1
|
Kovalev DS, Amidei A, Akinbo-Jacobs OI, Linley J, Crandall T, Endsley L, Grippo AJ. Protective effects of exercise on responses to combined social and environmental stress in prairie voles. Ann N Y Acad Sci 2025; 1543:102-116. [PMID: 39565719 PMCID: PMC11779585 DOI: 10.1111/nyas.15264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2024]
Abstract
The combination of social and environmental stressors significantly influences psychological and physical health in males and females, and contributes to both depression and cardiovascular diseases. Animal models support these findings. Voluntary exercise may protect against some forms of stress; however, the protective effects of exercise against social stressors require further investigation. This study evaluated the influence of exercise on the impact of combined social and environmental stressors in socially monogamous prairie voles. Following a period of social isolation plus additional chronic environmental stress, prairie voles were either allowed access to a running wheel in a larger cage for 2 weeks or remained in sedentary conditions. A behavioral stress task was conducted prior to and following exercise or sedentary conditions. Heart rate (HR) and HR variability were evaluated after exercise or sedentary conditions. Group-based analyses indicated that exercise prevented elevated resting HR and promoted autonomic control of the heart. Exercise was also effective against social and environmental stress-induced forced swim test immobility. Some minor sex differences in behavior were observed in response to exercise intensity. This research informs our understanding of the protective influence of physical exercise against social and environmental stressors in male and female humans.
Collapse
Affiliation(s)
- Dmitry S. Kovalev
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
- Stanson Toshok Center for Brain Function and Repair, Rosalind Franklin University of Medicine and Science, North Chicago, Illinois, USA
| | - Alex Amidei
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | | | - Jessica Linley
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Teva Crandall
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Linnea Endsley
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| | - Angela J. Grippo
- Department of Psychology, Northern Illinois University, Dekalb, Illinois, USA
| |
Collapse
|
2
|
Kirby AK, Pancholi S, Suresh S, Anderson Z, Chesler C, Everett Iv TH, Duerstock BS. Acclimation Protocol to Minimize Stress in Immobilized Rats During Non-Invasive Multimodal Sensing of the Autonomic Nervous System. Mil Med 2023; 188:474-479. [PMID: 37948271 DOI: 10.1093/milmed/usad208] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 02/03/2023] [Accepted: 05/31/2023] [Indexed: 11/12/2023] Open
Abstract
INTRODUCTION Rodent models are often used in spinal cord injury investigations to measure physiological parameters but require rats to be restrained during data collection to prevent motion and stress-induced artifacts. MATERIALS AND METHODS A 4-week acclimation protocol was developed to reduce sympathetic activity during experimentation to collect clean data. Physiological parameters were analyzed throughout the acclimation protocol using surface-based electrodes and an implanted sensor. The sensor was used to extract systolic blood pressure, skin nerve activity, and heart rate variability parameters. RESULTS Our protocol exposed a minimal increase in sympathetic activity during experimentation despite long periods of restraint. The data suggest that the acclimation protocol presented successfully minimized changes in physiological parameters because of prolonged restraint. CONCLUSIONS This is necessary to ensure that physiological recordings are not affected by undue stress because of the process of wearing the sensor. This is important when determining the effects of stress when studying dysautonomia after spinal cord injury, Parkinson's disease, and other neurological disorders.
Collapse
Affiliation(s)
- Ana Karina Kirby
- Weldon School of Biomedical Engineering, Purdue University Flex Lab, West Lafayette, IN 47906, USA
| | - Sidharth Pancholi
- Weldon School of Biomedical Engineering, Purdue University Flex Lab, West Lafayette, IN 47906, USA
| | - Shruthi Suresh
- Weldon School of Biomedical Engineering, Purdue University Flex Lab, West Lafayette, IN 47906, USA
| | - Zada Anderson
- Weldon School of Biomedical Engineering, Purdue University Flex Lab, West Lafayette, IN 47906, USA
| | - Caroline Chesler
- Weldon School of Biomedical Engineering, Purdue University Flex Lab, West Lafayette, IN 47906, USA
| | - Thomas H Everett Iv
- Krannert Cardiovascular Research Center, Division of Cardiovascular Medicine, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Bradley S Duerstock
- Weldon School of Biomedical Engineering, Purdue University Flex Lab, West Lafayette, IN 47906, USA
- School of Industrial Engineering, Purdue University Flex Lab, West Lafayette, IN 47906, USA
| |
Collapse
|
3
|
Maurício LS, Leme DP, Hötzel MJ. How to Understand Them? A Review of Emotional Indicators in Horses. J Equine Vet Sci 2023; 126:104249. [PMID: 36806715 DOI: 10.1016/j.jevs.2023.104249] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 02/02/2023] [Accepted: 02/09/2023] [Indexed: 02/18/2023]
Abstract
Stabled horses often experience negative emotions due to the inappropriate living conditions imposed by humans. However, identifying what emotions horses experience and what can trigger positive and negative emotions in stabled horses can be challenging. In this article we present a brief history of the study of emotions and models that explain emotions from a scientific point of view and the physiological bases and functions of emotions. We then review and discuss physiological and behavioral indicators and cognitive bias tests developed to assess emotions in horses. Hormone concentrations, body temperature, the position of the ears, facial expressions and behaviors, such as approach and avoidance behaviors, can provide valuable information about emotional states in horses. The cognitive bias paradigm is a recent and robust tool to assess emotions in horses. Knowing how to evaluate the intensity and frequency of an individual's emotions can guide horse owners and caretakers to identify practices and activities that should be stimulated, avoided or even banned from the individual's life, in favor of a life worth living. The development and validation of novel indicators of emotions considering positive and negative contexts can help in these actions.
Collapse
Affiliation(s)
- Letícia Santos Maurício
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Denise Pereira Leme
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil
| | - Maria José Hötzel
- Laboratory of Applied Ethology and Animal Welfare, Department of Animal Science and Rural Development, Federal University of Santa Catarina, Florianópolis, SC, Brazil.
| |
Collapse
|
4
|
Yoshida Y, Yajima Y, Kawakami K, Nakamura SI, Tsukahara T, Oishi K, Toyoda A. Salivary microRNA and Metabolic Profiles in a Mouse Model of Subchronic and Mild Social Defeat Stress. Int J Mol Sci 2022; 23:ijms232214479. [PMID: 36430957 PMCID: PMC9692636 DOI: 10.3390/ijms232214479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 11/14/2022] [Accepted: 11/15/2022] [Indexed: 11/23/2022] Open
Abstract
Identification of early biomarkers of stress is important for preventing mood and anxiety disorders. Saliva is an easy-to-collect and non-invasive diagnostic target. The aim of this study was to characterize the changes in salivary whole microRNAs (miRNAs) and metabolites in mice subjected to subchronic and mild social defeat stress (sCSDS). In this study, we identified seven upregulated and one downregulated miRNAs/PIWI-interacting RNA (piRNA) in the saliva of sCSDS mice. One of them, miR-208b-3p, which is reported as a reliable marker for myocardial infarction, was upregulated in the saliva of sCSDS mice. Histological analysis showed frequent myocardial interstitial fibrosis in the heart of such mice. In addition, gene ontology and pathway analyses suggested that the pathways related to energy metabolism, such as the oxidative phosphorylation and the pentose phosphate pathway, were significantly related to the miRNAs affected by sCSDS in saliva. In contrast, salivary metabolites were not significantly changed in the sCSDS mice, which is consistent with our previous metabolomic study on the plasma of sCSDS mice. Taken in the light of previous studies, the present study provides novel potential stress biomarkers for future diagnosis using saliva.
Collapse
Affiliation(s)
- Yuta Yoshida
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
| | - Yuhei Yajima
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
| | - Kina Kawakami
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
| | | | | | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology, Tsukuba 305-8566, Japan
- Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda 278-8510, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa 277-0882, Japan
- School of Integrative and Global Majors, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Atsushi Toyoda
- Department of Food and Life Sciences, College of Agriculture, Ibaraki University, Mito 300-0393, Japan
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Tokyo 183-8509, Japan
- Correspondence: ; Tel.: +81-29-888-8584; Fax: +81-29-888-8584
| |
Collapse
|
5
|
Barbetti M, Vilella R, Dallabona C, Gerra MC, Bocchi L, Ielpo D, Andolina D, Sgoifo A, Savi M, Carnevali L. Decline of cardiomyocyte contractile performance and bioenergetic function in socially stressed male rats. Heliyon 2022; 8:e11466. [PMID: 36387533 PMCID: PMC9660606 DOI: 10.1016/j.heliyon.2022.e11466] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022] Open
Abstract
Chronic social stress has been epidemiologically linked to increased risk for cardiovascular disease, yet the underlying pathophysiological mechanisms are still largely elusive. Mitochondrial (dys)function represents a potential intersection point between social stress exposure and (mal)adaptive cardiac responses. In this study, we used a rodent model of social stress to study the extent to which alterations in the cellular mechanical properties of the heart were associated with changes in indexes of mitochondrial function. Male adult rats were exposed to repeated episodes of social defeat stress or left undisturbed (controls). ECG signals were recorded during and after social defeat stress. Twenty-four hours after the last social defeat, cardiomyocytes were isolated for analyses of mechanical properties and intracellular Ca2+ dynamics, mitochondrial respiration, and ATP content. Results indicated that social defeat stress induced potent cardiac sympathetic activation that lasted well beyond stress exposure. Moreover, cardiomyocytes of stressed rats showed poor contractile performance (e.g., slower contraction and relaxation rates) and intracellular Ca2+ derangement (e.g., slower Ca2+ clearing), which were associated with indexes of reduced reserve respiratory capacity and decreased ATP production. In conclusion, this study suggests that repeated social stress provokes impaired cardiomyocyte contractile performance and signs of altered mitochondrial bioenergetics in the rat heart. Future studies are needed to clarify the causal link between cardiac and mitochondrial functional remodeling under conditions of chronic social stress.
Collapse
Affiliation(s)
- Margherita Barbetti
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
| | - Donald Ielpo
- IRCCS Fondazione Santa Lucia, Roma, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University Rome, Italy
| | - Diego Andolina
- IRCCS Fondazione Santa Lucia, Roma, Italy
- Department of Psychology and Center “Daniel Bovet”, Sapienza University Rome, Italy
| | - Andrea Sgoifo
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Corresponding author.
