1
|
Liu H, Zhou Y, Liu Y, Wang Z, Zheng Y, Peng C, Tian M, Zhang Q, Li J, Tan H, Fu Q, Ding M. Protein-Inspired Polymers with Metal-Site-Regulated Ordered Conformations. Angew Chem Int Ed Engl 2023; 62:e202213000. [PMID: 36353928 DOI: 10.1002/anie.202213000] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 10/25/2022] [Accepted: 11/08/2022] [Indexed: 11/11/2022]
Abstract
Metal ions play critical roles in facilitating peptide folding and inducing conformational transitions, thereby impacting on the biological activity of many proteins. However, the effect of metal sites on the hierarchical structures of biopolymers is still poorly understood. Herein, inspired by metalloproteins, we report an order-to-order conformational regulation in synthetic polymers mediated by a variety of metal ions. The copolymers are decorated with clinically available desferrioxamine (DFO) as an exogenous ligand template, which presents a geometric constraint toward peptide backbone via short-range hydrogen bonding interactions, thus dramatically altering the secondary conformations and self-assembly behaviors of polypeptides and allowing for a controllable β-sheet to α-helix transition modulated by metal-ligand interactions. These metallopolymers could form ferritin-inspired hierarchical structures with high stability and membrane activity for efficient brain delivery across the blood-brain barrier (BBB) and long-lasting magnetic resonance imaging (MRI) in vivo.
Collapse
Affiliation(s)
- Hang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yeqiang Zhou
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yang Liu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Zuojie Wang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Yi Zheng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Chuan Peng
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Meng Tian
- Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qin Zhang
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Hong Tan
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| | - Mingming Ding
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
2
|
Wang Y, Xu Y, Liu Z. A review of plant antipathogenic constituents: Source, activity and mechanism. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105225. [PMID: 36464345 DOI: 10.1016/j.pestbp.2022.105225] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 07/25/2022] [Accepted: 09/05/2022] [Indexed: 06/17/2023]
Abstract
Green prevention and control of plant pathogens is a development direction of sustainable and low-carbon agriculture given the limitation of traditional chemicals. Plant-derived antipathogenic constituents (PAPCs) exhibit the advantages of being environmental benign and a broad spectrum of target pathogens over traditional chemicals. Here, we review the research advances on plant sources, chemical compositions, activities of antipathogenic constituents in the past 20 years. Reported PAPCs are classified into categories of phenols, flavonoids, terpenoids, alkaloids and antimicrobial peptides. Angiosperms, gymnosperms and some lower plants are the main plant source of detected PAPCs. The PAPCs act on pathogens through multiple pathways including destroying cell structures, blocking key composition synthesis and inhibiting cell metabolism. The development trends of PAPCs are finally prospected. This review serves as a comprehensive review on the study of plant antipathogenic constituents and a key reference for forecasting the source, characteristic and activity of PAPC.
Collapse
Affiliation(s)
- Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
3
|
Ibrahim MM, El-Kemary MA, Al-Harbi SA, Al-Saidi HM, Sallam SA, Ramadan AEMM. Synthesis and Structural Characterization of Pyridine-based Mn(III), Fe(III), and Co(III) Complexes as SOD Mimics and BSA Binding Studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129706] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
4
|
Patel AY, Jonnalagadda KS, Paradis N, Vaden TD, Wu C, Caputo GA. Effects of Ionic Liquids on Metalloproteins. Molecules 2021; 26:514. [PMID: 33478102 PMCID: PMC7835893 DOI: 10.3390/molecules26020514] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/04/2021] [Accepted: 01/08/2021] [Indexed: 01/28/2023] Open
Abstract
In the past decade, innovative protein therapies and bio-similar industries have grown rapidly. Additionally, ionic liquids (ILs) have been an area of great interest and rapid development in industrial processes over a similar timeline. Therefore, there is a pressing need to understand the structure and function of proteins in novel environments with ILs. Understanding the short-term and long-term stability of protein molecules in IL formulations will be key to using ILs for protein technologies. Similarly, ILs have been investigated as part of therapeutic delivery systems and implicated in numerous studies in which ILs impact the activity and/or stability of protein molecules. Notably, many of the proteins used in industrial applications are involved in redox chemistry, and thus often contain metal ions or metal-associated cofactors. In this review article, we focus on the current understanding of protein structure-function relationship in the presence of ILs, specifically focusing on the effect of ILs on metal containing proteins.
