1
|
Cui G, Geng L, Zhu L, Lin Z, Liu X, Miao Z, Jiang J, Feng X, Wei F. CFP is a prognostic biomarker and correlated with immune infiltrates in Gastric Cancer and Lung Cancer. J Cancer 2021; 12:3378-3390. [PMID: 33976747 PMCID: PMC8100816 DOI: 10.7150/jca.50832] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Accepted: 03/21/2021] [Indexed: 01/06/2023] Open
Abstract
Complement factor properdin (CFP), encodes plasma glycoprotein, is a critical gene that regulates the complement pathway of the innate immune system. However, correlations of CFP in cancers remain unclear. In this study, the expression pattern and prognostic value of CFP in pan-cancer were analyzed via the Oncomine, PrognoScan, GEPIA and Kaplan-Meier plotters. In addition, we used immunohistochemical staining to validate CFP expression in clinical tissue samples. Finally, we evaluated the correlations between CFP and cancer immune infiltrates particularly in stomach adenocarcinoma (STAD) and lung adenocarcinoma (LUAD) by using GEPIA and TIMER databases. The results of database analysis and immunohistochemistry showed that the expression level of CFP in STAD and LUAD was lower than that in normal tissues. Low expression level of CFP was associated with poorer overall survival (OS), first progression (FP), post progression survival (PPS) and was detrimental to the prognosis of STAD and LUAD, specifically in stage 3, stage T3, stage N2 and N3 of STAD (P<0.05). Moreover, expression of CFP had significant positive correlations with the infiltration levels of CD8+ T cells, CD4+ T cells, macrophages, neutrophils and dendritic cells (DCs) in STAD and LUAD. Furthermore, gene markers of infiltrating immune cells exhibited different CFP-related immune infiltration patterns such as tumor-associated-macrophages (TAMs). These results suggest that CFP can serve as a prognostic biomarker for determining prognosis and immune infiltration in STAD and LUAD.
Collapse
Affiliation(s)
- Guoliang Cui
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China.,The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Le Geng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Li Zhu
- The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210017, Jiangsu, China
| | - Zhenyan Lin
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xuan Liu
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Zhengyue Miao
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Jintao Jiang
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Xiaoke Feng
- Department of Traditional Chinese Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, Jiangsu, China.,Institute of Integrated Chinese and Western Medicine, Nanjing Medical University, Nanjing 210029, Jiangsu, China
| | - Fei Wei
- Department of Physiology, School of medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu, China
| |
Collapse
|
2
|
Mangogna A, Varghese PM, Agostinis C, Alrokayan SH, Khan HA, Stover CM, Belmonte B, Martorana A, Ricci G, Bulla R, Kishore U. Prognostic Value of Complement Properdin in Cancer. Front Immunol 2021; 11:614980. [PMID: 33542722 PMCID: PMC7851055 DOI: 10.3389/fimmu.2020.614980] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/08/2020] [Indexed: 02/05/2023] Open
Abstract
The complement system is readily triggered by the presence of damage-associated molecular patterns on the surface of tumor cells. The complement alternative pathway provides rapid amplification of the molecular stress signal, leading to complement cascade activation to deal with pathogens or malignant cells. Properdin is the only known positive regulator of the alternative pathway. In addition, properdin promotes the phagocytic uptake of apoptotic T cells by macrophages and dendritic cells without activating the complement system, thus, establishing its ability to recognize "altered-self". Dysregulation of properdin has been implicated in substantial tissue damage in the host, and in some cases, chronic unresolved inflammation. A corollary of this may be the development of cancer. Hence, to establish a correlation between properdin presence/levels in normal and cancer tissues, we performed bioinformatics analysis, using Oncomine and UALCAN. Survival analyses were performed using UALCAN and PROGgeneV2 to assess if properdin can serve as a potential prognostic marker for human lung adenocarcinoma (LUAD), liver hepatocellular carcinoma (LIHC), cervical squamous cell carcinoma (CESC), and pancreatic adenocarcinoma (PAAD). We also analyzed levels of tumor-infiltrating immune cells using TIMER, a tool for characterizing immune cell composition in cancers. We found that in LUAD and LIHC, there was a lower expression of properdin in the tumors compared to normal tissues, while no significant difference was observed in CESC and PAAD. Survival analysis demonstrated a positive association between properdin mRNA expression and overall survival in all 4 types of cancers. TIMER analysis revealed that properdin expression correlated negatively with tumor purity and positively with levels of infiltrating B cells, cytotoxic CD8+ T cells, CD4+ helper T cells, macrophages, neutrophils and dendritic cells in LUAD, CESC and PAAD, and with levels of B cells, CD8+ T cells and dendritic cells in LIHC. Immunohistochemical analysis revealed that infiltrating immune cells were the most likely source of properdin in the tumor microenvironment. Thus, complement protein properdin shows promise as a prognostic marker in cancer and warrants further study.