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Corresponding author.
| | - Luca Carnevali
- Stress Physiology Lab, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy
- Corresponding author.
| |
Collapse
|
6
|
Miczek KA, Akdilek N, Ferreira VMM, Leonard MZ, Marinelli LR, Covington HE. To fight or not to fight: activation of the mPFC during decision to engage in aggressive behavior after ethanol consumption in a novel murine model. Psychopharmacology (Berl) 2022; 239:3249-3261. [PMID: 35951078 PMCID: PMC9481716 DOI: 10.1007/s00213-022-06208-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 08/01/2022] [Indexed: 11/30/2022]
Abstract
RATIONALE Alcohol consumption is a common antecedent of aggressive behavior. The effects of alcohol on the decision to engage in aggression in preference over pro-social interaction are hypothesized to arise from augmented function within the medial prefrontal cortex (mPFC). OBJECTIVE In a newly developed procedure, we studied social decision-making in male C57BL/6 J mice based on preferentially seeking access to either sociosexual interactions with a female partner or the opportunity to attack an intruder male. While deciding to engage in aggressive vs. sociosexual behavior, corresponding neural activation was assessed via c-Fos immunoreactivity in cortical, amygdaloid and tegmental regions of interest. A further objective was to investigate how self-administered alcohol impacted social choice. METHODS During repeated confrontations with an intruder male in their home cage, experimental mice engaged in species-specific sequence of pursuit, threat, and attack behavior within < 2 min. Mice were then conditioned to respond at one of two separate illuminated operanda in an experimental chamber (octagon) attached to their home cage; completion of 10 responses (fixed ratio 10; FR10) was reinforced by access to either a female or a male intruder which were presented in the resident's home cage. Brains were harvested following choice between the concurrently available aggressive and sociosexual options and processed for c-Fos immunoreactivity across 10 brain regions. In two separate groups, mice were trained to rapidly self-administer ethanol prior to a social choice trial in order to examine the effects of alcohol on social choice, sociosexual, aggressive acts and postures, and concurrent c-Fos activity in the mPFC and limbic regions. RESULTS AND DISCUSSION Eight out of 65 mice consistently chose to engage in aggressive behavior in preference to sociosexual contact with a female when each outcome was concurrently available. Self-administered alcohol (experiment 1: 1.2 ± 0.02 g/kg; experiment 2: 0, 1.0, 1.5, and 1.8 g/kg) increased responding for the aggressive option in mice that previously opted predominantly for access to sociosexual interactions with the female. When choosing the aggressive, but not the sociosexual option, the prelimbic area of the mPFC revealed increased c-Fos activity, guiding future detailed inquiry into the neural mechanisms for aggressive choice.
Collapse
Affiliation(s)
- Klaus A Miczek
- Department of Psychology, Tufts University, Medford, MB, 02155, USA.
- Department of Neuroscience, Tufts University, Boston, MA, 02111, USA.
| | - Naz Akdilek
- Department of Psychology, Tufts University, Medford, MB, 02155, USA
| | - Vania M M Ferreira
- Department of Psychology, Tufts University, Medford, MB, 02155, USA
- Universidade de Brasilea, Instituto de Psicologia, Brasilia, Brazil
| | | | | | | |
Collapse
|
7
|
Lemonnier C, Bize P, Boonstra R, Dobson FS, Criscuolo F, Viblanc VA. Effects of the social environment on vertebrate fitness and health in nature: Moving beyond the stress axis. Horm Behav 2022; 145:105232. [PMID: 35853411 DOI: 10.1016/j.yhbeh.2022.105232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 06/04/2022] [Accepted: 06/22/2022] [Indexed: 11/22/2022]
Abstract
Social interactions are a ubiquitous feature of the lives of vertebrate species. These may be cooperative or competitive, and shape the dynamics of social systems, with profound effects on individual behavior, physiology, fitness, and health. On one hand, a wealth of studies on humans, laboratory animal models, and captive species have focused on understanding the relationships between social interactions and individual health within the context of disease and pathology. On the other, ecological studies are attempting an understanding of how social interactions shape individual phenotypes in the wild, and the consequences this entails in terms of adaptation. Whereas numerous studies in wild vertebrates have focused on the relationships between social environments and the stress axis, much remains to be done in understanding how socially-related activation of the stress axis coordinates other key physiological functions related to health. Here, we review the state of our current knowledge on the effects that social interactions may have on other markers of vertebrate fitness and health. Building upon complementary findings from the biomedical and ecological fields, we identify 6 key physiological functions (cellular metabolism, oxidative stress, cellular senescence, immunity, brain function, and the regulation of biological rhythms) which are intimately related to the stress axis, and likely directly affected by social interactions. Our goal is a holistic understanding of how social environments affect vertebrate fitness and health in the wild. Whereas both social interactions and social environments are recognized as important sources of phenotypic variation, their consequences on vertebrate fitness, and the adaptive nature of social-stress-induced phenotypes, remain unclear. Social flexibility, or the ability of an animal to change its social behavior with resulting changes in social systems in response to fluctuating environments, has emerged as a critical underlying factor that may buffer the beneficial and detrimental effects of social environments on vertebrate fitness and health.
Collapse
Affiliation(s)
- Camille Lemonnier
- Ecole Normale Supérieur de Lyon, 69342 Lyon, France; Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France.
| | - Pierre Bize
- School of Biological Sciences, University of Aberdeen, Aberdeen, UK; Swiss Institute of Ornithology, Sempach, Switzerland
| | - Rudy Boonstra
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, Canada
| | - F Stephen Dobson
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France; Department of Biological Sciences, Auburn University, Auburn, AL, USA
| | | | - Vincent A Viblanc
- Université de Strasbourg, CNRS, IPHC UMR 7178, 67000 Strasbourg, France
| |
Collapse
|
8
|
Stryjek R, Modlinska K. Pre-exposure via wire-mesh partition reduces intraspecific aggression in male, wild-type Norway rats. Anim Welf 2022. [DOI: 10.7120/09627286.31.2.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
There are instances when animals are introduced and expected to live alongside unfamiliar conspecifics within zoos, laboratories and wildlife sanctuaries. These pairings of unfamiliar animals may result in stress, trauma, or even death, in addition to reduced confidence in data resulting
from these subjects. For species that communicate relatedness, sex, social status, and emotional state through olfactory cues (eg pheromones), one means of counteracting aggression may involve a period of partial separation — where animals are close enough to become acquainted —
while a permeable barrier maintains separation. For our study, we evaluated the use of a novel, autoclavable, wire-mesh partition to separate potential aggressors. We tested different pairs of 24 wild-type male Norway rats (Rattus norvegicus), previously kept in social isolation for
seven days. Each control pair were merged directly into one cage, while pairs from the experimental groups underwent three pre-exposure sessions that lasted two to four days. We used continuous video recordings to assess five common threat displays: lateral threat, keep down, upright posture,
chase, and clinch attack. We used two types of bedding: new (unscented) bedding and recently used bedding that conveyed scents from both merged rats. We found that rats subjected to pre-exposure demonstrated lower aggression levels across three of the five metrics (lateral threats, upright
postures, and keep downs). We conclude that permeable partitions show promise as a humane mechanism to mix new individuals into preexisting colonies. Further research may explore whether partitions could be helpful with other species that communicate social information by pheromones or direct
visual inspection.
Collapse
Affiliation(s)
- R Stryjek
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| | - K Modlinska
- Institute of Psychology, Polish Academy of Sciences, Warsaw, Poland
| |
Collapse
|
9
|
Carli G, Farabollini F. Autonomic correlates of defense responses, including tonic immobility (TI). PROGRESS IN BRAIN RESEARCH 2022; 271:191-228. [DOI: 10.1016/bs.pbr.2022.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
10
|
Molcan L. Telemetric data collection should be standard in modern experimental cardiovascular research. Physiol Behav 2021; 242:113620. [PMID: 34637804 DOI: 10.1016/j.physbeh.2021.113620] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 10/05/2021] [Accepted: 10/07/2021] [Indexed: 02/07/2023]
Abstract
Cardiovascular (CV) health is often expressed by changes in heart rate and blood pressure, the physiological record of which may be affected by moving, anaesthesia, handling, time of day and many other factors in rodents. Telemetry measurement minimises these modulations and enables more accurate physiological recording of heart rate and blood pressure than non-invasive methods. Measurement of arterial blood pressure by telemetry requires implanting a catheter tip into the artery. Telemetry enables us to sample physiological parameters with a high frequency continuously for several months. By measuring the pressure in the artery using telemetry, we can visualize pressure changes over a heart cycle as the pressure wave. From the pressure wave, we can subtract systolic, diastolic, mean and pulse pressure. From the beat-to-beat interval (pressure wave) and the RR' interval (electrocardiogram), we can derive the heart rate. From beat-to-beat variability, we can evaluate the autonomic nervous system's activity and spontaneous baroreflex sensitivity and their impact on CV activity. On a long-term scale, circadian variability of CV parameters is evident. Circadian variability is the result of the circadian system's activity, which synchronises and organises many activities in the body, such as autonomic and reflex modulation of the CV system and its response to load over the day. In the presented review, we aimed to discuss telemetry devices, their types, implantation, set-up, limitations, short-term and long-term variability of heart rate and blood pressure in CV research. Data collection by telemetry should be, despite some limitations, standard in modern experimental CV research.
Collapse
Affiliation(s)
- Lubos Molcan
- Department of Animal Physiology and Ethology, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia.
| |
Collapse
|
11
|
de Sousa MBC, de Meiroz Grilo MLP, Galvão-Coelho NL. Natural and Experimental Evidence Drives Marmosets for Research on Psychiatric Disorders Related to Stress. Front Behav Neurosci 2021; 15:674256. [PMID: 34177478 PMCID: PMC8227430 DOI: 10.3389/fnbeh.2021.674256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 05/07/2021] [Indexed: 11/28/2022] Open
Abstract
Knowledge of the behavioral ecology of marmosets carried out in their natural habitat associated with the advent of a non-invasive technique for measuring steroid hormones in feces has made a significant contribution to understanding their social relationships and sexual strategies. These studies showed that they are mainly monogamous, live in relatively stable social groups according to a social hierarchy in which females compete and males cooperate, and form social bonds similar to humans, which makes this species a potential animal model to study disorders related to social stress. In addition, laboratory studies observed the expression of behaviors similar to those in nature and deepened the descriptions of their social and reproductive strategies. They also characterized their responses to the challenge using behavioral, cognitive, physiological, and genetic approaches that were sexually dimorphic and influenced by age and social context. These findings, added to some advantages which indicate good adaptation to captivity and the benefits of the birth of twins, small size, and life cycle in comparison to primates of the Old World, led to their use as animal models for validating psychiatric diseases such as major depression. Juvenile marmosets have recently been used to develop a depression model and to test a psychedelic brew called Ayahuasca from the Amazon rainforest as an alternative treatment for major depression, for which positive results have been found which encourage further studies in adolescents. Therefore, we will review the experimental evidence obtained so far and discuss the extension of the marmoset as an animal model for depression.
Collapse
Affiliation(s)
- Maria Bernardete Cordeiro de Sousa
- Brain Institute, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Postgraduation Program in Neuroscience, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil
| | - Maria Lara Porpino de Meiroz Grilo
- Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil
| | - Nicole Leite Galvão-Coelho
- Postgraduation Program in Psychobiology, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,Laboratory of Advanced Studies in Primates, UFRN-Brazil, and Laboratory of Hormone Measurement, Department of Physiology and Behavior, Natal, Brazil.,Department of Physiology and Behavior, Federal University of Rio Grande do Norte (UFRN), Natal, Brazil.,National Institute of Science and Technology in Translational Medicine, Ribeirao Preto, Brazil
| |
Collapse
|
12
|
Korzan WJ, Summers CH. Evolution of stress responses refine mechanisms of social rank. Neurobiol Stress 2021; 14:100328. [PMID: 33997153 PMCID: PMC8105687 DOI: 10.1016/j.ynstr.2021.100328] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 02/08/2023] Open
Abstract
Social rank functions to facilitate coping responses to socially stressful situations and conditions. The evolution of social status appears to be inseparably connected to the evolution of stress. Stress, aggression, reward, and decision-making neurocircuitries overlap and interact to produce status-linked relationships, which are common among both male and female populations. Behavioral consequences stemming from social status and rank relationships are molded by aggressive interactions, which are inherently stressful. It seems likely that the balance of regulatory elements in pro- and anti-stress neurocircuitries results in rapid but brief stress responses that are advantageous to social dominance. These systems further produce, in coordination with reward and aggression circuitries, rapid adaptive responding during opportunities that arise to acquire food, mates, perch sites, territorial space, shelter and other resources. Rapid acquisition of resources and aggressive postures produces dominant individuals, who temporarily have distinct fitness advantages. For these reasons also, change in social status can occur rapidly. Social subordination results in slower and more chronic neural and endocrine reactions, a suite of unique defensive behaviors, and an increased propensity for anxious and depressive behavior and affect. These two behavioral phenotypes are but distinct ends of a spectrum, however, they may give us insights into the troubling mechanisms underlying the myriad of stress-related disorders to which they appear to be evolutionarily linked.
