1
|
Ahmadi A, Hosseini F, Rostami M, Soukhtanloo M. Anticancer effects of alpha-lipoic acid, a potent organosulfur compound by modulating matrix metalloproteinases and apoptotic markers in osteosarcoma MG-63 cells. J Steroid Biochem Mol Biol 2025; 247:106664. [PMID: 39694075 DOI: 10.1016/j.jsbmb.2024.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 12/11/2024] [Accepted: 12/15/2024] [Indexed: 12/20/2024]
Abstract
Osteosarcoma (OS), an extremely aggressive form of bone tumor primarily affects young adults. Despite significant advancements in clinical trials, the ability of cancer cells to metastasize and resist apoptosis remains a major challenge. To address these issues, novel therapeutic interventions with high specificity for these processes are essential. Alpha-lipoic acid (ALA), an organosulfur compound derived from octanoic acid, possesses a range of pharmacological properties. This study hypothesizes that ALA would inhibit metastasis and induce cell apoptosis in OS. To evaluate the potential of ALA, its effects on the migration, metastasis, and cell cycle of MG-63 OS cells were assessed, along with its ability to trigger apoptosis. To these aims, MG-63 cells were exposed to varying concentrations of ALA, and cell viability was measured using the alamarBlue assay. The impact of ALA on cell cycle progression, apoptosis, migration, and metastasis was analyzed through flow cytometry, scratch assay, and gelatin zymography. After validating the expression of MMP2, MMP9, VEGF, VEGFR, BAX, BCL-2, and P53 by the GEO database, the expression levels of these genes were examined through quantitative PCR (qPCR). Eventually, molecular docking was employed to simulate the interactions between ALA and matrix metalloproteinase (MMPs). The results demonstrated that ALA significantly inhibited cell migration, induced cell cycle arrest, and promoted apoptosis by upregulating P53 and BAX expression while downregulating BCL-2 levels. Furthermore, ALA was found to suppress the activity and expression of MMP2 and MMP9 and reduce the expression of angiogenesis markers. Notably, ALA interacted directly with the active site of MMP2 and MMP9. These findings suggest that ALA has the potential to be a promising agent with anti-cancer effects on MG-63 cells, warranting further preclinical investigations.
Collapse
Affiliation(s)
- Abdolreza Ahmadi
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Fatemehsadat Hosseini
- Department of Medical Biotechnology and Nanotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mehdi Rostami
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Pharmacological Research Center of Medicinal Plants, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
2
|
Role of coenzymes in cancer metabolism. Semin Cell Dev Biol 2019; 98:44-53. [PMID: 31176736 DOI: 10.1016/j.semcdb.2019.05.027] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 05/27/2019] [Accepted: 05/28/2019] [Indexed: 01/18/2023]
Abstract
Cancer is a heterogeneous set of diseases characterized by the rewiring of cellular signaling and the reprogramming of metabolic pathways to sustain growth and proliferation. In past decades, studies were focused primarily on the genetic complexity of cancer. Recently, increasing number of studies have discovered several mutations among metabolic enzymes in different tumor cells. Most of the enzymes are regulated by coenzymes, organic cofactors, that function as intermediate carrier of electrons or functional groups that are transferred during the reaction. However, the precise role of cofactors is not well elucidated. In this review, we discuss several metabolic enzymes associated to cancer metabolism rewiring, whose inhibition may represent a therapeutic target. Such enzymes, upon expression or inhibition, may impact also the coenzymes levels, but only in few cases, it was possible to direct correlate coenzymes changes with a specific enzyme. In addition, we also summarize an up-to-date information on biological role of some coenzymes, preclinical and clinical studies, that have been carried out in various cancers and their outputs.
