1
|
Molecular identification and gene expression profiles of the T cell receptors and co-receptors in developing red-tailed phascogale (Phascogale calura) pouch young. Mol Immunol 2018; 101:268-275. [DOI: 10.1016/j.molimm.2018.07.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 06/16/2018] [Accepted: 07/02/2018] [Indexed: 11/23/2022]
|
2
|
Old JM. Haematopoiesis in Marsupials. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 58:40-46. [PMID: 26592963 DOI: 10.1016/j.dci.2015.11.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2015] [Revised: 11/05/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Marsupials are a group of mammals that give birth to immature young lacking mature immune tissues at birth, and are unable to mount their own specific immune defence. Their immune tissues develop in a non-sterile ex-utero environment unlike that of eutherian mammals such as ourselves. Marsupials are therefore ideal models for studying the development of immune tissues, in particular haematopoiesis, yet relatively little has been investigated. Most studies have been restricted to histological or immunohistological studies, however some factors likely to be involved, based on eutherian studies in haematopoiesis, have been isolated and characterised, including a few key markers, and some cell signaling and regulation molecules, mostly involved in lymphocytopoiesis. However the role of many molecules in haematopoiesis is largely presumed. We currently lack much of the rudimentary information regarding time of appearance and expression levels of these molecules, and no functional studies have been conducted. This paper reviews our knowledge of marsupial haematopoiesis to date, and highlights the need for future research in marsupials to gain further insights into the evolution of haematopoiesis.
Collapse
Affiliation(s)
- Julie M Old
- Water and Wildlife Ecology, School of Science and Health, University of Western Sydney, Hawkesbury, Locked Bag 1797, Penrith, N.S.W, 2751 Australia.
| |
Collapse
|
3
|
Borthwick CR, Young LJ, Old JM. The development of the immune tissues in marsupial pouch young. J Morphol 2014; 275:822-39. [DOI: 10.1002/jmor.20250] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2013] [Revised: 12/05/2013] [Accepted: 01/02/2014] [Indexed: 11/11/2022]
Affiliation(s)
- Casey R. Borthwick
- Native and Pest Animal Unit, School of Science and Health, Hawkesbury; University of Western Sydney; Locked bag 1797 Penrith New South Wales 2751 Australia
| | - Lauren J. Young
- Native and Pest Animal Unit, School of Science and Health, Hawkesbury; University of Western Sydney; Locked bag 1797 Penrith New South Wales 2751 Australia
| | - Julie M. Old
- Native and Pest Animal Unit, School of Science and Health, Hawkesbury; University of Western Sydney; Locked bag 1797 Penrith New South Wales 2751 Australia
| |
Collapse
|
4
|
Miller RD. Those other mammals: the immunoglobulins and T cell receptors of marsupials and monotremes. Semin Immunol 2010; 22:3-9. [PMID: 20004116 PMCID: PMC2880534 DOI: 10.1016/j.smim.2009.11.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2009] [Accepted: 11/12/2009] [Indexed: 01/15/2023]
Abstract
This review summarizes analyses of marsupial and monotreme immunoglobulin and T cell receptor genetics and expression published over the past decade. Analyses of recently completed whole genome sequences from the opossum and the platypus have yielded insight into the evolution of the common antigen receptor systems, as well as discovery of novel receptors that appear to have been lost in eutherian mammals. These species are also useful for investigation of the development of the immune system in organisms notable for giving birth to highly altricial young, as well as the evolution of maternal immunity through comparison of oviparous and viviparous mammals.
Collapse
Affiliation(s)
- Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87110, USA.