Collapse
Affiliation(s)
- Aashka Y. Patel
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
| | | | - Nicholas Paradis
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
| | - Timothy D. Vaden
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
| | - Chun Wu
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| | - Gregory A. Caputo
- Department of Chemistry and Biochemistry, Rowan University, Glassboro, NJ 08028, USA; (A.Y.P.); (N.P.); (T.D.V.); (C.W.)
- Department of Molecular and Cellular Biosciences, Rowan University, Glassboro, NJ 08028, USA
| |
Collapse
|
5
|
Major, minor and trace elements composition of Amazonian foodstuffs and its contribution to dietary intake. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2020. [DOI: 10.1007/s11694-020-00379-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
6
|
Dutta D, Sharma P, Frontera A, Gogoi A, Verma AK, Dutta D, Sarma B, Bhattacharyya MK. Oxalato bridged coordination polymer of manganese( iii) involving unconventional O⋯π-hole(nitrile) and antiparallel nitrile⋯nitrile contacts: antiproliferative evaluation and theoretical studies. NEW J CHEM 2020. [DOI: 10.1039/d0nj03712e] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Unconventional O⋯π-hole(nitrile) and antiparallel nitrile⋯nitrile contacts have been theoretically investigated for a Mn(iii) coordination polymer considering cytotoxicity, apoptosis, ROS generation, molecular docking and pharmacophore features.
Collapse
Affiliation(s)
- Debajit Dutta
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Pranay Sharma
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Antonio Frontera
- Departament de Química
- Universitat de les Illes Balears
- 07122 Palma de Mallorca (Baleares)
- Spain
| | - Anshuman Gogoi
- Department of Chemistry
- Cotton University
- Guwahati-781001
- India
| | - Akalesh K. Verma
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati 781001
- India
| | - Diksha Dutta
- Department of Zoology
- Cell & Biochemical Technology Laboratory
- Cotton University
- Guwahati 781001
- India
| | - Bipul Sarma
- Department of Chemical Sciences
- Tezpur University
- Tezpur 784028
- India
| | | |
Collapse
|
7
|
Wang S, Cao J, Jia W, Guo W, Yan S, Wang Y, Zhang P, Chen HY, Huang S. Single molecule observation of hard-soft-acid-base (HSAB) interaction in engineered Mycobacterium smegmatis porin A (MspA) nanopores. Chem Sci 2019; 11:879-887. [PMID: 34123066 PMCID: PMC8146584 DOI: 10.1039/c9sc05260g] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the formation of coordination interactions between metal ions and amino acids in natural metalloproteins, the bound metal ion is critical either for the stabilization of the protein structure or as an enzyme co-factor. Though extremely small in size, metal ions, when bound to the restricted environment of an engineered biological nanopore, result in detectable perturbations during single channel recordings. All reported work of this kind was performed with engineered α-hemolysin nanopores and the observed events appear to be extremely small in amplitude (∼1–3 pA). We speculate that the cylindrical pore restriction of α-hemolysin may not be optimal for probing extremely small analytes. Mycobacterium smegmatis porin A (MspA), a conical shaped nanopore, was engineered to interact with Ca2+, Mn2+, Co2+, Ni2+, Zn2+, Pb2+ and Cd2+ and a systematically larger event amplitude (up to 10 pA) was observed. The measured rate constant suggests that the coordination of a single ion with an amino acid follows hard–soft-acid–base theory, which has never been systematically validated in the case of a single molecule. By adjusting the measurement pH from 6.8 to 8.0, the duration of a single ion binding event could be modified with a ∼46-fold time extension. The phenomena reported suggest MspA to be a superior engineering template for probing a variety of extremely small analytes, such as monatomic and polyatomic ions, small molecules or chemical intermediates, and the principle of hard–soft-acid–base interaction may be instructive in the pore design. The principle of hard–soft-acid–base (HSAB) theory was first validated in single molecule by measurements with engineered Mycobacterium smegmatis porin A (MspA) nanopore reactors.![]()
Collapse
Affiliation(s)
- Sha Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 210023 Nanjing China
| | - Jiao Cao
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 210023 Nanjing China
