of a wide range of therapeutic molecules and the tailorable controlled release kinetics to the target tissue site along with the biological activity of the ionic dissolution products in several pathological conditions such as osteoporosis, cancer, infection, and inflammation. This review comprises two parts: the first part discusses the need for a new delivery system and how the journey from melt quench progressed towards template-based sol-gel mesoporous. In the second part, we have comprehended the scientific advancements made so far, emphasizing BAGs as a delivery system ranging from therapeutic ions to phytopharmaceuticals. We have also highlighted a few loopholes that have prevented bench-to-bedside clinical translation of a plethora of elucidative researches done so far.
Collapse
Affiliation(s)
- Smriti Gupta
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Shreyasi Majumdar
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India
| | - Sairam Krishnamurthy
- Neurotherapeutics Laboratory, Department of Pharmaceutical Engineering and Technology, Indian Institute of Technology (Banaras Hindu University), Varanasi 221005, India.
| |
Collapse
|
11
|
Medina-Cruz D, Mostafavi E, Vernet-Crua A, Cheng J, Shah V, Cholula-Diaz JL, Guisbiers G, Tao J, García-Martín JM, Webster TJ. Green nanotechnology-based drug delivery systems for osteogenic disorders. Expert Opin Drug Deliv 2020; 17:341-356. [PMID: 32064959 DOI: 10.1080/17425247.2020.1727441] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Introduction: Current treatments for osteogenic disorders are often successful, however they are not free of drawbacks, such as toxicity or side effects. Nanotechnology offers a platform for drug delivery in the treatment of bone disorders, which can overcome such limitations. Nevertheless, traditional synthesis of nanomaterials presents environmental and health concerns due to its production of toxic by-products, the need for extreme and harsh raw materials, and their lack of biocompatibility over time.Areas covered: This review article contains an overview of the current status of treating osteogenic disorders employing green nanotechnological approaches, showing some of the latest advances in the application of green nanomaterials, as drug delivery carriers, for the effective treatment of osteogenic disorders.Expert opinion: Green nanotechnology, as a potential solution, is understood as the use of living organisms, biomolecules and environmentally friendly processes for the production of nanomaterials. Nanomaterials derived from bacterial cultures or biomolecules isolated from living organisms, such as carbohydrates, proteins, and nucleic acids, have been proven to be effective composites. These nanomaterials introduce enhancements in the treatment and prevention of osteogenic disorders, compared to physiochemically-synthesized nanostructures, specifically in terms of their improved cell attachment and proliferation, as well as their ability to prevent bacterial adhesion.
Collapse
Affiliation(s)
- David Medina-Cruz
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ebrahim Mostafavi
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Ada Vernet-Crua
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Junjiang Cheng
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | - Veer Shah
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Gregory Guisbiers
- Department of Physics and Astronomy, University of Arkansas at Little Rock, Little Rock, AR, USA
| | - Juan Tao
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| | | | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA, USA
| |
Collapse
|
12
|
Baino F, Hamzehlou S, Kargozar S. Bioactive Glasses: Where Are We and Where Are We Going? J Funct Biomater 2018; 9:E25. [PMID: 29562680 PMCID: PMC5872111 DOI: 10.3390/jfb9010025] [Citation(s) in RCA: 218] [Impact Index Per Article: 31.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2018] [Revised: 03/11/2018] [Accepted: 03/16/2018] [Indexed: 12/31/2022] Open
Abstract
Bioactive glasses caused a revolution in healthcare and paved the way for modern biomaterial-driven regenerative medicine. The first 45S5 glass composition, invented by Larry Hench fifty years ago, was able to bond to living bone and to stimulate osteogenesis through the release of biologically-active ions. 45S5-based glass products have been successfully implanted in millions of patients worldwide, mainly to repair bone and dental defects and, over the years, many other bioactive glass compositions have been proposed for innovative biomedical applications, such as soft tissue repair and drug delivery. The full potential of bioactive glasses seems still yet to be fulfilled, and many of today's achievements were unthinkable when research began. As a result, the research involving bioactive glasses is highly stimulating and requires a cross-disciplinary collaboration among glass chemists, bioengineers, and clinicians. The present article provides a picture of the current clinical applications of bioactive glasses, and depicts six relevant challenges deserving to be tackled in the near future. We hope that this work can be useful to both early-stage researchers, who are moving with their first steps in the world of bioactive glasses, and experienced scientists, to stimulate discussion about future research and discover new applications for glass in medicine.
Collapse
Affiliation(s)
- Francesco Baino
- Institute of Materials Physics and Engineering, Applied Science and Technology Department, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy.
| | - Sepideh Hamzehlou
- Department of Medical Genetics, School of Medicine, Tehran University of Medical Sciences, 14155-6447 Tehran, Iran.
- Medical Genetics Network (MeGeNe), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Saeid Kargozar
- Department of Modern Sciences and Technologies, School of Medicine, Mashhad University of Medical Sciences, P.O. Box 917794-8564, Mashhad, Iran.
| |
Collapse
|
13
|
Liang C, Luo Y, Yang G, Xia D, Liu L, Zhang X, Wang H. Graphene Oxide Hybridized nHAC/PLGA Scaffolds Facilitate the Proliferation of MC3T3-E1 Cells. NANOSCALE RESEARCH LETTERS 2018; 13:15. [PMID: 29327198 PMCID: PMC5764901 DOI: 10.1186/s11671-018-2432-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 01/02/2018] [Indexed: 06/07/2023]
Abstract
Biodegradable porous biomaterial scaffolds play a critical role in bone regeneration. In this study, the porous nano-hydroxyapatite/collagen/poly(lactic-co-glycolic acid)/graphene oxide (nHAC/PLGA/GO) composite scaffolds containing different amount of GO were fabricated by freeze-drying method. The results show that the synthesized scaffolds possess a three-dimensional porous structure. GO slightly improves the hydrophilicity of the scaffolds and reinforces their mechanical strength. Young's modulus of the 1.5 wt% GO incorporated scaffold is greatly increased compared to the control sample. The in vitro experiments show that the nHAC/PLGA/GO (1.5 wt%) scaffolds significantly cell adhesion and proliferation of osteoblast cells (MC3T3-E1). This present study indicates that the nHAC/PLGA/GO scaffolds have excellent cytocompatibility and bone regeneration ability, thus it has high potential to be used as scaffolds in the field of bone tissue engineering.
Collapse
Affiliation(s)
- Chunyong Liang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Yongchao Luo
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Guodong Yang
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Dan Xia
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Lei Liu
- Institute for Advanced Materials, Jiangsu University, Zhenjiang, People’s Republic of China
| | - Xiaomin Zhang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| | - Hongshui Wang
- Research Institute for Energy Equipment Materials, Tianjin Key Laboratory of Materials Laminating Fabrication and Interface Control Technology, College of Materials Science and Engineering, Hebei University of Technology, Tianjin, 300130 China
| |
Collapse
|
14
|
Ren M, Lu X, Deng L, Kuo PH, Du J. B2O3/SiO2 substitution effect on structure and properties of Na2O–CaO–SrO–P2O5–SiO2 bioactive glasses from molecular dynamics simulations. Phys Chem Chem Phys 2018; 20:14090-14104. [DOI: 10.1039/c7cp08358k] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The effect of B2O3/SiO2 substitution in SrO-containing 55S4.3 bioactive glasses on glass structure and properties, such as ionic diffusion and glass transition temperature, was investigated by combining experiments and molecular dynamics simulations with newly developed potentials.