Collapse
|
3
|
Multi-Acting Mitochondria-Targeted Platinum(IV) Prodrugs of Kiteplatin with α-Lipoic Acid in the Axial Positions. Int J Mol Sci 2018; 19:ijms19072050. [PMID: 30011897 PMCID: PMC6073472 DOI: 10.3390/ijms19072050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 07/07/2018] [Accepted: 07/12/2018] [Indexed: 12/17/2022] Open
Abstract
Platinum(II) drugs are activated intracellularly by aquation of the leaving groups and then bind to DNA, forming DNA adducts capable to activate various signal-transduction pathways. Mostly explored in recent years are Pt(IV) complexes which allow the presence of two additional ligands in the axial positions suitable for the attachment of other cancer-targeting ligands. Here we have extended this strategy by coordinating in the axial positions of kiteplatin ([PtCl₂(cis-1,4-DACH)], DACH = Diaminocyclohexane) and its CBDCA (1,1-cyclobutanedicarboxylate) analogue the antioxidant α-Lipoic acid (ALA), an inhibitor of the mitochondrial pyruvate dehydrogenase kinase (PDK). The new compounds (cis,trans,cis-[Pt(CBDCA)(ALA)₂(cis-1,4-DACH)], 2, and cis,trans,cis-[PtCl₂(ALA)₂(cis-1,4-DACH)], 3), after intracellular reduction, release the precursor Pt(II) species and two molecules of ALA. The Pt residue is able to target DNA, while ALA could act on mitochondria as activator of the pyruvate dehydrogenase complex, thus suppressing anaerobic glycolysis. Compounds 2 and 3 were tested in vitro on a panel of five human cancer cell lines and compared to cisplatin, oxaliplatin, and kiteplatin. They proved to be much more effective than the reference compounds, with complex 3 most effective in 3D spheroid tumor cultures. Notably, treatment of human A431 carcinoma cells with 2 and 3 did not determine increase of cellular ROS (usually correlated to inhibition of mitochondrial PDK) and did not induce a significant depolarization of the mitochondrial membrane or alteration of other morphological mitochondrial parameters.
Collapse
|
4
|
Micili SC, Goker A, Kuscu K, Ergur BU, Fuso A. α-Lipoic Acid Vaginal Administration Contrasts Inflammation and Preterm Delivery in Rats. Reprod Sci 2018; 26:128-138. [PMID: 29631479 DOI: 10.1177/1933719118766266] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
α-Lipoic acid (ALA) is a safe natural molecule involved in the immunomodulation of many physiological processes. Orally administered ALA has been reported to treat several inflammatory pathologies and support pregnancy. Our study aimed at testing ALA vaginal administration in female Wistar rats evaluating its tissue distribution (experiment I), impact on implantation process (experiment II), and effectiveness in contrasting induced preterm birth (experiment III). In experiment I, rats were intravaginally treated with 50 mg/kg or 500 mg/kg ALA, or with a physiologic solution, for 4 days. α-Lipoic acid distribution in uterus and cervical tissues was evaluated by immunohistochemical analyses. In experiment II, rats received intravaginally the above treatments for 5 days, then they were mated and, if pregnant, included in the experiment to evaluate both implantation rate and the content of implantation mediators in uterus tissues. In experiment III, pregnant rats were pretreated with placebo or with vaginal ALA for 4 days and then induced to delivery with mifepristone plus PGE2 on the 19th day of pregnancy. The delivery time was recorded, and the messenger RNA (mRNA) levels of pro-inflammatory cytokines were detected in the uterine tissues by real-time polymerase chain reaction. Immunohistochemistry was also performed. Results showed that vaginal ALA was well absorbed and distributed. The treatment did not affect the implantation process and was able to significantly revert mifepristone plus prostaglandin E2 effects, delaying the timing of delivery and significantly decreasing mRNA synthesis and release of pro-inflammatory cytokines. We provide for the first time new information on vaginal ALA use, even during pregnancy, opening a perspective for further studies.