Collapse
Affiliation(s)
- Alessandro Mangogna
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | - Praveen M. Varghese
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
- School of Biosciences and Technology, Vellore Institute of Technology, Vellore, India
| | - Chiara Agostinis
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
| | - Salman H. Alrokayan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Haseeb A. Khan
- Department of Biochemistry, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Cordula M. Stover
- School of Biological Sciences, University of Leicester, Leicester, United Kingdom
| | - Beatrice Belmonte
- Tumor Immunology Unit, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Anna Martorana
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, University of Palermo, Palermo, Italy
| | - Giuseppe Ricci
- Institute for Maternal and Child Health, IRCCS (Istituto di Ricovero e Cura a Carattere Scientifico) Burlo Garofolo, Trieste, Italy
- Department of Medical, Surgical and Health Science, University of Trieste, Trieste, Italy
| | - Roberta Bulla
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Uday Kishore
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
3
|
Zhang J, Song L, Pedersen DV, Li A, Lambris JD, Andersen GR, Mollnes TE, Ma YJ, Garred P. Soluble collectin-12 mediates C3-independent docking of properdin that activates the alternative pathway of complement. eLife 2020; 9:60908. [PMID: 32909942 PMCID: PMC7511233 DOI: 10.7554/elife.60908] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 01/11/2023] Open
Abstract
Properdin stabilizes the alternative C3 convertase (C3bBb), whereas its role as pattern-recognition molecule mediating complement activation is disputed for decades. Previously, we have found that soluble collectin-12 (sCL-12) synergizes complement alternative pathway (AP) activation. However, whether this observation is C3 dependent is unknown. By application of the C3-inhibitor Cp40, we found that properdin in normal human serum bound to Aspergillus fumigatus solely in a C3b-dependent manner. Cp40 also prevented properdin binding when properdin-depleted serum reconstituted with purified properdin was applied, in analogy with the findings achieved by C3-depleted serum. However, when opsonized with sCL-12, properdin bound in a C3-independent manner exclusively via its tetrameric structure and directed in situ C3bBb assembly. In conclusion, a prerequisite for properdin binding and in situ C3bBb assembly was the initial docking of sCL-12. This implies a new important function of properdin in host defense bridging pattern recognition and specific AP activation.
Collapse
Affiliation(s)
- Jie Zhang
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lihong Song
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Pharmaceutical Science, School of Pharmacy, Shenyang Pharmaceutical University, Shenyang, China
| | - Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Anna Li
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - John D Lambris
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Aarhus, Denmark
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital, and University of Oslo, Oslo, Norway.,Research Laboratory, Nordland Hospital, K. G. Jebsen TREC, University of Tromsø, Bodø, Norway.,Center of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Ying Jie Ma
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Peter Garred
- The Laboratory of Molecular Medicine, Department of Clinical Immunology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
4
|
Pedersen DV, Rösner T, Hansen AG, Andersen KR, Thiel S, Andersen GR, Valerius T, Laursen NS. Recruitment of properdin by bi-specific nanobodies activates the alternative pathway of complement. Mol Immunol 2020; 124:200-210. [PMID: 32599335 DOI: 10.1016/j.molimm.2020.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 04/28/2020] [Accepted: 06/01/2020] [Indexed: 02/07/2023]
Abstract
The complement system represents a powerful part of the innate immune system capable of removing pathogens and damaged host cells. Nevertheless, only a subset of therapeutic antibodies are capable of inducing complement dependent cytotoxicity, which has fuelled the search for new strategies to potentiate complement activation. Properdin (FP) functions as a positive complement regulator by stabilizing the alternative pathway C3 convertase. Here, we explore a novel strategy for direct activation of the alternative pathway of complement using bi-specific single domain antibodies (nanobodies) that recruit endogenous FP to a cell surface. As a proof-of-principle, we generated bi-specific nanobodies with specificity toward FP and the validated cancer antigen epidermal growth factor receptor (EGFR) and tested their ability to activate complement onto cancer cell lines expressing EGFR. Treatment led to recruitment of FP, complement activation and significant deposition of C3 fragments on the cells in a manner sensitive to the geometry of FP recruitment. The bi-specific nanobodies induced complement dependent lysis of baby hamster kidney cells expressing human EGFR but were unable to lyse human tumour cells due to the presence of complement regulators. Our results confirm that FP can function as a surface bound focal point for initiation of complement activation independent of prior C3b deposition. However, recruitment of FP by bi-specific nanobodies appears insufficient for overcoming the inhibitory action of the negative complement regulators overexpressed by many human tumour cell lines. Our data provide general information on the efficacy of properdin as an initiator of complement but suggest that properdin recruitment on its own may have limited utility as a platform for potent complement activation on regulated cell surfaces.