Collapse
Affiliation(s)
- Mengguo Ren
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Xiaonan Lu
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Lu Deng
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Po-Hsuen Kuo
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| | - Jincheng Du
- Department of Materials Science and Engineering
- University of North Texas
- Denton
- USA
| |
Collapse
|
15
|
Taherzade SD, Soleimannejad J, Tarlani A. Application of Metal-Organic Framework Nano-MIL-100(Fe) for Sustainable Release of Doxycycline and Tetracycline. NANOMATERIALS (BASEL, SWITZERLAND) 2017; 7:E215. [PMID: 28783087 PMCID: PMC5575697 DOI: 10.3390/nano7080215] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 08/01/2017] [Accepted: 08/01/2017] [Indexed: 11/17/2022]
Abstract
Nanostructures of MIL-100 were synthesized and used as a drug delivery platform for two members of the Tetracycline family. Doxycycline monohydrate (DOX) and Tetracycline hydrochloride (TC) were loaded separately on nano-MIL-100 (nanoparticles of drug@carrier were abbreviated as DOX@MIL-100 and TC@MIL-100). Characterizations were carried out using FT-IR, XRD, BET, DLS, and SEM. The FT-IR spectra revealed that the drugs were loaded into the framework of the carrier. The XRD patterns of DOX@MIL-100 and TC@MIL-100 indicated that no free DOX or TC were present. It could be concluded that the drugs are well dispersed into the pores of nano-MIL-100. The microporosity of the carrier was confirmed by BJH data. BET analysis showed a reduction in the free surface for both DOX@MIL-100 and TC@MIL-100. The release of TC and DOX was investigated, and it was revealed that MIL-100 mediated the drug solubility in water, which in turn resulted in a decrease in the release rate of TC (accelerating in DOX case) without lowering the total amount of released drug. After 48 h, 96 percent of the TC was sustain released, which is an unprecedented amount in comparison with other methods.
Collapse
Affiliation(s)
- Seyed Dariush Taherzade
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Janet Soleimannejad
- School of Chemistry, College of Science, University of Tehran, P.O. Box 14155-6455, Tehran, Iran.
| | - Aliakbar Tarlani
- Chemistry & Chemical Engineering Research Center of Iran (CCERCI), Pajoohesh Blvd., km 17, Karaj Hwy, P.O. Box 14968-13151, Tehran, Iran.
| |
Collapse
|
16
|
Lee EJ, Huh BK, Kim SN, Lee JY, Park CG, Mikos AG, Choy YB. Application of Materials as Medical Devices with Localized Drug Delivery Capabilities for Enhanced Wound Repair. PROGRESS IN MATERIALS SCIENCE 2017; 89:392-410. [PMID: 29129946 PMCID: PMC5679315 DOI: 10.1016/j.pmatsci.2017.06.003] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The plentiful assortment of natural and synthetic materials can be leveraged to accommodate diverse wound types, as well as different stages of the healing process. An ideal material is envisioned to promote tissue repair with minimal inconvenience for patients. Traditional materials employed in the clinical setting often invoke secondary complications, such as infection, pain, foreign body reaction, and chronic inflammation. This review surveys the repertoire of surgical sutures, wound dressings, surgical glues, orthopedic fixation devices and bone fillers with drug eluting capabilities. It highlights the various techniques developed to effectively incorporate drugs into the selected material or blend of materials for both soft and hard tissue repair. The mechanical and chemical attributes of the resultant materials are also discussed, along with their biological outcomes in vitro and/or in vivo. Perspectives and challenges regarding future research endeavors are also delineated for next-generation wound repair materials.
Collapse
Affiliation(s)
- Esther J. Lee
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Beom Kang Huh
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Se Na Kim
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Jae Yeon Lee
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
| | - Chun Gwon Park
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
| | - Antonios G. Mikos
- Department of Bioengineering, Rice University, MS 142, P.O. Box 1892, Houston, Texas, 77251-1892, USA
- Department of Chemical and Biomolecular Engineering, Rice University, MS 362, P.O. Box 1892, Houston, Texas, 77251-1892, USA
| | - Young Bin Choy
- Interdisciplinary Program for Bioengineering, Seoul National University College of Engineering, Seoul, Republic of Korea
- Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Engineering, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
17
|
Rivadeneira J, Gorustovich A. Bioactive glasses as delivery systems for antimicrobial agents. J Appl Microbiol 2017; 122:1424-1437. [PMID: 28035706 DOI: 10.1111/jam.13393] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 01/28/2023]
Abstract
Most biomaterial-associated infections are caused by opportunistic pathogens and bacteria that are regularly found within the microflora of the implant site. In addition, a biomaterial implant or device remains at risk of infection by hematogenous spread of bacteria disseminated from infections elsewhere in the body or from infected peri-implant tissue in revision surgery. The resulting infections are frequently accompanied by patient morbidity and discomfort and can lead to surgical replacement of the implant after lengthy, unsuccessful attempts to mitigate infections with antibiotic treatments. Therefore, extensive study is aiming to find new infection-resistant antimicrobial biomaterials and coatings for implants and devices to effectively reduce the incidence of biomaterial-associated infections. An overview of the in vitro and in vivo antimicrobial efficacies of the numerous biomaterials currently available is beyond the scope of this review. Herein, we provide a comprehensive review of bioactive glasses as biomaterial delivery systems for antimicrobial agents.
Collapse
Affiliation(s)
- J Rivadeneira
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD, Salta, Argentina
| | - A Gorustovich
- Interdisciplinary Materials Group-IESIING-UCASAL, INTECIN UBA-CONICET, A4400EDD, Salta, Argentina
| |
Collapse
|
18
|
Garg S, Thakur S, Gupta A, Kaur G, Pandey OP. Antibacterial and anticancerous drug loading kinetics for (10-x)CuO-xZnO-20CaO-60SiO 2-10P 2O 5 (2 ≤ x ≤ 8) mesoporous bioactive glasses. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2017; 28:11. [PMID: 27943066 DOI: 10.1007/s10856-016-5827-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
In the present study, antibacterial and anticancerous drug loading kinetics for the (10-x)CuO-xZnO-20CaO-60SiO2-10P2O5 (2≤x≤8, varying in steps of 2) mesoporous bioactive glasses (MBGs) have been studied. XRD analysis of the as prepared glass samples proved its amorphous nature. Scanning electron microscopy (SEM) revealed the apatite layer formation on the surface of the MBGs after soaking for 15 days in SBF. Ion dissolution studies of calcium, phosphorous and silicon have been performed using inductively coupled plasma (ICP). FTIR and Raman analysis depicted about the presence of various bonds and groups present in the glasses. The pore size of MBGs lies in the range of 4.2-9.7 nm. Apart from this, specific surface area of the MBGs varied from 263 to 402 cm2/g. The MBGs were loaded with Doxorubicin (DOX), Vancomycin (VANCO) and Tetracycline (TETRA) drugs among which, the decreasing copper content influenced the loading properties of doxorubicin and tetracycline drugs. Vancomycin was fully loaded almost in all the MBGs, whereas other drugs depicted varying loading with respect to the copper content.