Collapse
Affiliation(s)
- Serap Cilaker Micili
- 1 Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Asli Goker
- 2 Department of Obstetrics and Gynecology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Kemal Kuscu
- 2 Department of Obstetrics and Gynecology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Bekir Ugur Ergur
- 1 Department of Histology and Embryology, Faculty of Medicine, Dokuz Eylül University, Izmir, Turkey
| | - Andrea Fuso
- 3 Department of Surgery "P. Valdoni," Sapienza University of Rome, Roma, Italy
| |
Collapse
|
5
|
Berkson BM, Rubin DM, Berkson AJ. The Long-term Survival of a Patient With Pancreatic Cancer With Metastases to the Liver After Treatment With the Intravenous α-Lipoic Acid/Low-Dose Naltrexone Protocol. Integr Cancer Ther 2016; 5:83-9. [PMID: 16484716 DOI: 10.1177/1534735405285901] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The authors describe the long-term survival of a patient with pancreatic cancer without any toxic adverse effects. The treatment regimen includes the intravenous α-lipoic acid and low-dose naltrexone (ALA-N) protocol and a healthy lifestyle program. The patient was told by a reputable university oncology center in October 2002 that there was little hope for his survival. Today, January 2006, however, he is back at work, free from symptoms, and without appreciable progression of his malignancy. The integrative protocol described in this article may have the possibility of extending the life of a patient who would be customarily considered to be terminal. The authors believe that life scientists will one day develop a cure for metastatic pancreatic cancer, perhaps via gene therapy or another biological platform. But until such protocols come to market, the ALA-N protocol should be studied and considered, given its lack of toxicity at levels reported. Several other patients are on this treatment protocol and appear to be doing well at this time.
Collapse
Affiliation(s)
- Burton M Berkson
- Integrative Medical Center of New Mexico and New Mexico State University, Las Cruces
| | | | | |
Collapse
|
6
|
Monastra G, De Grazia S, Cilaker Micili S, Goker A, Unfer V. Immunomodulatory activities of alpha lipoic acid with a special focus on its efficacy in preventing miscarriage. Expert Opin Drug Deliv 2016; 13:1695-1708. [DOI: 10.1080/17425247.2016.1200556] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Giovanni Monastra
- Department of Experimental Medicine, University la Sapienza, Rome, Italy
| | - Sara De Grazia
- Department of Research and Development, LO.LI. Pharma, Rome, Italy
| | | | - Asli Goker
- Department of Obstetrics and Gynecology, Celal Bayar University, Manisa, Turkey
| | - Vittorio Unfer
- Department of Medical Sciences, UNIIPUS – Private Swiss University Institute, Chiasso, Switzerland
| |
Collapse
|
7
|
Dörsam B, Fahrer J. The disulfide compound α-lipoic acid and its derivatives: A novel class of anticancer agents targeting mitochondria. Cancer Lett 2015; 371:12-9. [PMID: 26604131 DOI: 10.1016/j.canlet.2015.11.019] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 01/20/2023]
Abstract
The endogenous disulfide α-lipoic acid (LA) is an essential mitochondrial co-factor. In addition, LA and its reduced counterpart dihydro lipoic acid form a potent redox couple with antioxidative functions, for which it is used as dietary supplement and therapeutic. Recently, it has gained attention due to its cytotoxic effects in cancer cells, which is the key aspect of this review. We initially recapitulate the dietary occurrence, gastrointestinal absorption and pharmacokinetics of LA, illustrating its diverse antioxidative mechanisms. We then focus on its mode of action in cancer cells, in which it triggers primarily the mitochondrial pathway of apoptosis, whereas non-transformed primary cells are hardly affected. Furthermore, LA impairs oncogenic signaling and displays anti-metastatic potential. Novel LA derivatives such as CPI-613, which target mitochondrial energy metabolism, are described and recent pre-clinical studies are presented, which demonstrate that LA and its derivatives exert antitumor activity in vivo. Finally, we highlight clinical studies currently performed with the LA analog CPI-613. In summary, LA and its derivatives are promising candidates to complement the arsenal of established anticancer drugs due to their mitochondria-targeted mode of action and non-genotoxic properties.
Collapse
Affiliation(s)
- Bastian Dörsam
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany
| | - Jörg Fahrer
- Department of Toxicology, University Medical Center Mainz, Obere Zahlbacher Strasse 67, D-55131 Mainz, Germany.