Collapse
Affiliation(s)
| | - Cliff H Summers
- Department of Biology, University of South Dakota, Vermillion, SD 57069 USA.,Neuroscience Group, Division of Basic Biomedical Sciences, Sanford School of Medicine, University of South Dakota, Vermillion, SD 57069, USA.,Veterans Affairs Research Service, Sioux Falls VA Health Care System, Sioux Falls, SD 57105 USA
| |
Collapse
|
13
|
Mendonça MM, Costa AN, Moraes GCA, Martins GM, Almeida AF, Rincon GCN, Siqueira JPR, Padilha DM, Moya MI, Ferreira-Neto ML, Gomes RM, Pedrino GR, Fontes MAP, Colombari E, Crestani CC, Fajemiroye JO, Xavier CH. Centrally acting antihypertensives change the psychogenic cardiovascular reactivity. Fundam Clin Pharmacol 2021; 35:892-905. [PMID: 33465820 DOI: 10.1111/fcp.12648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/21/2020] [Accepted: 01/15/2021] [Indexed: 11/27/2022]
Abstract
Clonidine (CL) and Rilmenidine (RI) are among the most frequently prescribed centrally acting antihypertensives. Here, we compared CL and RI effects on psychogenic cardiovascular reactivity to sonant, luminous, motosensory, and vibrotactile stimuli during neurogenic hypertension. The femoral artery and vein of Wistar (WT - normotensive) and spontaneously hypertensive rats (SHR) were catheterized before (24 h interval) i.p. injection of vehicle (NaCl 0.9%, control - CT group), CL (10 µg/kg), or RI (10 µg/kg) and acute exposure to luminous (5000 lm), sonant (75 dB sudden tap), motor (180° cage twist), and air-jet (10 L/min - restraint and vibrotactile). Findings showed that: (i) CL or RI reduced the arterial pressure of SHR, without affecting basal heart rate in WT and SHR; (ii) different stimuli evoked pressor and tachycardic responses; (iii) CL and RI reduced pressor response to sound; (iv) CL or RI reduced pressor responses to luminous stimulus without a change in peak tachycardia in SHR; (v) cage twist increased blood pressure in SHR, which was attenuated by CL or RI; (vi) air-jet increased pressure and heart rate; (vii) CL or RI attenuated the pressor responses to air-jet in SHR while RI reduced the chronotropic reactivity in both strains. Altogether, both antihypertensives relieved the psychogenic cardiovascular responses to different stimuli. The RI elicited higher cardioprotective effects through a reduction in air-jet-induced tachycardia.
Collapse
Affiliation(s)
- Michelle M Mendonça
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | - Amanda N Costa
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | - Gean C A Moraes
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | - Gustavo M Martins
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil.,School of Medicine, Federal University of Goias, Goiania, Brazil
| | - Aline F Almeida
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil.,School of Medicine, Federal University of Goias, Goiania, Brazil
| | - Gabriel C N Rincon
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil.,School of Medicine, Federal University of Goias, Goiania, Brazil
| | - João P R Siqueira
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil.,School of Medicine, Federal University of Goias, Goiania, Brazil
| | - Daniella M Padilha
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil.,School of Medicine, Federal University of Goias, Goiania, Brazil
| | - Marcela I Moya
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil.,School of Medicine, Federal University of Goias, Goiania, Brazil
| | | | - Rodrigo Mello Gomes
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | | | | | - Eduardo Colombari
- School of Dentistry, São Paulo State University (UNESP), Araraquara, Brazil
| | - Carlos C Crestani
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, Brazil
| | - James O Fajemiroye
- Institute of Biological Sciences, Federal University of Goias, Goiania, Brazil
| | | |
Collapse
|
14
|
Dudek KA, Dion‐Albert L, Kaufmann FN, Tuck E, Lebel M, Menard C. Neurobiology of resilience in depression: immune and vascular insights from human and animal studies. Eur J Neurosci 2021; 53:183-221. [PMID: 31421056 PMCID: PMC7891571 DOI: 10.1111/ejn.14547] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 07/22/2019] [Accepted: 08/12/2019] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a chronic and recurrent psychiatric condition characterized by depressed mood, social isolation and anhedonia. It will affect 20% of individuals with considerable economic impacts. Unfortunately, 30-50% of depressed individuals are resistant to current antidepressant treatments. MDD is twice as prevalent in women and associated symptoms are different. Depression's main environmental risk factor is chronic stress, and women report higher levels of stress in daily life. However, not every stressed individual becomes depressed, highlighting the need to identify biological determinants of stress vulnerability but also resilience. Based on a reverse translational approach, rodent models of depression were developed to study the mechanisms underlying susceptibility vs resilience. Indeed, a subpopulation of animals can display coping mechanisms and a set of biological alterations leading to stress resilience. The aetiology of MDD is multifactorial and involves several physiological systems. Exacerbation of endocrine and immune responses from both innate and adaptive systems are observed in depressed individuals and mice exhibiting depression-like behaviours. Increasing attention has been given to neurovascular health since higher prevalence of cardiovascular diseases is found in MDD patients and inflammatory conditions are associated with depression, treatment resistance and relapse. Here, we provide an overview of endocrine, immune and vascular changes associated with stress vulnerability vs. resilience in rodents and when available, in humans. Lack of treatment efficacy suggests that neuron-centric treatments do not address important causal biological factors and better understanding of stress-induced adaptations, including sex differences, could contribute to develop novel therapeutic strategies including personalized medicine approaches.
Collapse
Affiliation(s)
- Katarzyna A. Dudek
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Laurence Dion‐Albert
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Fernanda Neutzling Kaufmann
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Ellen Tuck
- Smurfit Institute of GeneticsTrinity CollegeDublinIreland
| | - Manon Lebel
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| | - Caroline Menard
- Department of Psychiatry and NeuroscienceFaculty of Medicine and CERVO Brain Research CenterUniversité LavalQuebec CityQCCanada
| |
Collapse
|
15
|
Brouillard C, Carrive P, Sévoz-Couche C. Social defeat: Vagal reduction and vulnerability to ventricular arrhythmias. Neurobiol Stress 2020; 13:100245. [PMID: 33344701 PMCID: PMC7739042 DOI: 10.1016/j.ynstr.2020.100245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/21/2020] [Accepted: 07/21/2020] [Indexed: 12/13/2022] Open
Abstract
Previously, a sub-population of defeated anesthetized rats (Dlow) was characterized by persistent low blood levels of brain-derived neurotrophic factor (BDNF) at day 29 and autonomic alteration at day 30 after social challenge, while the other population (Dhigh) was similar to non-defeated (ND) animals. The aims of this study were to determine the time-course of autonomic dysfunction in awake animals, and whether Dhigh and/or Dlow were vulnerable to cardiac events. Defeated animals were exposed to four daily episodes of social defeats from day 1 to day 4. At day 30, anesthetized Dlow displayed decreased experimental and spontaneous reflex responses reflecting lower parasympathetic efficiency. In addition, Dlow but not Dhigh were characterized by left ventricular hypertrophy at day 30. Telemetric recordings revealed that Dlow had increased low frequency-to-high frequency ratio (LF/HF) and diastolic (DBP) and systolic (SBP) blood pressure, associated with decreased HF and spontaneous baroreflex responses (BRS) from day 3 to day 29. LF/HF, DBP and SBP recovered at day 5, and HF and BRS recovered at day 15 in Dhigh. Ventricular premature beats (VPBs) occurred in Dlow and Dhigh animals from day 5. Time course of VBP fluctuations in Dhigh mirrored that of HF and BRS, but not that of LF/HF, DBP and SBP. These results suggest that a psychosocial stress associated to low serum BDNF levels can lead to vulnerability to persistent autonomic dysfunction, cardiac hypertrophy and ventricular ectopic beats. The parasympathetic recovery seen in Dhigh may provide protection against cardiac events in this population.
Collapse
Affiliation(s)
- Charly Brouillard
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| | - Pascal Carrive
- Blood Pressure, Brain and Behavior Laboratory, School of Medical Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Caroline Sévoz-Couche
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005, Paris, France
| |
Collapse
|
16
|
Bouter Y, Brzózka MM, Rygula R, Pahlisch F, Leweke FM, Havemann-Reinecke U, Rohleder C. Chronic Psychosocial Stress Causes Increased Anxiety-Like Behavior and Alters Endocannabinoid Levels in the Brain of C57Bl/6J Mice. Cannabis Cannabinoid Res 2020; 5:51-61. [PMID: 32322676 DOI: 10.1089/can.2019.0041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Introduction: Chronic stress causes a variety of physiological and behavioral alterations, including social impairments, altered endocrine function, and an increased risk for psychiatric disorders. Thereby, social stress is one of the most effective stressful stimuli among mammals and considered to be one of the major risk factors for the onset and progression of neuropsychiatric diseases. For analyzing the effects of social stress in mice, the resident/intruder paradigm of social defeat is a widely used model. Although the chronic social defeat stress model has been extensively studied, little is known about the effects of repeated or chronic social defeat stress on the endocannabinoid system (ECS). The present study aimed to understand the effects of chronic social stress on anxiety behavior and the levels of endocannabinoids (ECs) and two N-acylethanolamines (NAEs) in different brain regions of mice. Materials and Methods: Two-month-old, male C57Bl/6J mice were exposed to chronic psychosocial stress for 3 weeks. The effects of stress on anxiety behavior were measured using the light-dark box and hole board test. The EC levels of 2-arachidonoyl glycerol (2-AG) and anandamide (N-arachidonoylethanolamine [AEA]), as well as the levels of two NAEs (oleoylethanolamide [OEA] and palmitoylethanolamide), were analyzed by liquid chromatography-tandem mass spectrometry in the hippocampus, cerebellum, and cortex. Results: In comparison with control mice (n=12), mice exposed to social defeat stress (n=11) showed increased anxiety behaviors in the light-dark box and hole board test and gained significantly more weight during the experimental period. Additionally, chronic social stress induced differential alterations in the brain levels of 2-AG and AEA. More precisely, 2-AG levels were higher in the cortex and cerebellum, whereas reduced AEA levels were found in the hippocampus. Furthermore, we observed lower OEA levels in the hippocampus. Conclusion: The current study confirms that the ECS plays an essential role in stress responses, whereby its modulation seems to be brain region dependent.