Collapse
Affiliation(s)
- Shikha Garg
- Department of Physics, Punjabi University, Patiala, 147002, India
| | - Swati Thakur
- Department of Physics, Punjabi University, Patiala, 147002, India
| | - Aayush Gupta
- School of Physics and Materials Science, Thapar University, Patiala, 147004, India
| | - Gurbinder Kaur
- School of Physics and Materials Science, Thapar University, Patiala, 147004, India.
| | - Om Prakash Pandey
- School of Physics and Materials Science, Thapar University, Patiala, 147004, India.
| |
Collapse
|
19
|
Galarraga-Vinueza ME, Mesquita-Guimarães J, Magini RS, Souza JCM, Fredel MC, Boccaccini AR. Anti-biofilm properties of bioactive glasses embedding organic active compounds. J Biomed Mater Res A 2016; 105:672-679. [DOI: 10.1002/jbm.a.35934] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Revised: 10/04/2016] [Accepted: 10/13/2016] [Indexed: 11/06/2022]
Affiliation(s)
- M. E. Galarraga-Vinueza
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduate Program in Dentistry (PPGO); Federal University of Santa Catarina(UFSC); Florianópolis/SC 88040-900 Brazil
| | - J. Mesquita-Guimarães
- Department of Mechanical Engineering (EMC), Ceramic and Composite Materials Research Group (CERMAT); Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - R. S. Magini
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduate Program in Dentistry (PPGO); Federal University of Santa Catarina(UFSC); Florianópolis/SC 88040-900 Brazil
| | - J. C. M. Souza
- Department of Dentistry (ODT), Center for Education and Research on Dental Implants (CEPID), Post-Graduate Program in Dentistry (PPGO); Federal University of Santa Catarina(UFSC); Florianópolis/SC 88040-900 Brazil
- Department of Mechanical Engineering (EMC), Ceramic and Composite Materials Research Group (CERMAT); Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - M. C. Fredel
- Department of Mechanical Engineering (EMC), Ceramic and Composite Materials Research Group (CERMAT); Federal University of Santa Catarina; Florianópolis 88040-900 Brazil
| | - A. R. Boccaccini
- Department of Materials Science and Engineering, Institute of Biomaterials; University of Erlangen-Nuremberg; 91058 Erlangen Germany
| |
Collapse
|
20
|
Nicolini V, Caselli M, Ferrari E, Menabue L, Lusvardi G, Saladini M, Malavasi G. SiO₂-CaO-P₂O₅ Bioactive Glasses: A Promising Curcuminoids Delivery System. MATERIALS 2016; 9:ma9040290. [PMID: 28773414 PMCID: PMC5502983 DOI: 10.3390/ma9040290] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/22/2016] [Revised: 04/08/2016] [Accepted: 04/11/2016] [Indexed: 12/25/2022]
Abstract
In this paper, we report the study of the loading and the release of curcuminoids by bioactive glasses (BG) and mesoporous bioactive glasses (MBG). Through a detailed spectroscopic study, it was possible to determine the amount and the type of molecules released in water and in simulated body fluid (SBF). In particular, curcumin and K2T21 show a good ability to be released in di-keto and keto-enolic form, depending from the pH. However, after 24 h, the amount of pristine curcumin release is very low with a consequent increment of degradation products derived by curcuminoids. The presence of –OH groups on curcuminoids is a fundamental pre-requisite in order to obtain a high loading and release in polar solution such as water and SBF. The substrate on which we loaded the drugs does not seem to affect significantly the loading and the release of the drugs. The environment, instead, affects the release: for all the drugs, the release in SBF, buffered at pH of 7.4, is slightly worse than the release in water (basic pH values).
Collapse
Affiliation(s)
- Valentina Nicolini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Monica Caselli
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Erika Ferrari
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Ledi Menabue
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Gigliola Lusvardi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Monica Saladini
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| | - Gianluca Malavasi
- Department of Chemical and Geological Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, Modena 41125, Italy.
| |
Collapse
|
21
|
Shao W, Liu H, Wang S, Wu J, Huang M, Min H, Liu X. Controlled release and antibacterial activity of tetracycline hydrochloride-loaded bacterial cellulose composite membranes. Carbohydr Polym 2016; 145:114-20. [PMID: 27106158 DOI: 10.1016/j.carbpol.2016.02.065] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 02/21/2016] [Accepted: 02/22/2016] [Indexed: 10/22/2022]
Abstract
Bacterial cellulose (BC) is widely used in biomedical applications. In this study, we prepared an antibiotic drug tetracycline hydrochloride (TCH)-loaded bacterial cellulose (BC) composite membranes, and evaluated the drug release, antibacterial activity and biocompatibility. The structure and morphology of the fabricated BC-TCH composite membranes were characterized using scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR). The TCH release results show that the incorporation of BC matrix to load TCH is able to control the release. In vitro antibacterial assay demonstrate that the developed BC-TCH composites displayed excellent antibacterial activity solely associated with the loaded TCH drug. More importantly, the BC-TCH composite membranes display good biocompatibility. These characteristics of BC-TCH composite membranes indicate that they may successfully serve as wound dressings and other medical biomaterials.
Collapse
Affiliation(s)
- Wei Shao
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Hui Liu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Shuxia Wang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jimin Wu
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Min Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Huihua Min
- Advanced Analysis and Testing Center, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xiufeng Liu
- State Key Laboratory of Natural Medicines, Department of Biotechnology of TCM, China Pharmaceutical University, Nanjing 210009, PR China
| |
Collapse
|
22
|
Zahid S, Shah AT, Jamal A, Chaudhry AA, Khan AS, Khan AF, Muhammad N, Rehman IU. Biological behavior of bioactive glasses and their composites. RSC Adv 2016. [DOI: 10.1039/c6ra07819b] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
This review summarizes current developments in improving the biological behavior of bioactive glasse and their composites.
Collapse
Affiliation(s)
- Saba Zahid
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Asma Tufail Shah
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Arshad Jamal
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Aqif Anwar Chaudhry
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Abdul Samad Khan
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Ather Farooq Khan
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Nawshad Muhammad
- Interdisciplinary Research Centre in Biomedical Materials
- COMSATS Institute of Information Technology
- Lahore
- Pakistan
| | - Ihtesham ur Rehman
- Department of Material Science and Engineering
- The Kroto Research Institute
- University of Sheffield
- Sheffield S3 7HQ
- UK
| |
Collapse
|
23
|
Novel antibacterial bioactive glass nanocomposite functionalized with tetracycline hydrochloride. BIOMEDICAL GLASSES 2015. [DOI: 10.1515/bglass-2015-0012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
AbstractTo prevent the high frequency of wound infections,
anti-bacterial agents can be loaded onto composites.