| |
Collapse
|
8
|
Lipoic acid induces p53-independent cell death in colorectal cancer cells and potentiates the cytotoxicity of 5-fluorouracil. Arch Toxicol 2014; 89:1829-46. [PMID: 25526924 DOI: 10.1007/s00204-014-1434-0] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2014] [Accepted: 12/09/2014] [Indexed: 12/27/2022]
Abstract
Alpha-lipoic acid (LA), which plays a pivotal role in mitochondrial energy metabolism, is an endogenous dithiol compound with an array of antioxidative functions. It has been shown that LA triggers cell death in tumor cell lines, whereas non-transformed cells are hardly affected. In the present study, we analyzed the cytotoxicity of LA on colorectal cancer (CRC) cells differing in their p53 status and investigated a putative synergistic effect with the anticancer drug 5-fluorouracil (5-FU). We show that LA induces a dose-dependent decrease in cell viability, which was independent of the p53 status as attested in isogenic p53-proficient and p53-deficient cell lines. This effect was largely attributable to cell death induction as revealed by Annexin-V/PI staining. LA-treated HCT116 cells underwent caspase-dependent and caspase-independent cell death, which was blocked by the pan-caspase inhibitor zVAD and the RIP-kinase inhibitor Necrostatin-1, respectively. In CaCO-2 and HT29 cells, LA induced caspase-dependent cell demise via activation of caspase-9, caspase-3 and caspase-7 with subsequent PARP-1 cleavage as demonstrated by immunoblot analysis, activity assays and pan-caspase inhibition. Interestingly, LA treatment did neither activate p53 nor induced genotoxic effects as shown by lack of DNA strand breaks and phosphorylation of histone 2AX. Finally, we provide evidence that LA increases the cytotoxic effect induced by the anticancer drug 5-FU as revealed by significantly enhanced cell death rates in HCT116 and CaCO-2 cells. Collectively, these findings demonstrate that LA induces CRC cell death independent of their p53 status and potentiates the cytotoxicity of 5-FU without causing DNA damage on its own, which makes it a candidate for tumor therapy.
Collapse
|
9
|
Antigenotoxic effect of lipoic acid against mitomycin-C in human lymphocyte cultures. Cytotechnology 2012; 65:553-65. [PMID: 23132681 DOI: 10.1007/s10616-012-9504-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 09/24/2012] [Indexed: 12/14/2022] Open
Abstract
Antitumor agents are used in therapy against many forms of human cancer. One of these is mitomycin-C (MMC). As with many agents, it can interact with biological molecules and can induce genetic hazards in non-tumor cells. One of the possible approaches to protect DNA from this damage is to supply antioxidants that can remove free radicals produced by antitumor agents. Lipoic acid (LA) is known as one of the most powerful antioxidants. The aim of this study was to investigate antigenotoxic effects of LA against MMC induced chromosomal aberrations (CA), sister chromatid exchanges (SCE) and micronucleus (MN) formation in human lymphocytes. Lymphocytes were treated with 0.2 μg MMC/heparinized mL for 48 h. Three different concentrations (0.5, 1, 2 μg/mL) of LA were used together with MMC in three different applications; 1 h pre-treatment, simultaneous treatment and 1 h post-treatment. A negative, a positive and a solvent control were also included. In all the cultures treated with MMC + LA, the frequency of abnormal cells and CA/cell significantly decreased compared to MMC. Statistically significant reduction was also observed in SCE/cell and MN frequencies in all treatments. These results demonstrated anticlastogenic and antimutagenic effects of LA against MMC induced genotoxicity. LA showed the most efficient effect during 1 h pretreatment. On the other hand, MMC + LA treatments induced significant reduction in mitotic index than that of MMC treatment alone. These results are encouraging that LA can be a possible chemopreventive agent in tumorigenesis in both cancer patients and in health care persons handling anti-cancer drugs.