| |
Collapse
|
5
|
Parra ZE, Baker ML, Hathaway J, Lopez AM, Trujillo J, Sharp A, Miller RD. Comparative genomic analysis and evolution of the T cell receptor loci in the opossum Monodelphis domestica. BMC Genomics 2008; 9:111. [PMID: 18312668 PMCID: PMC2275272 DOI: 10.1186/1471-2164-9-111] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2007] [Accepted: 02/29/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND All jawed-vertebrates have four T cell receptor (TCR) chains: alpha (TRA), beta (TRB), gamma (TRG) and delta (TRD). Marsupials appear unique by having an additional TCR: mu (TRM). The evolutionary origin of TRM and its relationship to other TCR remain obscure, and is confounded by previous results that support TRM being a hybrid between a TCR and immunoglobulin locus. The availability of the first marsupial genome sequence allows investigation of these evolutionary relationships. RESULTS The organization of the conventional TCR loci, encoding the TRA, TRB, TRG and TRD chains, in the opossum Monodelphis domestica are highly conserved with and of similar complexity to that of eutherians (placental mammals). There is a high degree of conserved synteny in the genomic regions encoding the conventional TCR across mammals and birds. In contrast the chromosomal region containing TRM is not well conserved across mammals. None of the conventional TCR loci contain variable region gene segments with homology to those found in TRM; rather TRM variable genes are most similar to that of immunoglobulin heavy chain genes. CONCLUSION Complete genomic analyses of the opossum TCR loci continue to support an origin of TRM as a hybrid between a TCR and immunoglobulin locus. None of the conventional TCR loci contain evidence that such a recombination event occurred, rather they demonstrate a high degree of stability across distantly related mammals. TRM, therefore, appears to be derived from receptor genes no longer extant in placental mammals. These analyses provide the first genomic scale structural detail of marsupial TCR genes, a lineage of mammals used as models of early development and human disease.
Collapse
Affiliation(s)
- Zuly E Parra
- Center for Evolutionary and Theoretical Immunology and Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | |
Collapse
|
6
|
Belov K, Sanderson CE, Deakin JE, Wong ESW, Assange D, McColl KA, Gout A, de Bono B, Barrow AD, Speed TP, Trowsdale J, Papenfuss AT. Characterization of the opossum immune genome provides insights into the evolution of the mammalian immune system. Genome Res 2007; 17:982-91. [PMID: 17495011 PMCID: PMC1899125 DOI: 10.1101/gr.6121807] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The availability of the first marsupial genome sequence has allowed us to characterize the immunome of the gray short-tailed opossum (Monodelphis domestica). Here we report the identification of key immune genes, including the highly divergent chemokines, defensins, cathelicidins, and Natural Killer cell receptors. It appears that the increase in complexity of the mammalian immune system occurred prior to the divergence of the marsupial and eutherian lineages approximately 180 million years ago. Genomes of ancestral mammals most likely contained all of the key mammalian immune gene families, with evolution on different continents, in the presence of different pathogens leading to lineage specific expansions and contractions, resulting in some minor differences in gene number and composition between different mammalian lineages. Gene expansion and extensive heterogeneity in opossum antimicrobial peptide genes may have evolved as a consequence of the newborn young needing to survive without an adaptive immune system in a pathogen laden environment. Given the similarities in the genomic architecture of the marsupial and eutherian immune systems, we propose that marsupials are ideal model organisms for the study of developmental immunology.
Collapse
Affiliation(s)
- Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, NSW, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Baker ML, Indiviglio S, Nyberg AM, Rosenberg GH, Lindblad-Toh K, Miller RD, Papenfuss AT. Analysis of a set of Australian northern brown bandicoot expressed sequence tags with comparison to the genome sequence of the South American grey short tailed opossum. BMC Genomics 2007; 8:50. [PMID: 17298671 PMCID: PMC1802078 DOI: 10.1186/1471-2164-8-50] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2006] [Accepted: 02/13/2007] [Indexed: 12/21/2022] Open
Abstract
Background Expressed sequence tags (ESTs) have been used for rapid gene discovery in a variety of organisms and provide a valuable resource for whole genome annotation. Although the genome of one marsupial, the opossum Monodelphis domestica, has now been sequenced, no EST datasets have been reported from any marsupial species. In this study we describe an EST dataset from the bandicoot, Isoodon macrourus, providing information on the transcriptional profile of the bandicoot thymus and the opportunity for a genome wide comparison between the bandicoot and opossum, two distantly related marsupial species. Results A set of 1319 ESTs was generated from sequencing randomly chosen clones from a bandicoot thymus cDNA library. The nucleic acid and deduced amino acid sequences were compared with sequences both in GenBank and the recently completed whole genome sequence of M. domestica. This study provides information on the transcriptional profile of the bandicoot thymus with the identification of genes involved in a broad range of activities including protein metabolism (24%), transcription and/or nucleic acid metabolism (10%), metabolism/energy pathways (9%), immunity (5%), signal transduction (5%), cell growth and maintenance (3%), transport (3%), cell cycle (0.7%) and apoptosis (0.5%) and a proportion of genes whose function is unknown (5.8%). Thirty four percent of the bandicoot ESTs found no match with annotated sequences in any of the public databases. Clustering and assembly of the 1319 bandicoot ESTs resulted in a set of 949 unique sequences of which 375 were unannotated ESTs. Of these, seventy one unannotated ESTs aligned to non-coding regions in the opossum, human, or both genomes, and were identified as strong non-coding RNA candidates. Eighty-four percent of the 949 assembled ESTs aligned with the M. domestica genome sequence indicating a high level of conservation between these two distantly related marsupials. Conclusion This study is among the first reported marsupial EST datasets with a significant inter-species genome comparison between marsupials, providing a valuable resource for transcriptional analyses in marsupials and for future annotation of marsupial whole genome sequences.