In the present study, the antibiotic tetracycline hydrochloride
(TC)was incorporated, for the first time, in collagen
type I membranes coated with nano-sized SiO2-CaOP2O5
bioactive glass (n-BG) obtained by a sol-gel chemical
route.
Collagen membranes coated with n-BG were immersed
in simulated body fluid (SBF) containing 0.25, 0.75 or
1.25 mg mL−1 of TC for 48 h at 37∘C following a coprecipitation
method. The antibiotic was released in distilledwater
at 37∘C for up to 72 h. The antibacterial activity
of the composites was evaluated in vitro by the inhibition
zone test and plate count method. Two different Staphylococcus
aureus strains, S. aureus ATCC29213 and S. aureus
ATCC25923, were exposed to the biomaterials. The results
showed that the incorporation but not the release of TC
was dependent on the initial concentration of TC in SBF.
The biomaterials inhibited S. aureus growth, although the
efficacy was similar for all the concentrations. The results
allow us to conclude that the new composite could have
potential in the prevention of wound infections.
Collapse
|
24
|
Czarnobaj K. The Design of Nanostructured Metronidazole-Loaded HPC/Oxide Xerogel Composites: Influence of the Formulation Parameters on In Vitro Characterisation. AAPS PharmSciTech 2015; 16:1160-8. [PMID: 25716331 DOI: 10.1208/s12249-015-0310-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/06/2015] [Indexed: 11/30/2022] Open
Abstract
In this study, oxide and polymer/oxide xerogels with metronidazole were prepared and examined as carriers of drug for the local application to the bone. The nanoporous SiO2-CaO-P2O5 and HPC-SiO2-CaO-P2O5 xerogel materials with different amounts of the polymer [hydroxypropyl cellulose (HPC)] were prepared using the sol-gel technology, and their physicochemical properties were characterised with respect to chemical structure [by Fourier transform infrared spectroscopy (FTIR)], porosity and the specific surface area of solids (BET), crystallinity [by X-ray powder diffraction (XRD)], morphology [by scanning electron microscope (SEM)] and the in vitro release of the metronidazole over time (by UV-vis spectroscopy, in the ultraviolet light region). HPC-modified oxide xerogels as the carriers of drug showed slower release of metronidazole, due to the structure and stronger interactions with drug as compared with the pure oxide xerogel. Kinetic analysis indicated diffusional mechanism of drug release from all xerogel carriers. HPC addition to the oxide material resulted in a decrease in the porosity and improved the bioactive properties of xerogels. Obtained results for xerogel composites suggest that the metronidazole-loaded xerogels could be attractive candidates for local delivery systems particularly to a bone.
Collapse
|
25
|
Ranjbar-Mohammadi M, Zamani M, Prabhakaran MP, Bahrami SH, Ramakrishna S. Electrospinning of PLGA/gum tragacanth nanofibers containing tetracycline hydrochloride for periodontal regeneration. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 58:521-31. [PMID: 26478340 DOI: 10.1016/j.msec.2015.08.066] [Citation(s) in RCA: 118] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Revised: 08/23/2015] [Accepted: 08/27/2015] [Indexed: 12/19/2022]
Abstract
Controlled drug release is a process in which a predetermined amount of drug is released for longer period of time, ranging from days to months, in a controlled manner. In this study, novel drug delivery devices were fabricated via blend electrospinning and coaxial electrospinning using poly lactic glycolic acid (PLGA), gum tragacanth (GT) and tetracycline hydrochloride (TCH) as a hydrophilic model drug in different compositions and their performance as a drug carrier scaffold was evaluated. Scanning electron microscopy (SEM) results showed that fabricated PLGA, blend PLGA/GT and core shell PLGA/GT nanofibers had a smooth and bead-less morphology with the diameter ranging from 180 to 460 nm. Drug release studies showed that both the fraction of GT within blend nanofibers and the core-shell structure can effectively control TCH release rate from the nanofibrous membranes. By incorporation of TCH into core-shell nanofibers, drug release was sustained for 75 days with only 19% of burst release within the first 2h. The prolonged drug release, together with proven biocompatibility, antibacterial and mechanical properties of drug loaded core shell nanofibers make them a promising candidate to be used as drug delivery system for periodontal diseases.
Collapse
Affiliation(s)
| | - M Zamani
- Mechanical Engineering Department, National University of Singapore, Singapore; Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore
| | - M P Prabhakaran
- Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore.
| | - S Hajir Bahrami
- Textile Engineering Department, Amirkabir University of Technology, Tehran, Iran.
| | - S Ramakrishna
- Mechanical Engineering Department, National University of Singapore, Singapore; Nanoscience and Nanotechnology Initiative, Faculty of Engineering, National University of Singapore, Singapore
| |
Collapse
|
26
|
Rahimi M, Mobedi H, Behnamghader A. In situforming poly(lactic acid-co-glycolic acid) implants containing leuprolide acetate/β-cyclodextrin complexes: preparation, characterization, andin vitrodrug release. INT J POLYM MATER PO 2015. [DOI: 10.1080/00914037.2015.1055633] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Abstract
Energy deficiency, global poverty, chronic hunger, chronic diseases, and environment conservation are among the major problems threatening the whole mankind. Nanostructure-based technologies could be a possible solution. Such techniques are now used for the production of many vitally important products including cultured and fermented food, antibiotics, various medicines, and biofuels. On the other hand, the nanostructure-based technologies still demonstrate low efficiency and controllability, and thus still are not capable to decisively address the global problems. Furthermore, future technologies should ensure lowest possible environmental impact by implementing green production principles. One of the most promising approaches to address these challenges are the sophisticatedly engineered biointerfaces. Here, the authors briefly evaluate the potential of the plasma-based techniques for the fabrication of complex biointerfaces. The authors consider mainly the atmospheric and inductively coupled plasma environments and show several examples of the artificial plasma-created biointerfaces, which can be used for the biotechnological and medical processes, as well as for the drug delivery devices, fluidised bed bioreactors, catalytic reactors, and others. A special attention is paid to the plasma-based treatment and processing of the biointerfaces formed by arrays of carbon nanotubes and graphene flakes.