Collapse
|
10
|
Feuerecker B, Pirsig S, Seidl C, Aichler M, Feuchtinger A, Bruchelt G, Senekowitsch-Schmidtke R. Lipoic acid inhibits cell proliferation of tumor cells in vitro and in vivo. Cancer Biol Ther 2012; 13:1425-35. [PMID: 22954700 DOI: 10.4161/cbt.22003] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cancer cells convert glucose preferentially to lactate even in the presence of oxygen (aerobic glycolysis-Warburg effect). New concepts in cancer treatment aim at inhibition of aerobic glycolysis. Pyruvate dehydrogenase converts pyruvate to acetylCoA thus preventing lactate formation. Therefore, the aim of this study was to evaluate compounds that could activate pyruvate dehydrogenase in cancer cells. We investigated the effects of (R)-(+)-α-lipoic acid (LPA) and dichloroacetate (DCA), possible activators of pyruvate dehydrogenase, on suppression of aerobic glycolysis and induction of cell death. The neuroblastoma cell lines Kelly, SK-N-SH, Neuro-2a and the breast cancer cell line SkBr3 were incubated with different concentrations (0.1-30 mM) of LPA and DCA. The effects of both compounds on cell viability/proliferation (WST-1 assay), [18F]-FDG uptake, lactate production and induction of apoptosis (flow cytometric detection of caspase-3) were evaluated. Furthermore, NMRI nu/nu mice that had been inoculated s.c. with SkBr3 cells were treated daily for four weeks with LPA (i.p, 18.5 mg/kg) starting at day 7 p.i.. Tumor development was measured with a sliding caliper and monitored via [18F]-FDG-PET. Residual tumors after therapy were examined histopathologically. These data suggests that LPA can reduce (1) cell viability/proliferation, (2) uptake of [18F]-FDG and (3) lactate production and increase apoptosis in all investigated cell lines. In contrast, DCA was almost ineffective. In the mouse xenograft model with s.c. SkBr3 cells, daily treatment with LPA retarded tumor progression. Therefore, LPA seems to be a promising compound for cancer treatment.
Collapse
Affiliation(s)
- Benedikt Feuerecker
- Department of Nuclear Medicine, Technische Universitaet Muenchen, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
11
|
Al Abdan M. Alfa-lipoic acid controls tumor growth and modulates hepatic redox state in Ehrlich-ascites-carcinoma-bearing mice. ScientificWorldJournal 2012; 2012:509838. [PMID: 23002387 PMCID: PMC3353479 DOI: 10.1100/2012/509838] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2011] [Accepted: 01/11/2012] [Indexed: 12/17/2022] Open
Abstract
The effect of oral supplementation of α-lipoic (LA) on growth of Ehrlich ascites carcinoma cells (EACs) and hepatic antioxidant state in mice was investigated. The results revealed that α-lipoic (LA) acid at 50 mg/kg body wt reduced the viability and volume of EAC cells and increased the survival of the treated animals. In addition, LA normalized oxidative stress in liver of mice-bearing EAC cells evidenced by increasing the levels of total thiols, glutathione, glutathione-S-transferase, superoxide dismutase, and catalyse. On the other hand, significant decreases in the levels of malondialdehyde and protein carbonyl were demonstrated in liver indicating controlled oxidative stress in these animals. As a consequence, LA regulated liver enzymes, alkaline phosphatase, aspartate aminotransferase, alanine aminotransferase, and gamma-glutamyl transferase. The data also indicated the efficiency of LA as cancer inhibitor and therapeutic influence. In conclusion, the present data suggest LA as a potential therapeutic complement in the treatment or prevention of different pathologies that may be related to an imbalance of the cellular oxidoreductive status associated with malignancy.
Collapse
Affiliation(s)
- M Al Abdan
- Zoology Department, Faculty of Science, Princess Nora Bint AbdulRahman University, Riyadh 11481, Saudi Arabia.