Collapse
Affiliation(s)
- Yvonne Bouter
- Division of Molecular Psychiatry, Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany.,Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany
| | - Magdalena M Brzózka
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Rafal Rygula
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany.,Affective Cognitive Neuroscience Laboratory, Institute of Pharmacology Polish Academy of Sciences, Krakow, Poland
| | - Franziska Pahlisch
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany
| | - F Markus Leweke
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany.,Brain and Mind Centre, The University of Sydney, Sydney, Australia
| | - Ursula Havemann-Reinecke
- Center Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), University of Göttingen, Göttingen, Germany.,Department of Psychiatry and Psychotherapy, University Medicine Göttingen, Georg-August University of Göttingen, Göttingen, Germany
| | - Cathrin Rohleder
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Mannheim, Germany.,Brain and Mind Centre, The University of Sydney, Sydney, Australia.,Institute of Radiochemistry and Experimental Molecular Imaging, Faculty of Medicine and University Hospital of Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
17
|
Jacobsen DP, Eriksen MB, Rajalingam D, Nymoen I, Nielsen MB, Einarsen S, Gjerstad J. Exposure to workplace bullying, microRNAs and pain; evidence of a moderating effect of miR-30c rs928508 and miR-223 rs3848900. Stress 2020; 23:77-86. [PMID: 31339402 DOI: 10.1080/10253890.2019.1642320] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Prolonged exposure to bullying behaviors may give rise to symptoms such as anxiety, depression and chronic pain. Earlier data suggest that these symptoms often are associated with stress-induced low-grade systemic inflammation. Here, using data from both animals and humans, we examined the moderating role of microRNAs (miRNAs, miRs) in this process. In the present study, a resident-intruder paradigm, blood samples, tissue harvesting and subsequent qPCR analyses were used to screen for stress-induced changes in circulating miRNAs in rats. The negative acts questionnaire (NAQ), TaqMan assays and a numeric rating scale (NRS) for pain intensity were then used to examine the associations among bullying behaviors, relevant miRNA polymorphisms and pain in a probability sample of 996 Norwegian employees. In rats, inhibited weight gain, reduced pituitary POMC expression, adrenal Nr3c1 mRNA downregulation, as well as increased miR-146a, miR-30c and miR-223 in plasma were observed following 1 week of repeated exposure to social stress. When following up the miRNA findings from the animal study in the human working population, a stronger relationship between NAQ and NRS scores was observed in subjects with the miR-30c GG genotype (rs928508) compared to other subjects. A stronger relationship between NAQ and NRS scores was also seen in men with the miR-223 G genotype (rs3848900) as compared to other men. Our findings show that social stress may induce many physiological changes including changed expression of miRNAs. We conclude that the miR-30c GG genotype in men and women, and the miR-223 G genotype in men, amplify the association between exposure to bullying behaviors and pain.Lay summaryUsing an animal model of social stress, we identified miR-146a, miR-30c and miR-223 as potentially important gene regulatory molecules that may be involved in the stress response. Interestingly, human genotypes affecting the expression of mature miR-30c and miR-223 had a moderating effect on the association between exposure to bullying and pain. Subjects with the miR-30c rs928508 GG genotype had a significantly stronger association between exposure to bullying behaviors and pain than other subjects. The same was observed in men with the miR-223 rs3848900 G genotype, as compared to other men.
Collapse
Affiliation(s)
- Daniel Pitz Jacobsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
| | | | | | | | - Morten Birkeland Nielsen
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| | - Ståle Einarsen
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| | - Johannes Gjerstad
- Department of Work Psychology and Physiology, National Institute of Occupational Health, Oslo, Norway
- Department of Biosciences, University of Oslo, Oslo, Norway
- Department for Psychosocial Science, University of Bergen, Bergen, Norway
| |
Collapse
|
18
|
Micioni Di Bonaventura MV, Micioni Di Bonaventura E, Polidori C, Cifani C. Preclinical Models of Stress and Environmental Influences on Binge Eating. BINGE EATING 2020:85-101. [DOI: 10.1007/978-3-030-43562-2_7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
19
|
De Maria B, Bari V, Sgoifo A, Carnevali L, Cairo B, Vaini E, Catai AM, de Medeiros Takahashi AC, Dalla Vecchia LA, Porta A. Concomitant Evaluation of Heart Period and QT Interval Variability Spectral Markers to Typify Cardiac Control in Humans and Rats. Front Physiol 2019; 10:1478. [PMID: 31849718 PMCID: PMC6897045 DOI: 10.3389/fphys.2019.01478] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 11/18/2019] [Indexed: 02/04/2023] Open
Abstract
The variability of heart period, measured as the time distance between two consecutive QRS complexes from the electrocardiogram (RR), was exploited to infer cardiac vagal control, while the variability of the duration of the electrical activity of the heart, measured as the time interval from Q-wave onset to T-wave end (QT), was proposed as an indirect index of cardiac sympathetic modulation. This study tests the utility of the concomitant evaluation of RR variability (RRV) and QT variability (QTV) markers in typifying cardiac autonomic control of humans under different experimental conditions and of rat groups featuring documented differences in resting sympatho-vagal balance. We considered: (i) 23 healthy young subjects in resting supine position (REST) undergoing head-up tilt at 45° (T45) and 90° (T90) followed by recovery to the supine position; (ii) 9 Wistar (WI) and 14 wild-type Groningen (WT) rats in unstressed conditions, where the WT animals were classified as non-aggressive (non-AGG, n = 9) and aggressive (AGG, n = 5) according to the resident intruder test. In humans, spectral analysis of RRV and QTV was performed over a single stationary sequence of 250 consecutive values. In rats, spectral analysis was iterated over 10-min recordings with a frame length of 250 beats with 80% overlap and the median of the distribution of the spectral markers was extracted. Over RRV and QTV we computed the power in the low frequency (LF, from 0.04 to 0.15 Hz in humans and from 0.2 to 0.75 Hz in rats) band (LFRR and LFQT) and the power in the high frequency (HF, from 0.15 to 0.5 Hz in humans and from 0.75 to 2.5 Hz in rats) band (HFRR and HFQT). In humans the HFRR power was lower during T90 and higher during recovery compared to REST, while the LFQT power was higher during T90. In rats the HFRR power was lower in WT rats compared to WI rats and the LFQT power was higher in AGG than in non-AGG animals. We concluded that RRV and QTV provide complementary information in describing the functioning of vagal and sympathetic limbs of the autonomic nervous system in humans and rats.
Collapse
Affiliation(s)
| | - Vlasta Bari
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | - Andrea Sgoifo
- Stress Physiology Laboratory, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Luca Carnevali
- Stress Physiology Laboratory, Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parma, Italy.,Microbiome Research Hub, University of Parma, Parma, Italy
| | - Beatrice Cairo
- Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| | - Emanuele Vaini
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy
| | | | | | | | - Alberto Porta
- Department of Cardiothoracic, Vascular Anesthesia and Intensive Care, IRCCS Policlinico San Donato, Milan, Italy.,Department of Biomedical Sciences for Health, University of Milan, Milan, Italy
| |
Collapse
|
20
|
Brouillard C, Carrive P, Camus F, Bénoliel JJ, Sévoz-Couche C. Vulnerability to stress consequences induced by repeated social defeat in rats: Contribution of the angiotensin II type 1 receptor in cardiovascular alterations associated to low brain derived neurotrophic factor. Eur J Pharmacol 2019; 861:172595. [DOI: 10.1016/j.ejphar.2019.172595] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 08/02/2019] [Accepted: 08/07/2019] [Indexed: 01/17/2023]
|
21
|
Noble DJ, Hochman S. Hypothesis: Pulmonary Afferent Activity Patterns During Slow, Deep Breathing Contribute to the Neural Induction of Physiological Relaxation. Front Physiol 2019; 10:1176. [PMID: 31572221 PMCID: PMC6753868 DOI: 10.3389/fphys.2019.01176] [Citation(s) in RCA: 75] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/30/2019] [Indexed: 12/26/2022] Open
Abstract
Control of respiration provides a powerful voluntary portal to entrain and modulate central autonomic networks. Slowing and deepening breathing as a relaxation technique has shown promise in a variety of cardiorespiratory and stress-related disorders, but few studies have investigated the physiological mechanisms conferring its benefits. Recent evidence suggests that breathing at a frequency near 0.1 Hz (6 breaths per minute) promotes behavioral relaxation and baroreflex resonance effects that maximize heart rate variability. Breathing around this frequency appears to elicit resonant and coherent features in neuro-mechanical interactions that optimize physiological function. Here we explore the neurophysiology of slow, deep breathing and propose that coincident features of respiratory and baroreceptor afferent activity cycling at 0.1 Hz entrain central autonomic networks. An important role is assigned to the preferential recruitment of slowly-adapting pulmonary afferents (SARs) during prolonged inhalations. These afferents project to discrete areas in the brainstem within the nucleus of the solitary tract (NTS) and initiate inhibitory actions on downstream targets. Conversely, deep exhalations terminate SAR activity and activate arterial baroreceptors via increases in blood pressure to stimulate, through NTS projections, parasympathetic outflow to the heart. Reciprocal SAR and baroreceptor afferent-evoked actions combine to enhance sympathetic activity during inhalation and parasympathetic activity during exhalation, respectively. This leads to pronounced heart rate variability in phase with the respiratory cycle (respiratory sinus arrhythmia) and improved ventilation-perfusion matching. NTS relay neurons project extensively to areas of the central autonomic network to encode important features of the breathing pattern that may modulate anxiety, arousal, and attention. In our model, pronounced respiratory rhythms during slow, deep breathing also support expression of slow cortical rhythms to induce a functional state of alert relaxation, and, via nasal respiration-based actions on olfactory signaling, recruit hippocampal pathways to boost memory consolidation. Collectively, we assert that the neurophysiological processes recruited during slow, deep breathing enhance the cognitive and behavioral therapeutic outcomes obtained through various mind-body practices. Future studies are required to better understand the physio-behavioral processes involved, including in animal models that control for confounding factors such as expectancy biases.