Collapse
|
28
|
Kaur G, Pickrell G, Sriranganathan N, Kumar V, Homa D. Review and the state of the art: Sol-gel and melt quenched bioactive glasses for tissue engineering. J Biomed Mater Res B Appl Biomater 2015; 104:1248-75. [PMID: 26060931 DOI: 10.1002/jbm.b.33443] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Revised: 03/19/2015] [Accepted: 04/14/2015] [Indexed: 01/26/2023]
Abstract
Biomaterial development is currently the most active research area in the field of biomedical engineering. The bioglasses possess immense potential for being the ideal biomaterials due to their high adaptiveness to the biological environment as well as tunable properties. Bioglasses like 45S5 has shown great clinical success over the past 10 years. The bioglasses like 45S5 were prepared using melt-quenching techniques but recently porous bioactive glasses have been derived through sol-gel process. The synthesis route exhibits marked effect on the specific surface area, as well as degradability of the material. This article is an attempt to provide state of the art of the sol-gel and melt quenched bioactive bioglasses for tissue regeneration. Fabrication routes for bioglasses suitable for bone tissue engineering are highlighted and the effect of these fabrication techniques on the porosity, pore-volume, mechanical properties, cytocompatibilty and especially apatite layer formation on the surface of bioglasses is analyzed in detail. Drug delivery capability of bioglasses is addressed shortly along with the bioactivity of mesoporous glasses. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1248-1275, 2016.
Collapse
Affiliation(s)
- Gurbinder Kaur
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA.,School of Physics & Materials Science, Thapar University, Patiala, 147004, India
| | - Gary Pickrell
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| | - Vishal Kumar
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA.,Sri Guru Granth Sahib World University, Fatehgarh Sahib, 140406, India
| | - Daniel Homa
- Department of Material Science and Engineering, Holden Hall, Virginia Polytechnic Institute and State University, Blacksburg, Virginia, 24060, USA
| |
Collapse
|
29
|
Fereshteh Z, Nooeaid P, Fathi M, Bagri A, Boccaccini AR. The effect of coating type on mechanical properties and controlled drug release of PCL/zein coated 45S5 bioactive glass scaffolds for bone tissue engineering. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2015; 54:50-60. [PMID: 26046267 DOI: 10.1016/j.msec.2015.05.011] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2014] [Revised: 03/07/2015] [Accepted: 05/02/2015] [Indexed: 10/23/2022]
Affiliation(s)
- Zeinab Fereshteh
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany; Institute of Science, High Technology and Environmental Sciences, Graduate University of Advanced Technology, 76315117 Kerman, Iran; Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran.
| | - Patcharakamon Nooeaid
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany
| | - Mohammadhossein Fathi
- Biomaterials Research Group, Department of Materials Engineering, Isfahan University of Technology, Isfahan 8415683111, Iran; Dental Materials Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Akbar Bagri
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Aldo R Boccaccini
- Institute of Biomaterials, Department of Materials Science and Engineering, University of Erlangen-Nuremberg, Cauerstrasse 6, 91058 Erlangen, Germany.
| |
Collapse
|
30
|
|
31
|
Hashemikia S, Hemmatinejad N, Ahmadi E, Montazer M. Optimization of tetracycline hydrochloride adsorption on amino modified SBA-15 using response surface methodology. J Colloid Interface Sci 2015; 443:105-14. [DOI: 10.1016/j.jcis.2014.11.020] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2014] [Revised: 10/31/2014] [Accepted: 11/06/2014] [Indexed: 11/28/2022]
|
32
|
Development and effect of different bioactive silicate glass scaffolds: In vitro evaluation for use as a bone drug delivery system. J Mech Behav Biomed Mater 2014; 40:1-12. [DOI: 10.1016/j.jmbbm.2014.08.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2014] [Revised: 08/02/2014] [Accepted: 08/10/2014] [Indexed: 12/23/2022]
|
33
|
Development of bioactive glass based scaffolds for controlled antibiotic release in bone tissue engineering via biodegradable polymer layered coating. Biointerphases 2014; 9:041001. [DOI: 10.1116/1.4897217] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
34
|
Rahimi M, Mobedi H, Behnamghader A. Aqueous stability of leuprolide acetate: effect of temperature, dissolved oxygen, pH and complexation with β-cyclodextrin. Pharm Dev Technol 2014; 21:108-15. [PMID: 25331295 DOI: 10.3109/10837450.2014.971377] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In the present research, the aqueous stability of leuprolide acetate (LA) in phosphate buffered saline (PBS) medium was studied (pH = 2.0-7.4). For this purpose, the effect of temperature, dissolved oxygen and pH on the stability of LA during 35 days was investigated. Results showed that the aqueous stability of LA was higher at low temperatures. Degassing of the PBS medium partially increased the stability of LA at 4 °C, while did not change at 37 °C. The degradation of LA was accelerated at lower pH values. In addition, complexes of LA with different portions of β-cyclodextrin (β-CD) were prepared through freeze-drying procedure and characterized by Fourier transform infrared (FTIR) and differential scanning calorimetry (DSC) analyses. Studying their aqueous stability at various pH values (2.0-7.4) showed LA/β-CD complexes exhibited higher stability when compared with LA at all pH values. The stability of complexes was also improved by increasing the portion of LA/β-CD up to 1/10.
Collapse
Affiliation(s)
- Mehdi Rahimi
- a Department of Biomedical Engineering, Science and Research Branch , Islamic Azad University , Tehran , Iran
| | - Hamid Mobedi
- b Department of Novel Drug Delivery Systems , Iran Polymer and Petrochemical Institute , Tehran , Iran , and
| | | |
Collapse
|
35
|
Development of Novel Mesoporous Silica-Based Bioactive Glass Scaffolds with Drug Delivery Capabilities. ACTA ACUST UNITED AC 2014. [DOI: 10.4028/www.scientific.net/ast.96.54] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel silica-based bioactive glasses were successfully prepared by the sol-gel method. The optimized glass composition for fabrication of the scaffolds was (in mol.%) 60% SiO2 – 30% CaO - 5% Na2O - 5% P2O5 (60S30C5N5P). This composition was confirmed to develop a thick hydroxycarbonate apatite (HCA) layer in Simulated Body Fluid (SBF) after 7 days, as revealed by Fourier Transform Infrared Spectroscopy (FTIR), indicating the bioactive character of the scaffolds. The mesoporous nature of the glass structure allows the load of tetracycline and a sustained release of the drug in PBS during 7 days was measured.
Collapse
|
36
|
Abstract
In this paper,the clove essential oil was combined with β-Cyclodextrin and chitosan using the method of envelope binding,thus clove essential oil microencapsule antistaling agent was prepared.To detect the exterior characterization of microcapsule using SEM;To analyze the antimicrobial properties of microencapsules using the inhibition zone method, and the slow release rate of microencapsule was detected in 0, 2,30 °C. The results showed that the microencapsule had irregular shapes and their surfaces were covered with many cracks;the inhibition zone diameter of Rhizopus sp. and Penicillium citrinum diameter were 1.2 cm and 1.6 cm partly; microencapsules showed a slow release state under the three temperature conditions,and it had the slowest release rate under 0 °C condition.