| |
Collapse
|
12
|
Gorąca A, Huk-Kolega H, Piechota A, Kleniewska P, Ciejka E, Skibska B. Lipoic acid – biological activity and therapeutic potential. Pharmacol Rep 2011; 63:849-58. [DOI: 10.1016/s1734-1140(11)70600-4] [Citation(s) in RCA: 225] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2010] [Revised: 04/06/2011] [Indexed: 12/17/2022]
|
13
|
Lee HS, Na MH, Kim WK. α-Lipoic acid reduces matrix metalloproteinase activity in MDA-MB-231 human breast cancer cells. Nutr Res 2010; 30:403-9. [DOI: 10.1016/j.nutres.2010.06.009] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2010] [Revised: 06/07/2010] [Accepted: 06/11/2010] [Indexed: 10/19/2022]
|
14
|
Berkson BM, Rubin DM, Berkson AJ. Revisiting the ALA/N (alpha-lipoic acid/low-dose naltrexone) protocol for people with metastatic and nonmetastatic pancreatic cancer: a report of 3 new cases. Integr Cancer Ther 2010; 8:416-22. [PMID: 20042414 DOI: 10.1177/1534735409352082] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The authors, in a previous article, described the long-term survival of a man with pancreatic cancer and metastases to the liver, treated with intravenous alpha-lipoic acid and oral low-dose naltrexone (ALA/N) without any adverse effects. He is alive and well 78 months after initial presentation. Three additional pancreatic cancer case studies are presented in this article. At the time of this writing, the first patient, GB, is alive and well 39 months after presenting with adenocarcinoma of the pancreas with metastases to the liver. The second patient, JK, who presented to the clinic with the same diagnosis was treated with the ALA/N protocol and after 5 months of therapy, PET scan demonstrated no evidence of disease. The third patient, RC, in addition to his pancreatic cancer with liver and retroperitoneal metastases, has a history of B-cell lymphoma and prostate adenocarcinoma. After 4 months of the ALA/N protocol his PET scan demonstrated no signs of cancer. In this article, the authors discuss the poly activity of ALA: as an agent that reduces oxidative stress, its ability to stabilize NF(k)B, its ability to stimulate pro-oxidant apoptosic activity, and its discriminative ability to discourage the proliferation of malignant cells. In addition, the ability of lowdose naltrexone to modulate an endogenous immune response is discussed. This is the second article published on the ALA/N protocol and the authors believe the protocol warrants clinical trial.
Collapse
Affiliation(s)
- Burton M Berkson
- The Integrative Medical Center of New Mexico, Las Cruces, NM, USA
| | | | | |
Collapse
|
15
|
Na MH, Seo EY, Kim WK. Effects of alpha-lipoic acid on cell proliferation and apoptosis in MDA-MB-231 human breast cells. Nutr Res Pract 2009; 3:265-71. [PMID: 20098578 PMCID: PMC2809232 DOI: 10.4162/nrp.2009.3.4.265] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 11/16/2022] Open
Abstract
The role that antioxidants play in the process of carcinogenesis has recently gained considerable attention. α-Lipoic acid, a naturally occurring disulfide molecule, is a powerful antioxidant that reportedly exerts beneficial effects in patients with advanced cancer by reducing the level of reactive oxygen species and increasing glutathione peroxidase activity. In this study, we examined changes in the protein and mRNA expression associated with cell proliferation and apoptosis in MDA-MB-231 breast cancer cultured in the presence of various concentrations (0, 250, 500, and 1000 µmol/L) of α-lipoic acid. The results revealed that α-lipoic acid inhibited the growth of breast cancer cells in a dose-independent manner (P < 0.05). Additionally, ErbB2 and ErbB3 protein and mRNA expressions were significantly decreased in a dose-dependent manner in response to α-lipoic acid (P < 0.05). Furthermore, the protein expression of phosphorylated Akt (p-Akt) levels and total Akt, and the mRNA expression of Akt were decreased dose-dependently in cells that were treated with α-lipoic acid (P < 0.05). Bcl-2 protein and mRNA expressions were also decreased in cells that were treated with α-lipoic acid (P < 0.05). However, Bax protein and mRNA expressions were increased in cells treated with α-lipoic acid (P < 0.05). Finally, caspase-3 activity was significantly increased in a dose-dependent manner in cells treated with α-lipoic acid (P < 0.05). In conclusion, we demonstrated that α-lipoic acid inhibits cell proliferation and induces apoptosis in MDA-MB-231 breast cancer cell lines.
Collapse
Affiliation(s)
- Mi Hee Na
- Department Food Science and Nutrition, Dankook University, 126 Jukjeon-dong, Suji-gu, Yongin-si, Gyunggi 448-701, Korea
| | | | | |
Collapse
|
16
|
Feng D, Witkowski A, Smith S. Down-regulation of mitochondrial acyl carrier protein in mammalian cells compromises protein lipoylation and respiratory complex I and results in cell death. J Biol Chem 2009; 284:11436-45. [PMID: 19221180 DOI: 10.1074/jbc.m806991200] [Citation(s) in RCA: 78] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
The objective of this study was to evaluate the physiological importance of the mitochondrial fatty acid synthesis pathway in mammalian cells using the RNA interference strategy. Transfection of HEK293T cells with small interfering RNAs targeting the acyl carrier protein (ACP) component reduced ACP mRNA and protein levels by >85% within 24 h. The earliest phenotypic changes observed were a marked decrease in the proportion of post-translationally lipoylated mitochondrial proteins recognized by anti-lipoate antibodies and a reduction in their catalytic activity, and a slowing of the cell growth rate. Later effects observed included a reduction in the specific activity of respiratory complex I, lowered mitochondrial membrane potential, the development of cytoplasmic membrane blebs containing high levels of reactive oxygen species and ultimately, cell death. Supplementation of the culture medium with lipoic acid offered some protection against oxidative damage but did not reverse the protein lipoylation defect. These observations are consistent with a dual role for ACP in mammalian mitochondrial function. First, as a key component of the mitochondrial fatty acid biosynthetic pathway, ACP plays an essential role in providing the octanoyl-ACP precursor required for the protein lipoylation pathway. Second, as one of the subunits of complex I, ACP is required for the efficient functioning of the electron transport chain and maintenance of normal mitochondrial membrane potential.