Collapse
Affiliation(s)
- Donald J. Noble
- Department of Physiology, Emory University School of Medicine, Atlanta, GA, United States
| | | |
Collapse
|
22
|
Gupta D, Chuang JC, Mani BK, Shankar K, Rodriguez JA, Osborne-Lawrence S, Metzger NP, Zigman JM. β1-adrenergic receptors mediate plasma acyl-ghrelin elevation and depressive-like behavior induced by chronic psychosocial stress. Neuropsychopharmacology 2019; 44:1319-1327. [PMID: 30758330 PMCID: PMC6785135 DOI: 10.1038/s41386-019-0334-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 12/06/2018] [Accepted: 02/04/2019] [Indexed: 12/19/2022]
Abstract
The ghrelin system is a key component of the mood and metabolic responses to chronic psychosocial stress. For example, circulating acyl-ghrelin rises in several rodent and human stress models, administered acyl-ghrelin induces antidepressant-like behavioral responses in mice, and mice with deleted ghrelin receptors (GHSRs) exhibit exaggerated depressive-like behaviors, changed eating behaviors, and altered metabolism in response to chronic stress. However, the mechanisms mediating stress-induced rises in ghrelin are unknown and ghrelin's antidepressant-like efficacy in the setting of chronic stress is incompletely characterized. Here, we used a pharmacological approach in combination with a 10-day chronic social defeat stress (CSDS) model in male mice to investigate whether the sympathoadrenal system is involved in the ghrelin response to stress. We also examined the antidepressant-like efficacy of administered ghrelin and the synthetic GHSR agonist GHRP-2 during and/or after CSDS. We found that administration of the β1-adrenergic receptor (β1AR) blocker atenolol during CSDS blunts the elevation of plasma acyl-ghrelin and exaggerates depressive-like behavior. Neither acute injection of acyl-ghrelin directly following CSDS nor its chronic administration during or after CSDS nor chronic delivery of GHRP-2 during and after CSDS improved stress-induced depressive-like behavior. Thus, β1ARs drive the acyl-ghrelin response to CSDS, but supplementing the natural increases in acyl-ghrelin with exogenous acyl-ghrelin or GHSR agonist does not further enhance the antidepressant-like actions of the endogenous ghrelin system in the setting of CSDS.
Collapse
Affiliation(s)
- Deepali Gupta
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA
| | - Jen-Chieh Chuang
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA
| | - Bharath K. Mani
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA
| | - Kripa Shankar
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA
| | - Juan A. Rodriguez
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA
| | - Sherri Osborne-Lawrence
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA
| | - Nathan P. Metzger
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA
| | - Jeffrey M. Zigman
- 0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Hypothalamic Research, UT Southwestern Medical Center, 5323 Harry Hines Blvd., MC9077, Dallas, TX 75390-9077 USA ,0000 0000 9482 7121grid.267313.2Department of Internal Medicine, Division of Endocrinology, UT Southwestern Medical Center, Dallas, TX USA ,0000 0000 9482 7121grid.267313.2Department of Psychiatry, UT Southwestern Medical Center, Dallas, TX USA
| |
Collapse
|
23
|
|
24
|
Social modulation of drug use and drug addiction. Neuropharmacology 2019; 159:107545. [PMID: 30807753 DOI: 10.1016/j.neuropharm.2019.02.027] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Revised: 02/05/2019] [Accepted: 02/21/2019] [Indexed: 01/01/2023]
Abstract
This review aims to demonstrate how social science and behavioral neurosciences have highlighted the influence of social interactions on drug use in animal models. In neurosciences, the effect of global social context that are distal from drug use has been widely studied. For human and other social animals such as monkeys and rodents, positive social interactions are rewarding, can overcome drug reward and, in all, protect from drug use. In contrast, as other types of stress, negative social experiences facilitate the development and maintenance of drug abuse. However, interest recently emerged in the effect of so-called "proximal" social factors, that is, social interactions during drug-taking. These recent studies have characterized the role of the drug considered, the sharing of drug experience and the familiarity of the peer which interaction are made with. We also examine the few studies regarding the sensorial mediator of social behaviors and critically review the neural mediation of social factors on drug use. However, despite considerable characterization of the factors modulating distal influences, the mechanisms for proximal influences on drug use remain largely unknown. This article is part of the Special Issue entitled 'The neuropharmacology of social behavior: from bench to bedside'.
Collapse
|
25
|
Maruska K, Soares MC, Lima-Maximino M, Henrique de Siqueira-Silva D, Maximino C. Social plasticity in the fish brain: Neuroscientific and ethological aspects. Brain Res 2019; 1711:156-172. [PMID: 30684457 DOI: 10.1016/j.brainres.2019.01.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Revised: 01/16/2019] [Accepted: 01/22/2019] [Indexed: 12/17/2022]
Abstract
Social plasticity, defined as the ability to adaptively change the expression of social behavior according to previous experience and to social context, is a key ecological performance trait that should be viewed as crucial for Darwinian fitness. The neural mechanisms for social plasticity are poorly understood, in part due to skewed reliance on rodent models. Fish model organisms are relevant in the field of social plasticity for at least two reasons: first, the diversity of social organization among fish species is staggering, increasing the breadth of evolutionary relevant questions that can be asked. Second, that diversity also suggests translational relevance, since it is more likely that "core" mechanisms of social plasticity are discovered by analyzing a wider variety of social arrangements than relying on a single species. We analyze examples of social plasticity across fish species with different social organizations, concluding that a "core" mechanism is the initiation of behavioral shifts through the modulation of a conserved "social decision-making network", along with other relevant brain regions, by monoamines, neuropeptides, and steroid hormones. The consolidation of these shifts may be mediated via neurogenomic adjustments and regulation of the expression of plasticity-related molecules (transcription factors, cell cycle regulators, and plasticity products).
Collapse
Affiliation(s)
- Karen Maruska
- Department of Biological Sciences, Louisiana State University, Baton Rouge, USA
| | - Marta C Soares
- Centro de Investigação em Biodiversidade e Recursos Genéticos - CIBIO, Universidade do Porto, Vairão, Portugal
| | - Monica Lima-Maximino
- Laboratório de Biofísica e Neurofarmacologia, Universidade do Estado do Pará, Campus VIII, Marabá, Brazil; Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil
| | - Diógenes Henrique de Siqueira-Silva
- Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil; Grupo de Estudos em Reprodução de Peixes Amazônicos, Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil
| | - Caio Maximino
- Grupo de Pesquisas em Neuropsicofarmacologia e Psicopatologia Experimental, Brazil; Laboratório de Neurociências e Comportamento "Frederico Guilherme Graeff", Universidade Federal do Sul e Sudeste do Pará, Marabá, Brazil.
| |
Collapse
|
26
|
Maternal psychological distress during pregnancy and childhood health outcomes: a narrative review. J Dev Orig Health Dis 2018; 10:274-285. [PMID: 30378522 DOI: 10.1017/s2040174418000557] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Maternal psychological distress is common in pregnancy and may influence the risk of adverse outcomes in children. Psychological distress may cause a suboptimal intrauterine environment leading to growth and developmental adaptations of the fetus and child. In this narrative review, we examined the influence of maternal psychological distress during pregnancy on fetal outcomes and child cardiometabolic, respiratory, atopic and neurodevelopment-related health outcomes. We discussed these findings from an epidemiological and life course perspective and provided recommendations for future studies. The literature in the field of maternal psychological distress and child health outcomes is extensive and shows that exposure to stress during pregnancy is associated with multiple adverse child health outcomes. Because maternal psychological distress is an important and potential modifiable factor during pregnancy, it should be a target for prevention strategies in order to optimize fetal and child health. Future studies should use innovative designs and strategies in order to address the issue of causality.
Collapse
|
27
|
Yaribeygi H, Sahraei H. Physiological/Neurophysiological Mechanisms Involved in the Formation of Stress Responses. NEUROPHYSIOLOGY+ 2018. [DOI: 10.1007/s11062-018-9727-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
28
|
Nasanbuyan N, Yoshida M, Takayanagi Y, Inutsuka A, Nishimori K, Yamanaka A, Onaka T. Oxytocin-Oxytocin Receptor Systems Facilitate Social Defeat Posture in Male Mice. Endocrinology 2018; 159:763-775. [PMID: 29186377 DOI: 10.1210/en.2017-00606] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2017] [Accepted: 11/14/2017] [Indexed: 11/19/2022]
Abstract
Social stress has deteriorating effects on various psychiatric diseases. In animal models, exposure to socially dominant conspecifics (i.e., social defeat stress) evokes a species-specific defeat posture via unknown mechanisms. Oxytocin neurons have been shown to be activated by stressful stimuli and to have prosocial and anxiolytic actions. The roles of oxytocin during social defeat stress remain unclear. Expression of c-Fos, a marker of neuronal activation, in oxytocin neurons and in oxytocin receptor‒expressing neurons was investigated in mice. The projection of oxytocin neurons was examined with an anterograde viral tracer, which induces selective expression of membrane-targeted palmitoylated green fluorescent protein in oxytocin neurons. Defensive behaviors during double exposure to social defeat stress in oxytocin receptor‒deficient mice were analyzed. After social defeat stress, expression of c-Fos protein was increased in oxytocin neurons of the bed nucleus of the stria terminalis, supraoptic nucleus, and paraventricular hypothalamic nucleus. Expression of c-Fos protein was also increased in oxytocin receptor‒expressing neurons of brain regions, including the ventrolateral part of the ventromedial hypothalamus and ventrolateral periaqueductal gray. Projecting fibers from paraventricular hypothalamic oxytocin neurons were found in the ventrolateral part of the ventromedial hypothalamus and in the ventrolateral periaqueductal gray. Oxytocin receptor‒deficient mice showed reduced defeat posture during the second social defeat stress. These findings suggest that social defeat stress activates oxytocin-oxytocin receptor systems, and the findings are consistent with the view that activation of the oxytocin receptor in brain regions, including the ventrolateral part of the ventromedial hypothalamus and the ventrolateral periaqueductal gray, facilitates social defeat posture.
Collapse
Affiliation(s)
- Naranbat Nasanbuyan
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Masahide Yoshida
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Yuki Takayanagi
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Ayumu Inutsuka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| | - Katsuhiko Nishimori
- Laboratory of Molecular Biology, Department of Molecular and Cell Biology, Graduate School of Agricultural Science, Tohoku University, Aoba-ku, Sendai-shi, Miyagi-ken, Japan
| | - Akihiro Yamanaka
- Department of Neuroscience II, Research Institute of Environmental Medicine, Nagoya University, Nagoya-shi, Aichi-ken, Japan
| | - Tatsushi Onaka
- Division of Brain and Neurophysiology, Department of Physiology, Jichi Medical University, Shimotsuke-shi, Tochigi-ken, Japan
| |
Collapse
|
29
|
Does sire replacement trigger plural reproduction in matrifilial groups of a singular breeder, Ellobius tancrei? Mamm Biol 2018. [DOI: 10.1016/j.mambio.2017.09.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
30
|
Lewis R, Wilkins B, Benjamin B, Curtis JT. Cardiovascular control is associated with pair-bond success in male prairie voles. Auton Neurosci 2017; 208:93-102. [PMID: 29108934 DOI: 10.1016/j.autneu.2017.10.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 09/25/2017] [Accepted: 10/02/2017] [Indexed: 01/21/2023]
Abstract
Social support structures reduce mortality and morbidity in humans, but the mechanisms underlying these reductions are not fully understood. The prevailing hypothesis is that social support buffers stress and reduces allostatic load, thereby increasing longevity. However, the possibility that affiliative social interactions confer health benefits independent of stress buffering is understudied. We examined autonomic function in prairie voles - arguably the premier species for modeling human social affiliation - to assess the possibility that the formation of strong social bonds alters autonomic function and contributes to health benefits. We examined cardiovascular measures in male prairie voles before and after two weeks of cohabitation with a female, during a partner preference test, and during social isolation. There were strong correlations between social contact and heart rate (HR) and heart rate variability (HRV), the latter being an index of autonomic nervous system function. Males that successfully pair-bonded with their partners displayed higher HRV prior to pairing than did unsuccessful males, suggesting higher basal parasympathetic tone in the successful males. HRV increased further still when pair-bonded males huddled quietly with their mates during the partner preference test. Non-pair-bonded males not only had lower baseline parasympathetic activity, but showed a further decrease after pairing. HR increased and HRV decreased during social isolation only in pair-bonded males. Since differences in HRV are thought to reflect the relative influences of the parasympathetic and sympathetic nervous systems on cardiac function, these results suggest that autonomic balance may contribute to social bonding and thus to its health benefits.