Collapse
|
37
|
Kamalasanan K, Anupriya, Deepa MK, Sharma CP. Supramolecular curcumin-barium prodrugs for formulating with ceramic particles. Colloids Surf B Biointerfaces 2014; 122:301-308. [PMID: 25064480 DOI: 10.1016/j.colsurfb.2014.07.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2014] [Revised: 07/02/2014] [Accepted: 07/05/2014] [Indexed: 01/29/2023]
Abstract
A simple and stable curcumin-ceramic combined formulation was developed with an aim to improve curcumin stability and release profile in the presence of reactive ceramic particles for potential dental and orthopedic applications. For that, curcumin was complexed with barium (Ba(2+)) to prepare curcumin-barium (BaCur) complex. Upon removal of the unbound curcumin and Ba(2+) by dialysis, a water-soluble BaCur complex was obtained. The complex was showing [M+1](+) peak at 10,000-20,000 with multiple fractionation peaks of MALDI-TOF-MS studies, showed that the complex was a supramolecular multimer. The (1)H NMR and FTIR studies revealed that, divalent Ba(2+) interacted predominantly through di-phenolic groups of curcumin to form an end-to-end complex resulted in supramolecular multimer. The overall crystallinity of the BaCur was lower than curcumin as per XRD analysis. The complexation of Ba(2+) to curcumin did not degrade curcumin as per HPLC studies. The fluorescence spectrum was blue shifted upon Ba(2+) complexation with curcumin. Monodisperse nanoparticles with size less than 200dnm was formed, out of the supramolecular complex upon dialysis, as per DLS, and upon loading into pluronic micelles the size was remaining in similar order of magnitude as per DLS and AFM studies. Stability of the curcumin was improved greater than 50% after complexation with Ba(2+) as per UV/Vis spectroscopy. Loading of the supramloecular nanoparticles into pluronic micelles had further improved the stability of curcumin to approx. 70% in water. These BaCur supramolecule nanoparticles can be considered as a new class of prodrugs with improved solubility and stability. Subsequently, ceramic nanoparticles with varying chemical composition were prepared for changing the material surface reactivity in terms of the increase in, degradability, surface pH and protein adsorption. Further, these ceramic particles were combined with curcumin prodrug formulations and optimized the curcumin release properties in the combined formulations. Our proof concept study shows that, the conversion of curcumin to a metal-organic supramolecular prodrug improved the solubility, stability and release profile of curcumin. The prodrug approach with the micellisation strategy appears to be more appropriate to deliver intact curcumin in the presence of ceramic particles of varying surface reactivity.
Collapse
Affiliation(s)
- Kaladhar Kamalasanan
- Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala 695012, India.
| | - Anupriya
- Department of Pharmaceutics, Nehru College of Pharmacy, Pampady, Thiruwillwamala, Thrissur, India
| | - M K Deepa
- Department of Pharmaceutics, Nehru College of Pharmacy, Pampady, Thiruwillwamala, Thrissur, India
| | - Chandra P Sharma
- Biosurface Technology Division, Biomedical Technology Wing, Sree Chitra Tirunal Institute for Medical Science and Technology, Poojappura, Thiruvananthapuram, Kerala 695012, India.
| |
Collapse
|
38
|
Gogoi N, Chowdhury D. Novel carbon dot coated alginate beads with superior stability, swelling and pH responsive drug delivery. J Mater Chem B 2014; 2:4089-4099. [PMID: 32261740 DOI: 10.1039/c3tb21835j] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel carbon dot coated alginate beads (CA-CD) exhibiting superior stability and swelling properties have been successfully prepared. CA-CD show exceptional stability in ambient condition and are stable at room atmosphere and temperature even after 60 days. Moreover, CA-CD show excessive swelling in comparison to calcium alginate (CA) beads. The beads were characterized by Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), scanning electron microscopy (SEM) and optical microscopy. The CA and CA-CD beads were investigated for their use as pH dependent sustained drug delivery vehicles taking tetracycline (TC) and tetracycline associated with β-cyclodextrin (β-TC) as model drug systems. It was observed that TC loading was 35% and 77% with CA and CA-CD, respectively. Tetracycline associated with β-cyclodextrin (β-TC) shows 48% loading for CA and much greater loading (as high as 90%) for CA-CD. At pH 1, CA-CD and CA beads show maximum drug release with TC cumulative release of 70% and 37% at 96 h, respectively. However, the delivery rates at pH 1 were slower in case of tetracycline associated with β-cyclodextrin (β-TC) loading showing 61% release for CA-CD and 22% for CA after 96 h. Thus, CA-CD can be suitably used as an effective drug delivery vehicle with maximum release obtained at pH 1 emphasizing its use in the gastrointestinal tract where pH is low. Also, the use of β-cyclodextrin with the drug as an inclusion complex renders the CA and CA-CD beads useful for slow and long-term drug administration.
Collapse
Affiliation(s)
- Neelam Gogoi
- Material Nanochemistry Laboratory, Physical Sciences Division, Institute of Advanced Study in Science and Technology (IASST), Paschim Boragaon, Garchuk, Guwahati - 781 035, Assam, India.
| | | |
Collapse
|
39
|
Rahaman MN, Bal BS, Huang W. Review: emerging developments in the use of bioactive glasses for treating infected prosthetic joints. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2014; 41:224-31. [PMID: 24907755 DOI: 10.1016/j.msec.2014.04.055] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2013] [Revised: 04/02/2014] [Accepted: 04/22/2014] [Indexed: 10/25/2022]
Abstract
Bacterial contamination of implanted orthopedic prostheses is a serious complication that requires prolonged systemic antibiotic therapy, major surgery to remove infected implants, bone reconstruction, and considerable morbidity. Local delivery of high doses of antibiotics using poly(methyl methacrylate) (PMMA) cement as the carrier, along with systemic antibiotics, is the standard treatment. However, PMMA is not biodegradable, and it can present a surface on which secondary bacterial infection can occur. PMMA spacers used to treat deep implant infections must be removed after resolution of the infection. Alternative carrier materials for antibiotics that could also restore deficient bone are therefore of interest. In this article, the development of bioactive glass-based materials as a delivery system for antibiotics is reviewed. Bioactive glass is osteoconductive, converts to hydroxyapatite, and heals to hard and soft tissues in vivo. Consequently, bioactive glass-based carriers can provide the combined functions of controlled local antibiotic delivery and bone restoration. Recently-developed borate bioactive glasses are of particular interest since they have controllable degradation rates coupled with desirable properties related to osteogenesis and angiogenesis. Such glasses have the potential for providing a new class of biomaterials, as substitutes for PMMA, in the treatment of deep bone infections.
