1
|
Hendijani F. Explant culture: An advantageous method for isolation of mesenchymal stem cells from human tissues. Cell Prolif 2017; 50:e12334. [PMID: 28144997 PMCID: PMC6529062 DOI: 10.1111/cpr.12334] [Citation(s) in RCA: 114] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 01/03/2017] [Indexed: 12/15/2022] Open
Abstract
Mesenchymal stem cell (MSC) research progressively moves towards clinical phases. Accordingly, a wide range of different procedures were presented in the literature for MSC isolation from human tissues; however, there is not yet any close focus on the details to offer precise information for best method selection. Choosing a proper isolation method is a critical step in obtaining cells with optimal quality and yield in companion with clinical and economical considerations. In this concern, current review widely discusses advantages of omitting proteolysis step in isolation process and presence of tissue pieces in primary culture of MSCs, including removal of lytic stress on cells, reduction of in vivo to in vitro transition stress for migrated/isolated cells, reduction of price, processing time and labour, removal of viral contamination risk, and addition of supporting functions of extracellular matrix and released growth factors from tissue explant. In next sections, it provides an overall report of technical highlights and molecular events of explant culture method for isolation of MSCs from human tissues including adipose tissue, bone marrow, dental pulp, hair follicle, cornea, umbilical cord and placenta. Focusing on informative collection of molecular and methodological data about explant methods can make it easy for researchers to choose an optimal method for their experiments/clinical studies and also stimulate them to investigate and optimize more efficient procedures according to clinical and economical benefits.
Collapse
Affiliation(s)
- Fatemeh Hendijani
- Faculty of PharmacyHormozgan University of Medical SciencesBandar AbbasIran
| |
Collapse
|
2
|
Hirbo J, Eidem H, Rokas A, Abbot P. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes. PLoS One 2015; 10:e0144155. [PMID: 26641094 PMCID: PMC4671692 DOI: 10.1371/journal.pone.0144155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/14/2015] [Indexed: 11/18/2022] Open
Abstract
Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23–34%) are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.
Collapse
Affiliation(s)
- Jibril Hirbo
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Haley Eidem
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
- * E-mail:
| |
Collapse
|
3
|
Wang F, Shi Z, Wang P, You W, Liang G. Comparative proteome profile of human placenta from normal and preeclamptic pregnancies. PLoS One 2013; 8:e78025. [PMID: 24205073 PMCID: PMC3799759 DOI: 10.1371/journal.pone.0078025] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Accepted: 09/09/2013] [Indexed: 12/17/2022] Open
Abstract
To better understand the molecular mechanisms involved in pathological development of placenta in preeclampsia, we used LC-MS/MS to construct a large-scale comparative proteome profile of human placentas from normal and preeclamptic pregnancies. A total of 2636 proteins were detected in human placentas, and 171 different proteins were definitively identified between control and preeclamptic placentas. Further bioinformatics analysis indicated that these differentially expressed proteins correlate with several specific cellular processes which occur during pathological changes of preeclamptic placenta. 6 proteins were randomly selected to verify their expression patterns with Western blotting. Of which, 3 proteins’ cellular localizations were validated with immunohistochemistry. Elucidation of how protein-expression changes coordinate the pathological development would provide researchers with a better understanding of the critical biological processes of preeclampsia and potential targets for therapeutic agents to regulate placenta function, and eventually benefit the treatment of preeclampsia.
Collapse
Affiliation(s)
- Fuqiang Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhonghua Shi
- State Key Laboratory of Reproductive Medicine, Analysis Center, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ping Wang
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China;
| | - Wei You
- Key Laboratory of Living Donor Liver Transplantation, Ministry of Public Health, Department of Liver Transplantation Center, the First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China;
- * E-mails: (GL); (WY)
| | - Gaolin Liang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, China
- * E-mails: (GL); (WY)
| |
Collapse
|
4
|
Enquobahrie DA, Williams MA, Qiu C, Siscovick DS, Sorensen TK. Global maternal early pregnancy peripheral blood mRNA and miRNA expression profiles according to plasma 25-hydroxyvitamin D concentrations. J Matern Fetal Neonatal Med 2011; 24:1002-12. [PMID: 21219104 DOI: 10.3109/14767058.2010.538454] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE We investigated associations of early pregnancy maternal vitamin D concentrations with differential gene expression and post-transcription regulation. METHOD Plasma 25-hydroxyvitamin D (25[OH]D) was measured among participants of a nested case-control study. Participants with low (<25.5 ng/ml) and high (≥31.7 ng/ml) 25[OH]D were identified among controls. Peripheral blood messenger RNA (mRNA) (N = 21) and microRNA (miRNA) (N = 13) expression studies were conducted among participants with low and high 25[OH]D concentrations. Differential expression between low/high groups were evaluated using Student's t-test, fold change, and SAM comparisons. We further investigated functions and functional relationships of differentially expressed mRNAs and targets of differentially expressed miRNAs. RESULTS Three hundred and five genes (299 upregulated and 6 downregulated) and 11 miRNAs (10 downregulated and 1 upregulated) were differentially expressed among participants with low 25[OH]D compared with those who had high 25[OH]D. Genes that participate in a wide range of cellular functions, including organ and system development (e.g. angiogenesis), inflammation and metabolic processes (e.g. carbohydrate/lipid metabolism), as well as miRNAs that target these genes were differentially expressed among women with low 25[OH]D compared with those with high 25[OH]D. CONCLUSION Early pregnancy plasma 25[OH]D concentrations are associated with maternal peripheral blood gene expression and post-transcription regulation.