Collapse
Affiliation(s)
- Robert Lewis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| | - Brek Wilkins
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| | - Bruce Benjamin
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| | - J Thomas Curtis
- Department of Pharmacology and Physiology, Oklahoma State University Center for Health Sciences, Tulsa, OK, USA.
| |
Collapse
|
31
|
Headrick JP, Peart JN, Budiono BP, Shum DH, Neumann DL, Stapelberg NJ. The heartbreak of depression: ‘Psycho-cardiac’ coupling in myocardial infarction. J Mol Cell Cardiol 2017; 106:14-28. [PMID: 28366738 DOI: 10.1016/j.yjmcc.2017.03.007] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 03/27/2017] [Accepted: 03/29/2017] [Indexed: 12/25/2022]
|
32
|
Park SE, Park D, Song KI, Seong JK, Chung S, Youn I. Differential heart rate variability and physiological responses associated with accumulated short- and long-term stress in rodents. Physiol Behav 2017; 171:21-31. [DOI: 10.1016/j.physbeh.2016.12.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 12/26/2016] [Accepted: 12/27/2016] [Indexed: 10/20/2022]
|
33
|
Finnell JE, Lombard CM, Padi AR, Moffitt CM, Wilson LB, Wood CS, Wood SK. Physical versus psychological social stress in male rats reveals distinct cardiovascular, inflammatory and behavioral consequences. PLoS One 2017; 12:e0172868. [PMID: 28241050 PMCID: PMC5328366 DOI: 10.1371/journal.pone.0172868] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/12/2017] [Indexed: 01/22/2023] Open
Abstract
Repeated exposure to social stress can precipitate the development of psychosocial disorders including depression and comorbid cardiovascular disease. While a major component of social stress often encompasses physical interactions, purely psychological stressors (i.e. witnessing a traumatic event) also fall under the scope of social stress. The current study determined whether the acute stress response and susceptibility to stress-related consequences differed based on whether the stressor consisted of physical versus purely psychological social stress. Using a modified resident-intruder paradigm, male rats were either directly exposed to repeated social defeat stress (intruder) or witnessed a male rat being defeated. Cardiovascular parameters, behavioral anhedonia, and inflammatory cytokines in plasma and the stress-sensitive locus coeruleus were compared between intruder, witness, and control rats. Surprisingly intruders and witnesses exhibited nearly identical increases in mean arterial pressure and heart rate during acute and repeated stress exposures, yet only intruders exhibited stress-induced arrhythmias. Furthermore, re-exposure to the stress environment in the absence of the resident produced robust pressor and tachycardic responses in both stress conditions indicating the robust and enduring nature of social stress. In contrast, the long-term consequences of these stressors were distinct. Intruders were characterized by enhanced inflammatory sensitivity in plasma, while witnesses were characterized by the emergence of depressive-like anhedonia, transient increases in systolic blood pressure and plasma levels of tissue inhibitor of metalloproteinase. The current study highlights that while the acute cardiovascular responses to stress were identical between intruders and witnesses, these stressors produced distinct differences in the enduring consequences to stress, suggesting that witness stress may be more likely to produce long-term cardiovascular dysfunction and comorbid behavioral anhedonia while exposure to physical stressors may bias the system towards sensitivity to inflammatory disorders.
Collapse
Affiliation(s)
- Julie E Finnell
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Calliandra M Lombard
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Akhila R Padi
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Casey M Moffitt
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - L Britt Wilson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Christopher S Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| | - Susan K Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, South Carolina, United States of America
| |
Collapse
|
34
|
Ahnaou A, Drinkenburg WHIM. Simultaneous Changes in Sleep, qEEG, Physiology, Behaviour and Neurochemistry in Rats Exposed to Repeated Social Defeat Stress. Neuropsychobiology 2017; 73:209-23. [PMID: 27287886 DOI: 10.1159/000446284] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 04/19/2016] [Indexed: 11/19/2022]
Abstract
Depression is a heterogeneous disorder characterized by alterations at psychological, behavioural, physiological, neurophysiological, and neurochemical levels. Social stress is a prevalent stress in man, and the repeated social defeat stress model in rats has been proposed as being the rodent equivalent to loss of control, which in subordinate animals produces alterations that resemble several of the cardinal symptoms found in depressed patients. Here, rats followed a resident-intruder protocol for 4 consecutive days during which behavioural, physiological, and electroencephalographic (EEG) parameters were simultaneously monitored in subordinate rats. On day 5, prefrontal dopamine (DA) and hippocampal serotonin (5-HT) as well as corticosterone were measured in submissive rats that had visual, acoustic, and olfactory (but no physical) contact with a dominant, resident conspecific rat. Socially defeated rats demonstrated increases in ultrasonic vocalizations (20-25 KHz), freezing, submissive defensive behaviour, inactivity, and haemodynamic response, while decreases were found in repetitive grooming behaviour and body weight. Additionally, alterations in the sleep-wake architecture were associated with reduced active waking, enhanced light sleep, and increased frequency of transitions from light sleep to quiet wakefulness, indicating sleep instability. Moreover, the attenuation of EEG power over the frequency range of 4.2-30 Hz, associated with a sharp transient increase in delta oscillations, appeared to reflect increased brain activity and metabolism in subordinate animals. These EEG changes were synchronous with a marked increase in body temperature and a decrease in locomotor activity. Furthermore, psychosocial stress consistently increased 5-HT, DA, and corticosterone levels. The increased levels of cortical DA and hippocampal 5-HT during social threat may reflect a coping mechanism to promote alertness and psychological adaptation to provocative and threatening stimuli. These neurophysiological changes are hypothesized to be the consequence of dynamics in monoamine systems, which could be useful markers for disease progression in the aetiology of depression.
Collapse
Affiliation(s)
- A Ahnaou
- Department of Neuroscience, Janssen Research and Development, Janssen Pharmaceutica N.V., Beerse, Belgium
| | | |
Collapse
|
35
|
Mani BK, Osborne-Lawrence S, Vijayaraghavan P, Hepler C, Zigman JM. β1-Adrenergic receptor deficiency in ghrelin-expressing cells causes hypoglycemia in susceptible individuals. J Clin Invest 2016; 126:3467-78. [PMID: 27548523 DOI: 10.1172/jci86270] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Accepted: 07/07/2016] [Indexed: 01/06/2023] Open
Abstract
Ghrelin is an orexigenic gastric peptide hormone secreted when caloric intake is limited. Ghrelin also regulates blood glucose, as emphasized by the hypoglycemia that is induced by caloric restriction in mouse models of deficient ghrelin signaling. Here, we hypothesized that activation of β1-adrenergic receptors (β1ARs) localized to ghrelin cells is required for caloric restriction-associated ghrelin release and the ensuing protective glucoregulatory response. In mice lacking the β1AR specifically in ghrelin-expressing cells, ghrelin secretion was markedly blunted, resulting in profound hypoglycemia and prevalent mortality upon severe caloric restriction. Replacement of ghrelin blocked the effects of caloric restriction in β1AR-deficient mice. We also determined that treating calorically restricted juvenile WT mice with beta blockers led to reduced plasma ghrelin and hypoglycemia, the latter of which is similar to the life-threatening, fasting-induced hypoglycemia observed in infants treated with beta blockers. These findings highlight the critical functions of ghrelin in preventing hypoglycemia and promoting survival during severe caloric restriction and the requirement for ghrelin cell-expressed β1ARs in these processes. Moreover, these results indicate a potential role for ghrelin in mediating beta blocker-associated hypoglycemia in susceptible individuals, such as young children.
Collapse
|
36
|
Sévoz-Couche C, Brouillard C. Key role of 5-HT 3 receptors in the nucleus tractus solitarii in cardiovagal stress reactivity. Neurosci Biobehav Rev 2016; 74:423-432. [PMID: 27131969 DOI: 10.1016/j.neubiorev.2016.04.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 04/18/2016] [Accepted: 04/20/2016] [Indexed: 01/01/2023]
Abstract
Serotonin plays a modulatory role in central control of the autonomic nervous system (ANS). The nucleus tractus solitarii (NTS) in the medulla is an area of viscerosomatic integration innervated by both central and peripheral serotonergic fibers. Influences from different origins therefore trigger the release of serotonin into the NTS and exert multiple influences on the ANS. This major influence on the ANS is also mediated by activation of several receptors in the NTS. In particular, the NTS is the central zone with the highest density of serotonin3 (5-HT3) receptors. In this review, we present evidence that 5-HT3 receptors in the NTS play a key role in one of the crucial homeostatic responses to acute and chronic stress: inhibitory modulation of the parasympathetic component of the ANS. The possible functional interactions of 5-HT3 receptors with GABAA and NK1 receptors in the NTS are also discussed.
Collapse
Affiliation(s)
- Caroline Sévoz-Couche
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France.
| | - Charly Brouillard
- Sorbonne Universités, UPMC Univ Paris 06, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, Paris, France
| |
Collapse
|
37
|
Savi M, Bocchi L, Rossi S, Frati C, Graiani G, Lagrasta C, Miragoli M, Di Pasquale E, Stirparo GG, Mastrototaro G, Urbanek K, De Angelis A, Macchi E, Stilli D, Quaini F, Musso E. Antiarrhythmic effect of growth factor-supplemented cardiac progenitor cells in chronic infarcted heart. Am J Physiol Heart Circ Physiol 2016; 310:H1622-48. [PMID: 26993221 DOI: 10.1152/ajpheart.00035.2015] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 03/10/2016] [Indexed: 12/12/2022]
Abstract
c-Kit(pos) cardiac progenitor cells (CPCs) represent a successful approach in healing the infarcted heart and rescuing its mechanical function, but electrophysiological consequences are uncertain. CPC mobilization promoted by hepatocyte growth factor (HGF) and IGF-1 improved electrogenesis in myocardial infarction (MI). We hypothesized that locally delivered CPCs supplemented with HGF + IGF-1 (GFs) can concur in ameliorating electrical stability of the regenerated heart. Adult male Wistar rats (139 rats) with 4-wk-old MI or sham conditions were randomized to receive intramyocardial injection of GFs, CPCs, CPCs + GFs, or vehicle (V). Enhanced green fluorescent protein-tagged CPCs were used for cell tracking. Vulnerability to stress-induced arrhythmia was assessed by telemetry-ECG. Basic cardiac electrophysiological properties were examined by epicardial multiple-lead recording. Hemodynamic function was measured invasively. Hearts were subjected to anatomical, morphometric, immunohistochemical, and molecular biology analyses. Compared with V and at variance with individual CPCs, CPCs + GFs approximately halved arrhythmias in all animals, restoring cardiac anisotropy toward sham values. GFs alone reduced arrhythmias by less than CPCs + GFs, prolonging ventricular refractoriness without affecting conduction velocity. Concomitantly, CPCs + GFs reactivated the expression levels of Connexin-43 and Connexin-40 as well as channel proteins of key depolarizing and repolarizing ion currents differently than sole GFs. Mechanical function and anatomical remodeling were equally improved by all regenerative treatments, thus exhibiting a divergent behavior relative to electrical aspects. Conclusively, we provided evidence of distinctive antiarrhythmic action of locally injected GF-supplemented CPCs, likely attributable to retrieval of Connexin-43, Connexin-40, and Cav1.2 expression, favoring intercellular coupling and spread of excitation in mended heart.