Collapse
Affiliation(s)
- Michelle L Baker
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Sandra Indiviglio
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - April M Nyberg
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - George H Rosenberg
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Kerstin Lindblad-Toh
- Broad Institute of MIT and Harvard, 7 Cambridge Center, Cambridge, MA 02142, USA
| | - Robert D Miller
- Center for Evolutionary and Theoretical Immunology, Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Anthony T Papenfuss
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
8
|
Wong ESW, Young LJ, Papenfuss AT, Belov K. In silico identification of opossum cytokine genes suggests the complexity of the marsupial immune system rivals that of eutherian mammals. Immunome Res 2006; 2:4. [PMID: 17094811 PMCID: PMC1660534 DOI: 10.1186/1745-7580-2-4] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2006] [Accepted: 11/10/2006] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Cytokines are small proteins that regulate immunity in vertebrate species. Marsupial and eutherian mammals last shared a common ancestor more than 180 million years ago, so it is not surprising that attempts to isolate many key marsupial cytokines using traditional laboratory techniques have been unsuccessful. This paucity of molecular data has led some authors to suggest that the marsupial immune system is 'primitive' and not on par with the sophisticated immune system of eutherian (placental) mammals. RESULTS The sequencing of the first marsupial genome has allowed us to identify highly divergent immune genes. We used gene prediction methods that incorporate the identification of gene location using BLAST, SYNTENY + BLAST and HMMER to identify 23 key marsupial immune genes, including IFN-gamma, IL-2, IL-4, IL-6, IL-12 and IL-13, in the genome of the grey short-tailed opossum (Monodelphis domestica). Many of these genes were not predicted in the publicly available automated annotations. CONCLUSION The power of this approach was demonstrated by the identification of orthologous cytokines between marsupials and eutherians that share only 30% identity at the amino acid level. Furthermore, the presence of key immunological genes suggests that marsupials do indeed possess a sophisticated immune system, whose function may parallel that of eutherian mammals.
Collapse
Affiliation(s)
- Emily SW Wong
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| | - Lauren J Young
- School of Chemical and Biomedical Sciences, Central Queensland University, Rockhampton, Queensland, Australia
| | - Anthony T Papenfuss
- Division of Bioinformatics, The Walter and Eliza Hall Institute of Medical Research, Melbourne, Victoria, Australia
| | - Katherine Belov
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
9
|
Gouin N, Deakin JE, Miska KB, Miller RD, Kammerer CM, Graves JAM, VandeBerg JL, Samollow PB. Linkage mapping and physical localization of the major histocompatibility complex region of the marsupial Monodelphis domestica. Cytogenet Genome Res 2006; 112:277-85. [PMID: 16484784 DOI: 10.1159/000089882] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2005] [Accepted: 06/28/2005] [Indexed: 12/14/2022] Open
Abstract
We used genetic linkage mapping and fluorescence in situ hybridization (FISH) to conduct the first analysis of genic organization and chromosome localization of the major histocompatibility complex (MHC) of a marsupial, the gray, short-tailed opossum Monodelphis domestica. Family based linkage analyses of two M. domestica MHC Class I genes (UA1, UG) and three MHC Class II genes (DAB, DMA, and DMB) revealed that these genes were tightly linked and positioned in the central region of linkage group 3 (LG3). This cluster of MHC genes was physically mapped to the centromeric region of chromosome 2q by FISH using a BAC clone containing the UA1 gene. An interesting finding from the linkage analyses is that sex-specific recombination rates were virtually identical within the MHC region. This stands in stark contrast to the genome-wide situation, wherein males exhibit approximately twice as much recombination as females, and could have evolutionary implications for maintaining equality between males and females in the ability to generate haplotype diversity in this region. These analyses also showed that three non-MHC genes that flank the MHC region on human chromosome 6, myelin oligodendrocyte glycoprotein (MOG), bone morphogenetic protein 6 (BMP6), and prolactin (PRL), are split among two separate linkage groups (chromosomes) in M. domestica. Comparative analysis with eight other vertebrate species suggests strong conservation of the BMP6-PRL synteny among birds and mammals, although the BMP6-PRL-MHC-ME1 synteny is not conserved.