Collapse
Affiliation(s)
- Mohamed N Rahaman
- Department of Materials Science and Engineering, Missouri University of Science and Technology, Rolla, MO 65409, USA.
| | - B Sonny Bal
- Department of Orthopaedic Surgery, University of Missouri, Columbia, MO 65211, USA
| | - Wenhai Huang
- Institute of Bioengineering and Information Technology Materials, School of Materials Science and Engineering, Tongji University, Shanghai 200092, China
| |
Collapse
|
40
|
Madhumathi K, Sampath Kumar TS. Regenerative potential and anti-bacterial activity of tetracycline loaded apatitic nanocarriers for the treatment of periodontitis. Biomed Mater 2014; 9:035002. [DOI: 10.1088/1748-6041/9/3/035002] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
41
|
Rivadeneira J, Di Virgilio A, Audisio M, Boccaccini A, Gorustovich A. Evaluation of antibacterial and cytotoxic effects of nano-sized bioactive glass/collagen composites releasing tetracycline hydrochloride. J Appl Microbiol 2014; 116:1438-46. [DOI: 10.1111/jam.12476] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 02/04/2014] [Accepted: 02/11/2014] [Indexed: 01/30/2023]
Affiliation(s)
- J. Rivadeneira
- Grupo Interdisciplinario en Materiales- Universidad Católica de Salta (IESIING-UCASAL); Instituto de Tecnologías y Ciencias de Ingeniería-Universidad Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (INTECIN UBA-CONICET); Salta Argentina
| | - A.L. Di Virgilio
- Cátedra de Bioquímica Patológica Facultad de Ciencias Exactas; Universidad Nacional de La Plata (UNLP); La Plata Argentina
| | - M.C. Audisio
- Instituto de Investigaciones para la Industria Química - Consejo Nacional de Investigaciones Científicas y Técnicas (INIQUI - CONICET); Universidad Nacional de Salta (UNSa); Salta Argentina
| | - A.R. Boccaccini
- Institute of Biomaterials; University of Erlangen-Nuremberg; Erlangen Germany
| | - A.A. Gorustovich
- Grupo Interdisciplinario en Materiales- Universidad Católica de Salta (IESIING-UCASAL); Instituto de Tecnologías y Ciencias de Ingeniería-Universidad Buenos Aires-Consejo Nacional de Investigaciones Científicas y Técnicas (INTECIN UBA-CONICET); Salta Argentina
| |
Collapse
|
42
|
Cui X, Zhao C, Gu Y, Li L, Wang H, Huang W, Zhou N, Wang D, Zhu Y, Xu J, Luo S, Zhang C, Rahaman MN. A novel injectable borate bioactive glass cement for local delivery of vancomycin to cure osteomyelitis and regenerate bone. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2014; 25:733-745. [PMID: 24477872 DOI: 10.1007/s10856-013-5122-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Accepted: 12/09/2013] [Indexed: 06/03/2023]
Abstract
Osteomyelitis (bone infection) is often difficult to cure. The commonly-used treatment of surgical debridement to remove the infected bone combined with prolonged systemic and local antibiotic treatment has limitations. In the present study, an injectable borate bioactive glass cement was developed as a carrier for the antibiotic vancomycin, characterized in vitro, and evaluated for its capacity to cure osteomyelitis in a rabbit tibial model. The cement (initial setting time = 5.8 ± 0.6 min; compressive strength = 25.6 ± 0.3 MPa) released vancomycin over ~25 days in phosphate-buffered saline, during which time the borate glass converted to hydroxyapatite (HA). When implanted in rabbit tibial defects infected with methicillin-resistant Staphylococcus aureus (MRSA)-induced osteomyelitis, the vancomycin-loaded cement converted to HA and supported new bone formation in the defects within 8 weeks. Osteomyelitis was cured in 87 % of the defects implanted with the vancomycin-loaded borate glass cement, compared to 71 % for the defects implanted with vancomycin-loaded calcium sulfate cement. The injectable borate bioactive glass cement developed in this study is a promising treatment for curing osteomyelitis and for regenerating bone in the defects following cure of the infection.
Collapse
Affiliation(s)
- Xu Cui
- Institute of Bioengineering & Information Technology Materials, Tongji University, Shanghai, 200092, China
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Meng D, Francis L, Thompson ID, Mierke C, Huebner H, Amtmann A, Roy I, Boccaccini AR. Tetracycline-encapsulated P(3HB) microsphere-coated 45S5 Bioglass(®)-based scaffolds for bone tissue engineering. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2809-2817. [PMID: 23892485 DOI: 10.1007/s10856-013-5012-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Accepted: 07/16/2013] [Indexed: 06/02/2023]
Abstract
Bioglass(®)-based scaffolds for bone tissue engineering have been developed, which can also serve as carriers for drug delivery. For this, P(3HB) microspheres (PMSs) loaded with tetracycline were fabricated and immobilised on the scaffold surfaces by a modified slurry dipping technique. The sustained drug delivery ability in simulated body fluid was confirmed by using UV-Vis absorption spectroscopy measurements. The MTT assay using mouse fibroblast cells provided evidence that the tetracycline loaded microspheres produced in this study show limited cytotoxicity. The scaffolds developed in this work provide mechanical support, adequate 3D surface roughness, bioactivity and controlled drug delivery function, and are thus interesting candidates for bone tissue engineering applications.
Collapse
Affiliation(s)
- D Meng
- Department of Materials, Imperial College London, London, SW7 2BP, UK
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Ghadim EE, Manouchehri F, Soleimani G, Hosseini H, Kimiagar S, Nafisi S. Adsorption properties of tetracycline onto graphene oxide: equilibrium, kinetic and thermodynamic studies. PLoS One 2013; 8:e79254. [PMID: 24302989 PMCID: PMC3841164 DOI: 10.1371/journal.pone.0079254] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2013] [Accepted: 09/20/2013] [Indexed: 12/05/2022] Open
Abstract
Graphene oxide (GO) nanoparticle is a high potential effective absorbent. Tetracycline (TC) is a broad-spectrum antibiotic produced, indicated for use against many bacterial infections. In the present research, a systematic study of the adsorption and release process of tetracycline on GO was performed by varying pH, sorption time and temperature. The results of our studies showed that tetracycline strongly loads on the GO surface via π-π interaction and cation-π bonding. Investigation of TC adsorption kinetics showed that the equilibrium was reached within 15 min following the pseudo-second-order model with observed rate constants of k2 = 0.2742-0.5362 g/mg min (at different temperatures). The sorption data has interpreted by the Langmuir model with the maximum adsorption of 323 mg/g (298 K). The mean energy of adsorption was determined 1.83 kJ/mol (298 K) based on the Dubinin-Radushkevich (D-R) adsorption isotherm. Moreover, the thermodynamic parameters such as ΔH°, ΔS° and ΔG° values for the adsorption were estimated which indicated the endothermic and spontaneous nature of the sorption process. The electrochemistry approved an ideal reaction for the adsorption under electrodic process. Simulation of GO and TC was done by LAMMPS. Force studies in z direction showed that tetracycline comes close to GO sheet by C8 direction. Then it goes far and turns and again comes close from amine group to the GO sheet.