Collapse
Affiliation(s)
- Dennis V Pedersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Thies Rösner
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Rosalind-Franklin-Straße 12, 24103 Kiel, Germany
| | - Annette G Hansen
- Department of Biomedicine, Aarhus University, Høgh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Kasper R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Steffen Thiel
- Department of Biomedicine, Aarhus University, Høgh-Guldbergs Gade 10, 8000 Aarhus C, Denmark
| | - Gregers R Andersen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark
| | - Thomas Valerius
- Section for Stem Cell Transplantation and Immunotherapy, Department of Medicine II, Christian-Albrechts-University, Rosalind-Franklin-Straße 12, 24103 Kiel, Germany
| | - Nick S Laursen
- Department of Molecular Biology and Genetics, Center for Structural Biology, Aarhus University, Gustav Wieds vej 10 C, 8000 Aarhus C, Denmark.
| |
Collapse
|
5
|
Chen JY, Cortes C, Ferreira VP. Properdin: A multifaceted molecule involved in inflammation and diseases. Mol Immunol 2018; 102:58-72. [PMID: 29954621 DOI: 10.1016/j.molimm.2018.05.018] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Revised: 05/16/2018] [Accepted: 05/23/2018] [Indexed: 01/17/2023]
Abstract
Properdin, the widely known positive regulator of the alternative pathway (AP), has undergone significant investigation over the last decade to define its function in inflammation and disease, including its role in arthritis, asthma, and kidney and cardiovascular diseases. Properdin is a glycoprotein found in plasma that is mainly produced by leukocytes and can positively regulate AP activity by stabilizing C3 and C5 convertases and initiating the AP. Promotion of complement activity by properdin results in changes in the cellular microenvironment that contribute to innate and adaptive immune responses, including pro-inflammatory cytokine production, immune cell infiltration, antigen presenting cell maturation, and tissue damage. The use of properdin-deficient mouse models and neutralizing antibodies has contributed to the understanding of the mechanisms by which properdin contributes to promoting or preventing disease pathology. This review mainly focusses on the multifaceted roles of properdin in inflammation and diseases, and how understanding these roles is contributing to the development of new disease therapies.
Collapse
Affiliation(s)
- Jin Y Chen
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| | - Claudio Cortes
- Department of Biomedical Sciences, University of Oakland University School of Medicine, Rochester, MI, United States.
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States.
| |
Collapse
|
6
|
Harrison RA. The properdin pathway: an "alternative activation pathway" or a "critical amplification loop" for C3 and C5 activation? Semin Immunopathol 2017; 40:15-35. [PMID: 29167939 DOI: 10.1007/s00281-017-0661-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 10/30/2017] [Indexed: 11/28/2022]
Abstract
This review is not intended to cover in detail all aspects of the discovery and evolution of our understanding of the "alternative pathway" of complement activation, there are many excellent reviews that do this (see Fearon (CRC Crit Rev Immunol 1:1-32, 1979), Pangburn and Müller-Eberhard (Springer Semin Immunopathol 7:163-192, 1984)), but instead to give sufficient background for current concepts to be put in context. The prevailing textbook view, of components having a primary role as an alternative "pathway" for C3 activation, is challenged, with an argument developed for the primary role of the system being that of providing a surface-dependent amplification loop for both C3 and C5 activation. Whatever the mechanism by which the initial C3b molecule is generated, deposition onto a surface has the potential to target that surface for elimination. Elimination or escape from initial targeting is determined by a sophisticated and highly regulated amplification loop for C3 activation. This viewpoint of the system is then briefly developed to provide a context for therapeutic treatment of disease caused, at least in part, by dysregulated amplification of C3 activation, and to highlight some of the challenges that such therapies will face and need to address.