Collapse
Affiliation(s)
- N Gouin
- Department of Genetics, Southwest Foundation for Biomedical Research, San Antonio, TX 78245-0549, USA.
| | | | | | | | | | | | | | | |
Collapse
|
10
|
Samollow PB. Status and applications of genomic resources for the gray, short-tailed opossum, Monodelphis domestica, an American marsupial model for comparative biology. AUST J ZOOL 2006. [DOI: 10.1071/zo05059] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Owing to its small size, favourable reproductive characteristics, and simple husbandry, the gray, short-tailed opossum, Monodelphis domestica, has become the most widely distributed and intensively utilised laboratory-bred research marsupial in the world today. This article provides an overview of the current state and future projections of genomic resources for this species and discusses the potential impact of this growing resource base on active research areas that use M. domestica as a model system. The resources discussed include: fully arrayed, bacterial artificial chromosome (BAC) libraries; an expanding linkage map; developing full-genome BAC-contig and chromosomal fluorescence in situ hybridisation maps; public websites providing access to the M. domestica whole-genome-shotgun sequence trace database and the whole-genome sequence assembly; and a new project underway to create an expressed-sequence database and microchip expression arrays for functional genomics applications. Major research areas discussed span a variety of genetic, evolutionary, physiologic, reproductive, developmental, and behavioural topics, including: comparative immunogenetics; genomic imprinting; reproductive biology; neurobiology; photobiology and carcinogenesis; genetics of lipoprotein metabolism; developmental and behavioural endocrinology; sexual differentiation and development; embryonic and fetal development; meiotic recombination; genome evolution; molecular evolution and phylogenetics; and more.
Collapse
|
11
|
Baker ML, Osterman AK, Brumburgh S. Divergent T-cell receptor delta chains from marsupials. Immunogenetics 2005; 57:665-73. [PMID: 16160827 DOI: 10.1007/s00251-005-0030-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2005] [Accepted: 07/17/2005] [Indexed: 10/25/2022]
Abstract
Complementary DNAs (cDNAs) encoding T-cell receptor delta (TRD) chains from the northern brown bandicoot, Isoodon macrourus, were identified while sequencing expressed sequence tags (ESTs) from a thymus cDNA library. Surprisingly, the I. macrourus TRD sequences were not orthologous to previously published TRD sequences from another Australian marsupial, the tammar wallaby, Macropus eugenii. Identification of TRD genes in the recently completed whole genome sequence of the South American opossum, Monodelphis domestica, revealed the presence of two highly divergent TRD loci. To determine whether the presence of multiple TRD loci accounts for the lack of orthology between the I. macrourus and M. eugenii cDNAs, additional TRD sequences were obtained from both species of marsupials. The results of this analysis revealed that, unlike eutherian mammals, all three species of marsupials have multiple, highly divergent TRD loci. One group of marsupial TRD sequences was closely related to TR sequences from eutherian mammals. A second group of TRD sequences formed a unique marsupial-specific clade, separate from TR sequences from eutherians. An interesting expression pattern of TRD variable (TRDV) and constant (TRDC) segments was evident in cDNAs from I. macrourus and M. eugenii. TRDV and TRDC sequences that were closely related to TRD genes from eutherian mammals were only found in association with each other in cDNAs from both marsupial species. A similar pattern was seen between TRDV and TRDC sequences that were most closely related to other marsupial TRD genes.
Collapse
Affiliation(s)
- Michelle L Baker
- Department of Biology, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | |
Collapse
|
12
|
Belov K, Miller RD, Ilijeski A, Hellman L, Harrison GA. Isolation of monotreme T-cell receptor alpha and beta chains. Immunogenetics 2004; 56:164-9. [PMID: 15133646 DOI: 10.1007/s00251-004-0679-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2003] [Revised: 04/08/2004] [Indexed: 11/29/2022]
Abstract
Monotremes are an ancient mammalian lineage that last shared a common ancestor with the marsupial and eutherian (placental) mammals about 170 million years ago. Characterization of their immune genes is allowing us to gain insights into the evolutionary processes that lead to the 'mammalian' immune response. Here we describe the characterization of the first cDNA clones encoding T-cell receptors from a monotreme. Two TCR alpha-chain cDNAs ( TCRA) from the short-beaked echidna, Tachyglossus aculeatus, containing complete variable, joining and constant regions were isolated. The echidna TCRA constant region shares approximately 37% amino acid identity with other mammalian TCRA constant region sequences. The two variable regions belong to the TCRAV group C, which also contains V genes from humans, mice, cattle and chickens. One echidna TCR beta-chain cDNA ( TCRB) containing the entire constant region was isolated and sequenced. It shares about 63% identity with other mammalian TCRB constant region sequences. The echidna TCRBV belongs to TCRBV group A, which also contains V genes from various eutherian species. Southern blot analysis indicates that, like in other mammalian species, there is only one TCRA constant region copy in the echidna genome, but at least two TCRB constant regions.