Collapse
|
5
|
Sontia B, Touyz RM. Role of magnesium in hypertension. Arch Biochem Biophys 2006; 458:33-9. [PMID: 16762312 DOI: 10.1016/j.abb.2006.05.005] [Citation(s) in RCA: 114] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2006] [Accepted: 05/03/2006] [Indexed: 12/15/2022]
Abstract
Magnesium affects blood pressure by modulating vascular tone and reactivity. It acts as a calcium channel antagonist, it stimulates production of vasodilator prostacyclins and nitric oxide and it alters vascular responses to vasoactive agonists. Magnesium deficiency has been implicated in the pathogenesis of hypertension with epidemiological and experimental studies demonstrating an inverse correlation between blood pressure and serum magnesium levels. Magnesium also influences glucose and insulin homeostasis, and hypomagnesemia is associated with metabolic syndrome. Although most epidemiological and experimental studies support a role for low magnesium in the pathophysiology of hypertension, data from clinical studies have been less convincing. Furthermore, the therapeutic value of magnesium in the management of hypertension is unclear. The present review addresses the role of magnesium in the regulation of vascular function and blood pressure and discusses the implications of magnesium deficiency in experimental and clinical hypertension, in metabolic syndrome and in pre-eclampsia.
Collapse
Affiliation(s)
- Bruno Sontia
- Kidney Research Centre, Ottawa Health Research Institute, University of Ottawa, Ontario, Canada K1H 8M5
| | | |
Collapse
|
6
|
Vernet P, Britan A, Gueux E, Mazur A, Drevet JR. Dietary magnesium depletion does not promote oxidative stress but targets apical cells within the mouse caput epididymidis. Biochim Biophys Acta Gen Subj 2004; 1675:32-45. [PMID: 15535965 DOI: 10.1016/j.bbagen.2004.08.014] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2003] [Revised: 08/09/2004] [Accepted: 08/20/2004] [Indexed: 11/16/2022]
Abstract
It is well documented that a dietary deficiency in magnesium can induce oxidative stress and an inflammatory response in animal models. In our study, we have investigated these responses in the mouse epididymis after mice had been fed a magnesium-deficient diet for a 2-week duration. The extracellular and intracellular concentrations of magnesium where shown to be depleted on this diet. This was followed, however, only in the liver of the Mg-deficient animals, by an increase in both alpha 2-macroglobulin (alpha-2m), an acute phase marker, and interleukin-6 transcripts suggesting that an inflammatory response had been initiated. These changes were correlated with a decrease in circulating neutrophils. To address the question of whether or not peroxidation was induced in mouse epididymis following hypomagnesia, we have monitored the level of endogenous peroxidation, their ability to respond to induced peroxidation as well as the expression and activity of the enzymatic glutathione peroxidase (GPX) antioxidant family. To evaluate if the epididymis had evolved specific protections against peroxidation, other organs such as the liver and the kidney were monitored in parallel. We detected no evidence for increased peroxidation in any of the mouse organs tested. However, GPX activity was found to be significantly lower in the liver and the kidney of Mg-deficient animals while it was unchanged in the epididymides of the same animals during the deficiency. Histological analysis of the epididymis showed no major difference in the overall cytological aspect of the organ. Segment 2 of the caput, however presented a significant increase in the number of apically located cells or blebbing cells. Immunohistochemical analysis proved that these cells were epididymal apical cells and not infiltrated leukocytes. These observations suggested that the mouse caput epididymidis segment 2 specifically responded to Mg deficiency via the apical cells. Finally, a comparative analysis of stress response genes was conducted in control and magnesium-deficient caput epididymidis samples. It brought forward some genes that might be involved in the peculiar response of the caput epithelium following hypomagnesia.
Collapse
Affiliation(s)
- Patrick Vernet
- Laboratoire "Epididyme and Maturation des Gamètes", Université Blaise Pascal, CNRS UMR 6547, 24 avenue des Landais, 63177 Aubière cedex, France
| | | | | | | | | |
Collapse
|
7
|
Gow IF. Measurement of ionised magnesium in HEPES-buffered serum samples. Anal Chim Acta 2001. [DOI: 10.1016/s0003-2670(00)01345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
8
|
Laurant P, Touyz RM. Physiological and pathophysiological role of magnesium in the cardiovascular system: implications in hypertension. J Hypertens 2000; 18:1177-91. [PMID: 10994748 DOI: 10.1097/00004872-200018090-00003] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Attention is growing for a potential role of magnesium in the pathoetiology of cardiovascular disease. Magnesium modulates mechanical, electrical and structural functions of cardiac and vascular cells, and small changes in extracellular magnesium levels and/or intracellular free magnesium concentration may have significant effects on cardiac excitability and on vascular tone, contractility and reactivity. Thus, magnesium may be important in the physiological regulation of blood pressure whereas alterations in cellular magnesium metabolism could contribute to the pathogenesis of blood pressure elevation. Although most epidemiological and experimental studies support a pathological role for magnesium in the etiology and development of hypertension, data from clinical studies have been less convincing. Furthermore, the therapeutic value of magnesium in the management of essential hypertension is unclear. The present review discusses the molecular, biochemical, physiological and pharmacological roles of magnesium in the regulation of vascular function and blood pressure and introduces novel concepts relating to magnesium as a second messenger in intracellular signaling in cardiovascular cells. In addition, alterations in magnesium regulation in experimental and clinical hypertension and the potential antihypertensive therapeutic effects of magnesium are addressed.
Collapse
Affiliation(s)
- P Laurant
- Laboratoire Physiologie, Pharmacologie et Nutrition Prèventive Expérimentale, UFR Médecine et Pharmacie, Université de Franche-Comté, Besancon, France
| | | |
Collapse
|