Collapse
Affiliation(s)
- Richard A Harrison
- Institute of Infection and Immunity, School of Medicine, Cardiff University, Henry Wellcome Building, Heath Park, Cardiff, CF14 4XN, UK.
| |
Collapse
|
7
|
Blatt AZ, Pathan S, Ferreira VP. Properdin: a tightly regulated critical inflammatory modulator. Immunol Rev 2017; 274:172-190. [PMID: 27782331 PMCID: PMC5096056 DOI: 10.1111/imr.12466] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The complement alternative pathway is a powerful arm of the innate immune system that enhances diverse inflammatory responses in the human host. Key to the effects of the alternative pathway is properdin, a serum glycoprotein that can both initiate and positively regulate alternative pathway activity. Properdin is produced by many different leukocyte subsets and circulates as cyclic oligomers of monomeric subunits. While the formation of non‐physiological aggregates in purified properdin preparations and the presence of potential properdin inhibitors in serum have complicated studies of its function, properdin has, regardless, emerged as a key player in various inflammatory disease models. Here, we review basic properdin biology, emphasizing the major hurdles that have complicated the interpretation of results from properdin‐centered studies. In addition, we elaborate on an emerging role for properdin in thromboinflammation and discuss the potential utility of properdin inhibitors as long‐term therapeutic options to treat diseases marked by increased formation of platelet/granulocyte aggregates. Finally, we describe the interplay between properdin and the alternative pathway negative regulator, Factor H, and how aiming to understand these interactions can provide scientists with the most effective ways to manipulate alternative pathway activation in complex systems.
Collapse
Affiliation(s)
- Adam Z Blatt
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Sabina Pathan
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Viviana P Ferreira
- Department of Medical Microbiology and Immunology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA.
| |
Collapse
|
8
|
Cortes C, Ohtola JA, Saggu G, Ferreira VP. Local release of properdin in the cellular microenvironment: role in pattern recognition and amplification of the alternative pathway of complement. Front Immunol 2013; 3:412. [PMID: 23335922 PMCID: PMC3547370 DOI: 10.3389/fimmu.2012.00412] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 12/18/2012] [Indexed: 12/24/2022] Open
Abstract
Properdin, the only positive regulatory protein of the complement system, acts as both a stabilizer of the alternative pathway (AP) convertases and as a selective pattern recognition molecule of certain microorganisms and host cells (i.e., apoptotic/necrotic cells) by serving as a platform for de novo C3b,Bb assembly. Properdin, a highly positively charged protein, normally exists as cyclic dimers (P(2)), trimers (P(3)), and tetramers (P(4)) of head-to-tail associations of monomeric 53 kDa subunits. While most complement proteins are produced mainly in the liver, properdin is synthesized primarily by various cell types, including neutrophils, monocytes, primary T cells, and shear-stressed endothelial cells resulting in properdin serum levels of 4-25 μg/ml. Multiple inflammatory agonists stimulate the release of properdin from stimulated leukocytes into the cellular microenvironment. Concentrated, focused increases in properdin levels may lead to stabilization and initiation of AP convertases, thus greatly amplifying the complement response to a local stimulus. This review highlights current knowledge related to these properties and discusses the implications of properdin production in a pro-inflammatory microenvironment.
Collapse
Affiliation(s)
- Claudio Cortes
- Department of Medical Microbiology and Immunology, College of Medicine and Life Sciences, University of Toledo Toledo, OH, USA ; Department Medical Immunology and Microbiology, Medical University of the Americas West Indies, Nevis
| | | | | | | |
Collapse
|
9
|
Lee H, Green DJ, Lai L, Hou YJ, Jensenius JC, Liu D, Cheong C, Park CG, Zhang M. Early complement factors in the local tissue immunocomplex generated during intestinal ischemia/reperfusion injury. Mol Immunol 2009; 47:972-81. [PMID: 20004473 DOI: 10.1016/j.molimm.2009.11.022] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2009] [Revised: 11/04/2009] [Accepted: 11/13/2009] [Indexed: 11/28/2022]
Abstract
Recent work reveals that the innate immune system is able to recognize self-targets and initiate an inflammatory response similar to that of pathogens. One novel example of this innate autoimmunity is ischemia/reperfusion (I/R) injury, in which reperfusion of the ischemic tissues elicits an acute inflammatory response activated by natural IgM (nIgM) binding to ischemia-specific self-antigens, which are non-muscle myosin heavy chains type II (NMHC-II) subtype A and C. Subsequently, the complement lectin pathway is activated and eventually tissue injury occurs. Although earlier studies in the intestinal model showed that the classical complement pathway did not initiate I/R injury, C1q deposition was still observed in the local injured tissues by imaging analysis. Moreover, the involvement of the alternative complement pathway became unclear due to conflicting reports using different knockout mice. To explore the immediate downstream pathway following nIgM-ischemic antigen interaction, we isolated the nIgM-ischemic antigen immunocomplexes from the local tissue of animals treated in the intestinal I/R injury model, and examined the presence of initial molecules of three complement pathways. Our results showed that mannan-binding lectin (MBL), the early molecule of the lectin pathway, was present in the nIgM-ischemic Ag immunocomplex. In addition, C1q, the initial molecule of the classical pathway was also detected on the immunocomplex. However, Factor B, the early molecule in the alternative pathway, was not detected in the immunocomplex. To further examine the role of the alternative pathway in I/R injury, we utilized Factor B knockout mice in the intestinal model. Our results showed that Factor B knockout mice were not protected from local tissue injury, and their complement system was activated in the local tissues by nIgM during I/R. These results indicated that the lectin complement pathway operates immediately downstream of the nIgM-ischemic antigen interaction during intestinal I/R. Furthermore, the classical complement pathway also appears to interact with the of nIgM-ischemic antigen immunocomplex. Finally, the alternative complement pathway is not involved in I/R injury induction in the current intestinal model.