Collapse
Affiliation(s)
- Monia Savi
- Department of Life Sciences, University of Parma, Italy
| | | | - Stefano Rossi
- Department of Life Sciences, University of Parma, Italy
| | - Caterina Frati
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Italy
| | - Gallia Graiani
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Italy
| | - Costanza Lagrasta
- Department of Biomedical, Biotechnological and Translational Sciences, University of Parma, Italy; Cardiac Stem Cell Interdepartmental Center "CISTAC," University of Parma, Italy
| | | | - Elisa Di Pasquale
- Humanitas Clinical and Research Center, Rozzano (MI), Italy; Institute of Genetic and Biomedical Research-UOS Milan-National Research Council, Milan, Italy
| | | | | | - Konrad Urbanek
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Italy
| | - Antonella De Angelis
- Department of Experimental Medicine, Section of Pharmacology, Second University of Naples, Italy
| | - Emilio Macchi
- Department of Life Sciences, University of Parma, Italy; Cardiac Stem Cell Interdepartmental Center "CISTAC," University of Parma, Italy
| | - Donatella Stilli
- Department of Life Sciences, University of Parma, Italy; Cardiac Stem Cell Interdepartmental Center "CISTAC," University of Parma, Italy
| | - Federico Quaini
- Department of Clinical and Experimental Medicine, University of Parma, Italy; Cardiac Stem Cell Interdepartmental Center "CISTAC," University of Parma, Italy
| | - Ezio Musso
- Department of Life Sciences, University of Parma, Italy; Cardiac Stem Cell Interdepartmental Center "CISTAC," University of Parma, Italy
| |
Collapse
|
38
|
Evans AL, Singh NJ, Friebe A, Arnemo JM, Laske TG, Fröbert O, Swenson JE, Blanc S. Drivers of hibernation in the brown bear. Front Zool 2016; 13:7. [PMID: 26870151 PMCID: PMC4750243 DOI: 10.1186/s12983-016-0140-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 02/04/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Hibernation has been a key area of research for several decades, essentially in small mammals in the laboratory, yet we know very little about what triggers or ends it in the wild. Do climatic factors, an internal biological clock, or physiological processes dominate? Using state-of-the-art tracking and monitoring technology on fourteen free-ranging brown bears over three winters, we recorded movement, heart rate (HR), heart rate variability (HRV), body temperature (Tb), physical activity, ambient temperature (TA), and snow depth to identify the drivers of the start and end of hibernation. We used behavioral change point analyses to estimate the start and end of hibernation and convergent cross mapping to identify the causal interactions between the ecological and physiological variables over time. RESULTS To our knowledge, we have built the first chronology of both ecological and physiological events from before the start to the end of hibernation in the field. Activity, HR, and Tb started to drop slowly several weeks before den entry. Bears entered the den when snow arrived and when ambient temperature reached 0 °C. HRV, taken as a proxy of sympathetic nervous system activity, dropped dramatically once the bear entered the den. This indirectly suggests that denning is tightly coupled to metabolic suppression. During arousal, the unexpected early rise in Tb (two months before den exit) was driven by TA, but was independent of HRV. The difference between Tb and TA decreased gradually suggesting that bears were not thermoconforming. HRV increased only three weeks before exit, indicating that late activation of the sympathetic nervous system likely finalized restoration of euthermic metabolism. Interestingly, it was not until TA reached the presumed lower critical temperature, likely indicating that the bears were seeking thermoneutrality, that they exited the den. CONCLUSIONS We conclude that brown bear hibernation was initiated primarily by environmental cues, but terminated by physiological cues.
Collapse
Affiliation(s)
- A L Evans
- Department of Forestry and Wildlife Management, Hedmark University of Applied Sciences, Campus Evenstad, NO-2418 Elverum, Norway ; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE- 90183 Umeå, Sweden
| | - N J Singh
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE- 90183 Umeå, Sweden
| | - A Friebe
- Department of Ecology and Natural Resources Management, Norwegian University of Life Sciences, Post Box 5003, NO-1432 Ås, Norway
| | - J M Arnemo
- Department of Forestry and Wildlife Management, Hedmark University of Applied Sciences, Campus Evenstad, NO-2418 Elverum, Norway ; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE- 90183 Umeå, Sweden
| | - T G Laske
- University of Minnesota, Minneapolis, MN 55455 USA ; Medtronic Inc, Mounds View, MN 55112 USA
| | - O Fröbert
- Faculty of Health, Department of Cardiology, Örebro University, SE 70182 Örebro, Sweden
| | - J E Swenson
- Department of Ecology and Natural Resources Management, Norwegian University of Life Sciences, Post Box 5003, NO-1432 Ås, Norway ; Norwegian Institute for Nature Research, Post box 5685 Sluppen, NO-7485 Trondheim, Norway
| | - S Blanc
- Université de Strasbourg, IPHC, Strasbourg, France ; CNRS, UMR7178, Strasbourg, France
| |
Collapse
|
39
|
Eisenmann ED, Rorabaugh BR, Zoladz PR. Acute Stress Decreases but Chronic Stress Increases Myocardial Sensitivity to Ischemic Injury in Rodents. Front Psychiatry 2016; 7:71. [PMID: 27199778 PMCID: PMC4843048 DOI: 10.3389/fpsyt.2016.00071] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2016] [Accepted: 04/08/2016] [Indexed: 12/18/2022] Open
Abstract
Cardiovascular disease (CVD) is the largest cause of mortality worldwide, and stress is a significant contributor to the development of CVD. The relationship between acute and chronic stress and CVD is well evidenced. Acute stress can lead to arrhythmias and ischemic injury. However, recent evidence in rodent models suggests that acute stress can decrease sensitivity to myocardial ischemia-reperfusion injury (IRI). Conversely, chronic stress is arrhythmogenic and increases sensitivity to myocardial IRI. Few studies have examined the impact of validated animal models of stress-related psychological disorders on the ischemic heart. This review examines the work that has been completed using rat models to study the effects of stress on myocardial sensitivity to ischemic injury. Utilization of animal models of stress-related psychological disorders is critical in the prevention and treatment of cardiovascular disorders in patients experiencing stress-related psychiatric conditions.
Collapse
Affiliation(s)
- Eric D Eisenmann
- Department of Psychology, Sociology and Criminal Justice, Ohio Northern University , Ada, OH , USA
| | - Boyd R Rorabaugh
- Department of Pharmaceutical and Biomedical Sciences, Ohio Northern University , Ada, OH , USA
| | - Phillip R Zoladz
- Department of Psychology, Sociology and Criminal Justice, Ohio Northern University , Ada, OH , USA
| |
Collapse
|
40
|
Defeat stress in rodents: From behavior to molecules. Neurosci Biobehav Rev 2015; 59:111-40. [DOI: 10.1016/j.neubiorev.2015.10.006] [Citation(s) in RCA: 161] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2015] [Revised: 10/09/2015] [Accepted: 10/12/2015] [Indexed: 12/31/2022]
|
41
|
Brindle RC, Ginty AT, Phillips AC, Fisher JP, McIntyre D, Carroll D. Heart rate complexity: A novel approach to assessing cardiac stress reactivity. Psychophysiology 2015; 53:465-72. [PMID: 26585809 DOI: 10.1111/psyp.12576] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2015] [Accepted: 10/08/2015] [Indexed: 02/04/2023]
Abstract
Correlation dimension (D2), a measure of heart rate (HR) complexity, has been shown to decrease in response to acute mental stress and relate to adverse cardiovascular health. However, the relationship between stress-induced changes in D2 and HR has yet to be established. The present studies aimed to assess this relationship systematically while controlling for changes in respiration and autonomic activity. In Study 1 (N = 25) D2 decreased during stress and predicted HR reactivity even after adjusting for changes in respiration rate, and cardiac vagal tone. This result was replicated in Study 2 (N = 162) and extended by including a measure of cardiac sympathetic activity; correlation dimension remained an independent predictor of HR reactivity in a hierarchical linear model containing measures of cardiac parasympathetic and sympathetic activity and their interaction. These results suggest that correlation dimension may provide additional information regarding cardiac stress reactivity above that provided by traditional measures of cardiac autonomic function.
Collapse
Affiliation(s)
- Ryan C Brindle
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Annie T Ginty
- Department of Psychiatry, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Anna C Phillips
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - James P Fisher
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - David McIntyre
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| | - Douglas Carroll
- School of Sport, Exercise, and Rehabilitation Sciences, University of Birmingham, Birmingham, UK
| |
Collapse
|
42
|
Støen OG, Ordiz A, Evans AL, Laske TG, Kindberg J, Fröbert O, Swenson JE, Arnemo JM. Physiological evidence for a human-induced landscape of fear in brown bears (Ursus arctos). Physiol Behav 2015; 152:244-8. [PMID: 26476156 DOI: 10.1016/j.physbeh.2015.09.030] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 10/22/2022]
Abstract
Human persecution is a major cause of mortality for large carnivores. Consequently, large carnivores avoid humans, but may use human-dominated landscapes by being nocturnal and elusive. Behavioral studies indicate that certain ecological systems are "landscapes of fear", driven by antipredator behavior. Because behavior and physiology are closely interrelated, physiological assessments may provide insight into the behavioral response of large carnivores to human activity. To elucidate changes in brown bears' (Ursus arctos) behavior associated with human activity, we evaluated stress as changes in heart rate (HR) and heart rate variability (HRV) in 12 GPS-collared, free-ranging bears, 7 males and 5 females, 3-11 years old, using cardiac-monitoring devices. We applied generalized linear regression models with HR and HRV as response variables and chest activity, time of day, season, distance traveled, and distance to human settlements from GPS positions recorded every 30 min as potential explanatory variables. Bears exhibited lower HRV, an indication of stress, when they were close to human settlements and especially during the berry season, when humans were more often in the forest, picking berries and hunting. Our findings provide evidence of a human-induced landscape of fear in this hunted population of brown bears.