Collapse
Affiliation(s)
- Katherine Belov
- Evolutionary Biology Unit, Australian Museum, 6 College St, 2010, Sydney, NSW, Australia.
| | | | | | | | | |
Collapse
|
13
|
Harrison GA, Taylor CL, Miller RD, Deane EM. Primary structure and variation of the T-cell receptor delta-chain from a marsupial, Macropus eugenii. Immunol Lett 2003; 88:117-25. [PMID: 12880681 DOI: 10.1016/s0165-2478(03)00072-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Although gammadelta T-cells form only a small portion of circulating T-cells in mice and humans, they are more frequent in many other types of mammals and this has lead to speculation regarding their roles and the evolutionary significance of their relative abundance. Moreover, whilst clear homologues of four types of T-cell receptor (TCR) chains (alpha, beta, delta and gamma) have been identified in vertebrates as distantly related as eutherian mammals and cartilaginous fish, there are still many gaps in our knowledge of these TCR components from various taxa. Such knowledge would further illuminate the evolution and function of these receptors and of gammadelta T-cells. Here, we report the molecular cloning of a TCR-delta chain cDNA from the tammar wallaby (Macropus eugenii) which represents the first component of the gammadelta TCR to be characterised from a marsupial. A PCR-based survey of variable (V) segment usage in tammar wallaby mammary-associated lymph node indicated that, although gammadelta T-cells may be sparse in this type of tissue, this species has at least three subfamilies of V genes that have been broadly conserved across vertebrate evolution. Two V subfamilies found in the tammar wallaby were relatively similar and may have diverged more recently, an event that probably occurred at some point in the marsupial lineage.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cloning, Molecular
- Conserved Sequence/genetics
- Evolution, Molecular
- Humans
- Marsupialia/genetics
- Marsupialia/immunology
- Mice
- Molecular Sequence Data
- Phylogeny
- Receptors, Antigen, T-Cell, gamma-delta/chemistry
- Receptors, Antigen, T-Cell, gamma-delta/genetics
- Sequence Homology, Amino Acid
- Sequence Homology, Nucleic Acid
Collapse
Affiliation(s)
- Gavan A Harrison
- School of Science, Food and Horticulture, University of Western Sydney, BCRI Building, Locked Bag 1797, Penrith South DC, NSW 1797, Australia
| | | | | | | |
Collapse
|
14
|
Old JM, Deane EM. The gut-associated lymphoid tissues of the northern brown bandicoot (Isoodon macrourus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2002; 26:841-848. [PMID: 12377223 DOI: 10.1016/s0145-305x(02)00031-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
The gut associated lymphoid tissues (GALT) of a juvenile bandicoot has been examined using histological and immunohistochemical techniques. The mesenteric lymph nodes were hyperfollicular and had well defined paracortical and medullary areas. Lymphocytes were densely packed throughout the cortex and paracortex and the mantles of the follicles. The GALT contained two distinct areas of tissue organisation. One consisted of large areas of aggregated follicles, whilst the other consisted of more linearly distributed follicles. The distribution of T and B cells in the tissue beds was documented using antibodies to surface markers CD3, CD5 and CD79b. T-cells were present in high numbers in the cortical region of the lymph node, whilst B-cells were predominant in the mantle of the follicles. Dispersed CD3 positive T-cells were abundant in the villi lacteals and present in high numbers in follicular areas of gut. CD79b positive B-cells were not observed in the lacteals but were abundant in the mantles of follicles. This is similar to that observed in other metatherians.
Collapse
Affiliation(s)
- J M Old
- Cooperative Research Centre for Conservation and Management of Marsupials, Macquarie University, North Ryde NSW 2109, Australia
| | | |
Collapse
|