Collapse
Affiliation(s)
- Haekyung Lee
- Department of Anesthesiology, SUNY-Downstate Medical Center, 450 Clarkson Avenue, Brooklyn, NY 11203, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Complement activation cascade and its regulation: Relevance for the response of solid tumors to photodynamic therapy. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2008; 93:53-9. [DOI: 10.1016/j.jphotobiol.2008.04.005] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2008] [Revised: 04/19/2008] [Accepted: 04/21/2008] [Indexed: 12/21/2022]
|
11
|
Spitzer D, Mitchell LM, Atkinson JP, Hourcade DE. Properdin can initiate complement activation by binding specific target surfaces and providing a platform for de novo convertase assembly. THE JOURNAL OF IMMUNOLOGY 2007; 179:2600-8. [PMID: 17675523 DOI: 10.4049/jimmunol.179.4.2600] [Citation(s) in RCA: 214] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Complement promotes the rapid recognition and elimination of pathogens, infected cells, and immune complexes. The biochemical basis for its target specificity is incompletely understood. In this report, we demonstrate that properdin can directly bind to microbial targets and provide a platform for the in situ assembly and function of the alternative pathway C3 convertases. This mechanism differs from the standard model wherein nascent C3b generated in the fluid phase attaches nonspecifically to its targets. Properdin-directed complement activation occurred on yeast cell walls (zymosan) and Neisseria gonorrhoeae. Properdin did not bind wild-type Escherichia coli, but it readily bound E. coli LPS mutants, and the properdin-binding capacity of each strain correlated with its respective serum-dependent AP activation rate. Moreover, properdin:single-chain Ab constructs were used to direct serum-dependent complement activation to novel targets. We conclude properdin participates in two distinct complement activation pathways: one that occurs by the standard model and one that proceeds by the properdin-directed model. The properdin-directed model is consistent with a proposal made by Pillemer and his colleagues >50 years ago.
Collapse
Affiliation(s)
- Dirk Spitzer
- Division of Rheumatology, Department of Medicine, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
12
|
Hourcade DE. The role of properdin in the assembly of the alternative pathway C3 convertases of complement. J Biol Chem 2005; 281:2128-32. [PMID: 16301317 DOI: 10.1074/jbc.m508928200] [Citation(s) in RCA: 175] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Complement is a powerful host defense system that contributes to both innate and acquired immunity. There are three pathways of complement activation, the classical pathway, lectin pathway, and alternative pathway. Each generates a C3 convertase, a serine protease that cleaves the central complement protein, C3. Nearly all the biological consequences of complement are dependent on the resulting cleavage products. Properdin is a positive regulator of complement activation that stabilizes the alternative pathway convertases (C3bBb). Properdin is composed of multiple identical protein subunits, with each subunit carrying a separate ligand-binding site. Previous reports suggest that properdin function depends on multiple interactions between its subunits with its ligands. In this study I used surface plasmon resonance assays to examine properdin interactions with C3b and factor B. I demonstrated that properdin promotes the association of C3b with factor B and provides a focal point for the assembly of C3bBb on a surface. I also found that properdin binds to preformed alternative pathway C3 convertases. These findings support a model in which properdin, bound to a target surface via C3b, iC3b, or other ligands, can use its unoccupied C3b-binding sites as receptors for nascent C3b, bystander C3b, or pre-formed C3bB and C3bBb complexes. New C3bP and C3bBP intermediates can lead to in situ assembly of C3bBbP. The full stabilizing effect of properdin on C3bBb would be attained as properdin binds more than one ligand at a time, forming a lattice of properdin: ligand interactions bound to a surface scaffold.
Collapse
Affiliation(s)
- Dennis E Hourcade
- Department of Medicine/Division of Rheumatology, Washington University School of Medicine, 660 S. Euclid Avenue, St. Louis, MO 63110-1093, USA.
| |
Collapse
|