Collapse
Affiliation(s)
- Ole-Gunnar Støen
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway; Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Andres Ordiz
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway; Grimsö Wildlife Research Station, Department of Ecology, Swedish University of Agricultural Sciences, SE-730 91 Riddarhyttan, Sweden.
| | - Alina L Evans
- Department of Forestry and Wildlife Management, Hedmark University College, Campus Evenstad, NO-2418 Elverum, Norway.
| | - Timothy G Laske
- Medtronic Inc., Mounds View, MN 55112, USA; Department of Surgery, University of Minnesota, Minneapolis, MN 55455, USA.
| | - Jonas Kindberg
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden.
| | - Ole Fröbert
- Örebro University, Faculty of Health, Department of Cardiology, SE-701 82 Örebro, Sweden.
| | - Jon E Swenson
- Department of Ecology and Natural Resource Management, Norwegian University of Life Sciences, NO-1432 Ås, Norway; Norwegian Institute for Nature Research, NO-7485 Trondheim, Norway.
| | - Jon M Arnemo
- Department of Wildlife, Fish and Environmental Studies, Swedish University of Agricultural Sciences, SE-901 83 Umeå, Sweden; Department of Forestry and Wildlife Management, Hedmark University College, Campus Evenstad, NO-2418 Elverum, Norway.
| |
Collapse
|
43
|
Carter JR, Goldstein DS. Sympathoneural and adrenomedullary responses to mental stress. Compr Physiol 2015; 5:119-46. [PMID: 25589266 DOI: 10.1002/cphy.c140030] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This concept-based review provides historical perspectives and updates about sympathetic noradrenergic and sympathetic adrenergic responses to mental stress. The topic of this review has incited perennial debate, because of disagreements over definitions, controversial inferences, and limited availability of relevant measurement tools. The discussion begins appropriately with Cannon's "homeostasis" and his pioneering work in the area. This is followed by mental stress as a scientific idea and the relatively new notions of allostasis and allostatic load. Experimental models of mental stress in rodents and humans are discussed, with particular attention to ethical constraints in humans. Sections follow on sympathoneural responses to mental stress, reactivity of catecholamine systems, clinical pathophysiologic states, and the cardiovascular reactivity hypothesis. Future advancement of the field will require integrative approaches and coordinated efforts between physiologists and psychologists on this interdisciplinary topic.
Collapse
Affiliation(s)
- Jason R Carter
- Department of Kinesiology and Integrative Physiology, Michigan Technological University, Houghton, Michigan Clinical Neurocardiology Section, Clinical Neurosciences Program, Division of Intramural Research, National Institutes of Health, Bethesda, Maryland
| | | |
Collapse
|
44
|
Golbidi S, Frisbee JC, Laher I. Chronic stress impacts the cardiovascular system: animal models and clinical outcomes. Am J Physiol Heart Circ Physiol 2015; 308:H1476-98. [DOI: 10.1152/ajpheart.00859.2014] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 04/03/2015] [Indexed: 01/01/2023]
Abstract
Psychological stresses are associated with cardiovascular diseases to the extent that cardiovascular diseases are among the most important group of psychosomatic diseases. The longstanding association between stress and cardiovascular disease exists despite a large ambiguity about the underlying mechanisms. An array of possibilities have been proposed including overactivity of the autonomic nervous system and humoral changes, which then converge on endothelial dysfunction that initiates unwanted cardiovascular consequences. We review some of the features of the two most important stress-activated systems, i.e., the humoral and nervous systems, and focus on alterations in endothelial function that could ensue as a result of these changes. Cardiac and hematologic consequences of stress are also addressed briefly. It is likely that activation of the inflammatory cascade in association with oxidative imbalance represents key pathophysiological components of stress-induced cardiovascular changes. We also review some of the commonly used animal models of stress and discuss the cardiovascular outcomes reported in these models of stress. The unique ability of animals for adaptation under stressful conditions lessens the extrapolation of laboratory findings to conditions of human stress. An animal model of unpredictable chronic stress, which applies various stress modules in a random fashion, might be a useful solution to this predicament. The use of stress markers as indicators of stress intensity is also discussed in various models of animal stress and in clinical studies.
Collapse
Affiliation(s)
- Saeid Golbidi
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| | - Jefferson C. Frisbee
- Center for Cardiovascular and Respiratory Sciences, West Virginia University Health Sciences Center, Morgantown, West Virginia
| | - Ismail Laher
- Department of Pharmacology and Therapeutics, Faculty of Medicine, University of British Columbia, Vancouver, Canada; and
| |
Collapse
|
45
|
Beery AK, Kaufer D. Stress, social behavior, and resilience: insights from rodents. Neurobiol Stress 2015; 1:116-127. [PMID: 25562050 PMCID: PMC4281833 DOI: 10.1016/j.ynstr.2014.10.004] [Citation(s) in RCA: 239] [Impact Index Per Article: 23.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2014] [Accepted: 10/24/2014] [Indexed: 11/20/2022] Open
Abstract
The neurobiology of stress and the neurobiology of social behavior are deeply intertwined. The social environment interacts with stress on almost every front: social interactions can be potent stressors; they can buffer the response to an external stressor; and social behavior often changes in response to stressful life experience. This review explores mechanistic and behavioral links between stress, anxiety, resilience, and social behavior in rodents, with particular attention to different social contexts. We consider variation between several different rodent species and make connections to research on humans and non-human primates.
Collapse
Affiliation(s)
- Annaliese K. Beery
- Department of Psychology, Department of Biology, Neuroscience Program, Smith College, Northampton, MA, USA
| | - Daniela Kaufer
- Department of Integrative Biology, Helen Wills Neuroscience Institute, University of California, Berkeley, CA, USA
| |
Collapse
|
46
|
Sex Differences in Physiological Acclimatization after Transfer in Wistar Rats. Animals (Basel) 2014; 4:693-711. [PMID: 26479007 PMCID: PMC4494431 DOI: 10.3390/ani4040693] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 10/16/2014] [Accepted: 10/22/2014] [Indexed: 11/22/2022] Open
Abstract
Simple Summary This study in laboratory rodents shows a sex specific effect of breeder to research facility transfer on several physiological parameters, such as heart rate and blood pressure. We recommend at least 8 days of acclimatization time after transfer in male rats and at least two weeks in female rats, before using these animals in research. Abstract Most laboratory animals used in research are vendor-bred and transferred to research facilities. Transfer procedures might have considerable and unintended effects on research results. In the present study we compared physiological and behavioral parameters before and after external and internal transfer, as well as between transferred and non-transferred Wistar rats. The impact of both external and internal transfer on body weight, plasma corticosterone levels, heart rate, blood pressure, and locomotor activity was studied in both male and female Wistar rats, taking into account the sex differences in stress responsivity. External transfer was found to decrease body weight, increase plasma corticosterone, increase activity, increase heart rate in female rats, but decrease heart rate in male rats. Parameters showed differences between the sexes and light phases. This study shows that acclimatization after transfer is sex-specific and researchers should take the sex into consideration when determining the acclimatization period. It is recommended to allow for acclimatization of at least 8 days in males and two weeks in females after external transfer and timely (2 days before starting experiments) transfer the animals internally to the testing room.
Collapse
|
47
|
Chichinadze K, Chichinadze N, Gachechiladze L, Lazarashvili A, Nikolaishvili M. Physical predictors, behavioural/emotional attributes and neurochemical determinants of dominant behaviour. Biol Rev Camb Philos Soc 2014; 89:1005-20. [DOI: 10.1111/brv.12091] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 01/20/2014] [Accepted: 01/30/2014] [Indexed: 01/25/2023]
Affiliation(s)
- Konstantin Chichinadze
- Laboratory of Behavior and Cognitive Functions; I. Beritashvili Center of Experimental Biomedicine; Gotua Street 14 0160 Tbilisi Georgia
- Department of Pathology; I. Javakhishvili Tbilisi State University; 0128 Tbilisi Georgia
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Nodar Chichinadze
- Department of Andrology; A. Natishvili Institute of Morphology; 0159 Tbilisi Georgia
| | - Ledi Gachechiladze
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Ann Lazarashvili
- Laboratory of Theoretical Investigations, Systemic Research Center; 0179 Tbilisi Georgia
| | - Marina Nikolaishvili
- Laboratory of Problems of Radiation Safety, Department of Radiobiology; I. Beritashvili Center of Experimental Biomedicine; 0160 Tbilisi Georgia
| |
Collapse
|
48
|
The socially stressed heart. Insights from studies in rodents. Neurosci Biobehav Rev 2014; 39:51-60. [DOI: 10.1016/j.neubiorev.2013.12.005] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 11/15/2013] [Accepted: 12/17/2013] [Indexed: 02/01/2023]
|
49
|
Papciak J, Popik P, Fuchs E, Rygula R. Chronic psychosocial stress makes rats more 'pessimistic' in the ambiguous-cue interpretation paradigm. Behav Brain Res 2013; 256:305-10. [PMID: 23993861 DOI: 10.1016/j.bbr.2013.08.036] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 08/22/2013] [Accepted: 08/24/2013] [Indexed: 10/26/2022]
Abstract
Human decisions are often biased by emotions. Stressed and depressed individuals tend to make negative, pessimistic judgements while those in positive affective states are often more optimistic. Chronic psychosocial stress has previously been shown to induce a spectrum of behavioural and physiological changes in rats that are considered the correlates of depressive symptoms in humans. In this study, we investigate whether chronic social defeat makes animals more 'pessimistic'. To measure the changes in cognitive judgement bias, we applied the ambiguous-cue interpretation paradigm. In the operant boxes, the rats were trained to press one lever in response to one tone to receive a reward and to press another lever in response to a different tone to avoid punishment. Cognitive bias was tested by measuring the pattern of animals' responses to a tone of intermediate frequency (ambiguous-cue). To induce chronic psychosocial stress, we subjected the animals to daily social defeat in the resident-intruder paradigm for 3 weeks. We report that chronic psychosocial stress makes rats more pessimistic.
Collapse
Affiliation(s)
- Justyna Papciak
- Cognitive Affective Neuroscience Laboratory, Department of Behavioral Neuroscience and Drug Development, Institute of Pharmacology Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | | | | | | |
Collapse
|
50
|
Patterson ZR, Abizaid A. Stress induced obesity: lessons from rodent models of stress. Front Neurosci 2013; 7:130. [PMID: 23898237 PMCID: PMC3721047 DOI: 10.3389/fnins.2013.00130] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2013] [Accepted: 07/08/2013] [Indexed: 11/15/2022] Open
Abstract
Stress was once defined as the non-specific result of the body to any demand or challenge to homeostasis. A more current view of stress is the behavioral and physiological responses generated in the face of, or in anticipation of, a perceived threat. The stress response involves activation of the sympathetic nervous system and recruitment of the hypothalamic-pituitary-adrenal (HPA) axis. When an organism encounters a stressor (social, physical, etc.), these endogenous stress systems are stimulated in order to generate a fight-or-flight response, and manage the stressful situation. As such, an organism is forced to liberate energy resources in attempt to meet the energetic demands posed by the stressor. A change in the energy homeostatic balance is thus required to exploit an appropriate resource and deliver useable energy to the target muscles and tissues involved in the stress response. Acutely, this change in energy homeostasis and the liberation of energy is considered advantageous, as it is required for the survival of the organism. However, when an organism is subjected to a prolonged stressor, as is the case during chronic stress, a continuous irregularity in energy homeostasis is considered detrimental and may lead to the development of metabolic disturbances such as cardiovascular disease, type II diabetes mellitus and obesity. This concept has been studied extensively using animal models, and the neurobiological underpinnings of stress induced metabolic disorders are beginning to surface. However, different animal models of stress continue to produce divergent metabolic phenotypes wherein some animals become anorexic and lose body mass while others increase food intake and body mass and become vulnerable to the development of metabolic disturbances. It remains unclear exactly what factors associated with stress models can be used to predict the metabolic outcome of the organism. This review will explore a variety of rodent stress models and discuss the elements that influence the metabolic outcome in order to further extend our understanding of stress-induced obesity.
Collapse
|