Collapse
Affiliation(s)
- Dejiang Feng
- Children's Hospital Oakland Research Institute, Oakland, California 94609, USA
| | | | | |
Collapse
|
17
|
Selvakumar E, Hsieh TC. Regulation of cell cycle transition and induction of apoptosis in HL-60 leukemia cells by lipoic acid: role in cancer prevention and therapy. J Hematol Oncol 2008; 1:4. [PMID: 18577252 PMCID: PMC2438439 DOI: 10.1186/1756-8722-1-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2008] [Accepted: 05/30/2008] [Indexed: 11/22/2022] Open
Abstract
Background Lipoic acid (LA), a potent antioxidant, has been used as a dietary supplement to prevent and treat many diseases, including stroke, diabetes, neurodegenerative and hepatic disorders. Recently, potent anti-tumorigenic effects induced by LA were also reported and evident as assayed by suppression of cell proliferation and induction of apoptosis in malignant cells. However, the mechanism by which LA elicits its chemopreventive effects remains unclear. Methods and Results Herein, we investigated whether LA elicits its anti-tumor effects by inducing cell cycle arrest and cell death in human promyelocytic HL-60 cells. The results showed that LA inhibits both cell growth and viability in a time- and dose-dependent manner. Disruption of the G1/S and G2/M phases of cell cycle progression accompanied by the induction of apoptosis was also observed following LA treatment. Cell cycle arrest by LA was correlated with dose-dependent down regulation of Rb phosphorylation, likely via suppression of E2F-dependent cell cycle progression with an accompanying inhibition of cyclin E/cdk2 and cyclin B1/cdk1 levels. Evidence supporting the induction of apoptosis by LA was based on the appearance of sub-G1 peak in flow cytometry analysis and the cleavage of poly(ADP-ribose) polymerase (PARP) from its native 112-kDa form to the 89-kDa truncated product in immunoblot assays. Apoptosis elicited by LA was preceded by diminution in the expression of anti-apoptotic protein bcl-2 and increased expression of apoptogenic protein bax, and also the release and translocation of apoptosis inducing factor AIF and cytochrome c from the mitochondria to the nucleus, without altering the subcellular distribution of the caspases. Conclusion This study provides evidence that LA induces multiple cell cycle checkpoint arrest and caspase-independent cell death in HL-60 cells, in support of its efficacious potential as a chemopreventive agent.
Collapse
Affiliation(s)
- Elangovan Selvakumar
- Department of Biochemistry and Molecular Biology, New York Medical College, Valhalla, New York 10595, USA.
| | | |
Collapse
|
18
|
Alpha-lipoic acid induces apoptosis in hepatoma cells via the PTEN/Akt pathway. FEBS Lett 2008; 582:1667-71. [PMID: 18435927 DOI: 10.1016/j.febslet.2008.04.021] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2008] [Revised: 03/31/2008] [Accepted: 04/11/2008] [Indexed: 01/22/2023]
Abstract
We report here that alpha-lipoic acid (alpha-LA), a naturally-occurring antioxidant, scavenges reactive oxygen species (ROS) followed by an increase in apoptosis of human hepatoma cells. Apoptosis induced by alpha-LA was dependent upon the activation of the caspase cascade and the mitochondrial death pathway. alpha-LA induced increases in caspase-9 and caspase-3 but had no significant effect on caspase-8 activity. Apoptosis induced by alpha-LA was found to be mediated through the tensin homologue deleted on chromosome 10 (PTEN)/Akt pathway. Prior to cell apoptosis, PTEN was activated and its downstream target Akt was inhibited. Our findings indicate that increasing ROS scavenging could be a therapeutic strategy to treat cancer.