Collapse
Affiliation(s)
- Ehsan Ezzatpour Ghadim
- Young Researchers and Elite Club, Central Tehran Branch, Islamic Azad University (IAUCTB), Tehran, Iran
| | - Firouzeh Manouchehri
- Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran
| | - Gholamreza Soleimani
- Department of Physics, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran
| | - Hadi Hosseini
- Department of Chemistry, Shahid Beheshti University, Evin, Tehran, Iran
| | - Salimeh Kimiagar
- Department of Physics, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran
| | - Shohreh Nafisi
- Department of Chemistry, Islamic Azad University, Central Tehran Branch (IAUCTB), Tehran, Iran
| |
Collapse
|
45
|
Cui X, Gu Y, Li L, Wang H, Xie Z, Luo S, Zhou N, Huang W, Rahaman MN. In vitro bioactivity, cytocompatibility, and antibiotic release profile of gentamicin sulfate-loaded borate bioactive glass/chitosan composites. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2013; 24:2391-2403. [PMID: 23820937 DOI: 10.1007/s10856-013-4996-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 06/17/2013] [Indexed: 06/02/2023]
Abstract
Borate bioactive glass-based composites have been attracting interest recently as an osteoconductive carrier material for local antibiotic delivery. In the present study, composites composed of borate bioactive glass particles bonded with a chitosan matrix were prepared and evaluated in vitro as a carrier for gentamicin sulfate. The bioactivity, degradation, drug release profile, and compressive strength of the composite carrier system were studied as a function of immersion time in phosphate-buffered saline at 37 °C. The cytocompatibility of the gentamicin sulfate-loaded composite carrier was evaluated using assays of cell proliferation and alkaline phosphatase activity of osteogenic MC3T3-E1 cells. Sustained release of gentamicin sulfate occurred over ~28 days in PBS, while the bioactive glass converted continuously to hydroxyapatite. The compressive strength of the composite loaded with gentamicin sulfate decreased from the as-fabricated value of 24 ± 3 MPa to ~8 MPa after immersion for 14 days in PBS. Extracts of the soluble ionic products of the borate glass/chitosan composites enhanced the proliferation and alkaline phosphatase activity of MC3T3-E1 cells. These results indicate that the gentamicin sulfate-loaded composite composed of chitosan-bonded borate bioactive glass particles could be useful clinically as an osteoconductive carrier material for treating bone infection.
Collapse
Affiliation(s)
- Xu Cui
- Institute of Bioengineering and Information Technology Materials, Tongji University, Shanghai, 200092, China
| | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Echezarreta-López M, Landin M. Using machine learning for improving knowledge on antibacterial effect of bioactive glass. Int J Pharm 2013; 453:641-7. [DOI: 10.1016/j.ijpharm.2013.06.036] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Revised: 06/13/2013] [Accepted: 06/15/2013] [Indexed: 01/22/2023]
|
47
|
Polini A, Bai H, Tomsia AP. Dental applications of nanostructured bioactive glass and its composites. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2013; 5:399-410. [PMID: 23606653 PMCID: PMC3683357 DOI: 10.1002/wnan.1224] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To improve treatments of bone or dental trauma and diseases such as osteoporosis, cancer, and infections, scientists who perform basic research are collaborating with clinicians to design and test new biomaterials for the regeneration of lost or injured tissue. Developed some 40 years ago, bioactive glass (BG) has recently become one of the most promising biomaterials, a consequence of discoveries that its unusual properties elicit specific biological responses inside the body. Among these important properties are the capability of BG to form strong interfaces with both hard and soft tissues, and its release of ions upon dissolution. Recent developments in nanotechnology have introduced opportunities for materials sciences to advance dental and bone therapies. For example, the applications for BG expand as it becomes possible to finely control structures and physicochemical properties of materials at the molecular level. Here, we review how the properties of these materials have been enhanced by the advent of nanotechnology, and how these developments are producing promising results in hard-tissue regeneration and development of innovative BG-based drug delivery systems.
Collapse
Affiliation(s)
- Alessandro Polini
- Materials Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| | | | | |
Collapse
|
48
|
Bhattacharya R, Kundu B, Nandi SK, Basu D. Systematic approach to treat chronic osteomyelitis through localized drug delivery system: bench to bed side. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2013; 33:3986-93. [PMID: 23910305 DOI: 10.1016/j.msec.2013.05.036] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Revised: 03/20/2013] [Accepted: 05/16/2013] [Indexed: 01/12/2023]
Abstract
Chronic osteomyelitis is a challenging setback to the orthopedic surgeons in deciding an optimal therapeutic strategy. Conversely, patients feel frustrated of the therapeutic outcomes and development of adverse drug effects, if any. Present investigation deals with extensive approach incorporating in vivo animal experimentation and human application to treat chronic osteomyelitis, using antibiotic loaded porous hydroxyapatite scaffolds. Micro- to macro-porous hydroxyapatite scaffolds impregnated with antibiotic ceftriaxone-sulbactam sodium (CFS) were fabricated and subsequently evaluated by in vivo animal model after developing osteomyelitis in rabbit tibia. Finally 10 nos. of human osteomyelitis patients involving long bone and mandible were studied for histopathology, radiology, pus culture, 3D CT etc. up to 8-18 months post-operatively. It was established up to animal trial stage that 50N50H samples [with 50-55% porosity, average pore size 110 μm, higher interconnectivity (10-100 μm), and moderately high drug adsorption efficiency (50%)] showed efficient drug release up to 42 days than parenteral group based on infection eradication and new bone formation. In vivo human bone showed gradual evidence of new bone formation and fracture union with organized callus without recurrence of infection even after 8 months. This may be a new, alternative, cost effective and ideal therapeutic strategy for chronic osteomyelitis treatment in human patients.
Collapse
Affiliation(s)
- Rupnarayan Bhattacharya
- Department of Plastic Surgery, R. G. Kar Medical College and Hospital (RGKMCH), Kolkata 700004, India
| | | | | | | |
Collapse
|
49
|
Lin HM, Lin HY, Chan MH. Preparation, characterization, and in vitro evaluation of folate-modified mesoporous bioactive glass for targeted anticancer drug carriers. J Mater Chem B 2013; 1:6147-6156. [DOI: 10.1039/c3tb20867b] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
50
|
Liu Y, Lim J, Teoh SH. Review: development of clinically relevant scaffolds for vascularised bone tissue engineering. Biotechnol Adv 2012; 31:688-705. [PMID: 23142624 DOI: 10.1016/j.biotechadv.2012.10.003] [Citation(s) in RCA: 241] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2012] [Revised: 10/21/2012] [Accepted: 10/26/2012] [Indexed: 12/15/2022]
Abstract
Clinical translation of scaffold-based bone tissue engineering (BTE) therapy still faces many challenges despite intense investigations and advancement over the years. To address these clinical barriers, it is important to analyse the current technical challenges in constructing a clinically relevant scaffold and subsequent clinical issues relating to bone repair. This review highlights the key challenges hampering widespread clinical translation of scaffold-based vascularised BTE, with a focus on the repair of large non-union defects. The main limitations of current scaffolds include the lack of sufficient vascularisation, insufficient mechanical strength as well as issues relating to the osseointegration of the bioresorbable scaffold and bone infection management. Critical insights on the current trends of scaffold technologies and future directions for advancing next-generation BTE scaffolds into the clinical realm are discussed. Considerations concerning regulatory approval and the route towards commercialisation of the scaffolds for widespread clinical utility will also be introduced.
Collapse
Affiliation(s)
- Yuchun Liu
- Division of Bioengineering, School of Chemical and Biomedical Engineering, 70 Nanyang Drive, Nanyang Technological University, Singapore 637459, Singapore
| | | | | |
Collapse
|