Collapse
|
19
|
Sharma D, Kumar SS, Sainis KB. Antiapoptotic and immunomodulatory effects of chlorophyllin. Mol Immunol 2007; 44:347-59. [PMID: 16616780 DOI: 10.1016/j.molimm.2006.02.031] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2005] [Revised: 02/21/2006] [Accepted: 02/24/2006] [Indexed: 01/30/2023]
Abstract
Chlorophyllin (CHL) was earlier shown to reduce the level of intracellular ROS and apoptosis induced by ionizing radiation and 2,2'-azobis(2-propionimidinedihydrochloride) (AAPH). In the present studies, the effect of CHL on radiation-induced immunosuppression and modulation of immune responses in mice was examined. Chlorophyllin inhibited the in vitro lymphocyte proliferation induced by concanavalin A (Con A) in a dose dependent manner at doses>or=50 microM. At lower doses (10 microM) CHL significantly inhibited activation induced cell death (AICD) in Con A stimulated spleen cells. Spleen cells obtained from CHL treated mice showed an inhibition of response to Con A depending on dose of CHL and the time after its administration. Spleen cells obtained from CHL treated mice (24 h) showed lower inhibition of response to Con A following in vitro (5 Gy) as well as whole body irradiation (2 Gy). The expression of antiapoptotic genes bcl-2 and bcl-xL was up-regulated in these cells. Chlorophyllin treatment of mice led to splenomegaly and increase in the number of peritoneal exudate cells (PEC). The numbers of T cells, B cells and macrophages in the spleen were also increased. Increased phagocytic activity was seen in PEC obtained from CHL treated mice. Most importantly, CHL administration to mice immunized with sheep red blood cells (SRBC) augmented both humoral and cell-mediated immune responses.
Collapse
Affiliation(s)
- Deepak Sharma
- Radiation Biology & Health Sciences Division, Bio-Medical Group, Bhabha Atomic Research Centre, Modular Laboratories, Trombay, Mumbai 400085, India
| | | | | |
Collapse
|
20
|
Luongo D, Bergamo P, Rossi M. Effects of conjugated linoleic acid on growth and cytokine expression in Jurkat T cells. Immunol Lett 2004; 90:195-201. [PMID: 14687725 DOI: 10.1016/j.imlet.2003.09.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Conjugated linoleic acid (CLA) has shown beneficial properties in animal models including anti-cancer, anti-atherogenic and anti-diabetic effects, while contrasting immunological effects were reported. While its anti-inflammatory activity has been associated to inhibition of arachidonic acid biosynthesis and to peroxisome proliferator-activated receptors (PPARs) activity, the molecular pathways underlying its immunoenhancing activity are essentially unknown. The aim of our study was to examine whether CLA showed specific effects in vitro on a T cell model, represented by the Jurkat cell line. CLA was found non toxic for Jurkat in the range 50-200 microM, as assessed by LDH release; however, incubation with 50 microM CLA was associated to a significant inhibitory effect on cell proliferation. The analysis of IL-2 and IFN-gamma transcript levels, produced in stimulated Jurkat cells, showed an increased expression of both cytokines in CLA-treated cells. Interestingly, the increased induction of IL-2 but not of IFN-gamma mRNA, could be suppressed by co-incubation with Gö 6976, a protein kinase C (PKC) inhibitor. Co-incubation with superoxide dismutase (SOD) or N-acetyl-L-cysteine (NAC) restored the basal levels of RNA synthesis for both cytokines. Taken together, these results suggest a specific role for dietary CLA in the modulation of the immune response in a T cell line model that is mediated, at least in part, by PKC and through the production of oxidative molecules.
Collapse
Affiliation(s)
- Diomira Luongo
- Istituto di Scienze dell'Alimentazione, CNR, via Roma 52, 83100 Avellino, Italy
| | | | | |
Collapse
|