| | - Wendong Jia
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 210023 Nanjing China
| | - Weiming Guo
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 210023 Nanjing China
| | - Shuanghong Yan
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 210023 Nanjing China
| | - Yuqin Wang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 210023 Nanjing China
| | - Panke Zhang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China
| | - Hong-Yuan Chen
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China
| | - Shuo Huang
- State Key Laboratory of Analytical Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University 210023 Nanjing China .,Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University 210023 Nanjing China
| |
Collapse
|
8
|
Yang P, Wu Y, Jiang S, Zheng Z, Hou Z, Mu D, Xiao W, Jiang S, Yang YH. Effective Expression of the Serratia marcescens Phospholipase A1 Gene in Escherichia coli BL21(DE3), Enzyme Characterization, and Crude Rapeseed Oil Degumming via a Free Enzyme Approach. Front Bioeng Biotechnol 2019; 7:272. [PMID: 31681748 PMCID: PMC6811509 DOI: 10.3389/fbioe.2019.00272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 09/30/2019] [Indexed: 12/13/2022] Open
Abstract
Crude oil degumming by phospholipid removal is crucial to guarantee oil quality. Phospholipase degumming could produce green vegetable oil by reducing energy consumption and protecting the environment. To develop a novel phospholipase for oil degumming, we cloned the Serratia marcescens outer membrane phospholipase A gene (OM-PLA1) and expressed its 33 KDa protein in engineered Escherichia coli BL21(DE3). OM-PLA1 activity reached 18.9 U mL-1 with the induction of 0.6 mM isopropyl β-D-1-thiogalactopyranoside for 4 h. The optimum temperature and pH were 50°C and 7.5, respectively. Mg2+, Ca2+, Co2+, and Mn2+ at 0.1 mM L-1 significantly increased OM-PLA1 activity. The kinetic equations of OM-PLA1 and Lecitase Ultra were y = 13.7x+0.74 (Km = 18.53 mM, Vmax = 1.35 mM min-1) and y = 24.42x+0.58 (Km = 42.1 mM, Vmax = 1.72 mM min-1), respectively. The phosphorus content decreased from 22.6 to 9.3 mg kg-1 with the addition of 15 units of free recombinant OM-PLA1 into 150 g of crude rapeseed oil. OM-PLA1 has the close degumming efficiency with Lecitase Ultra. The S. marcescens outer membrane phospholipase gene (OM-PLA1) possessed higher substrate affinity and catalytic efficiency than Lecitase Ultra. This study provides an alternative approach to achieve crude vegetable oil degumming with enzymatic technology.
Collapse
Affiliation(s)
- Peizhou Yang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yun Wu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Suwei Jiang
- Department of Biological, Food and Environment Engineering, Hefei University, Hefei, China
| | - Zhi Zheng
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Zhigang Hou
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Dongdong Mu
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Wei Xiao
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Shaotong Jiang
- Anhui Key Laboratory of Intensive Processing of Agricultural Products, College of Food and Biological Engineering, Hefei University of Technology, Hefei, China
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, South Korea
| |
Collapse
|
9
|
Bailey JB, Subramanian RH, Churchfield LA, Tezcan FA. Metal-Directed Design of Supramolecular Protein Assemblies. Methods Enzymol 2016; 580:223-50. [PMID: 27586336 PMCID: PMC5131729 DOI: 10.1016/bs.mie.2016.05.009] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Owing to their central roles in cellular signaling, construction, and biochemistry, protein-protein interactions (PPIs) and protein self-assembly have become a major focus of molecular design and synthetic biology. In order to circumvent the complexity of constructing extensive noncovalent interfaces, which are typically involved in natural PPIs and protein self-assembly, we have developed two design strategies, metal-directed protein self-assembly (MDPSA) and metal-templated interface redesign (MeTIR). These strategies, inspired by both the proposed evolutionary roles of metals and their prevalence in natural PPIs, take advantage of the favorable properties of metal coordination (bonding strength, directionality, and reversibility) to guide protein self-assembly with minimal design and engineering. Using a small, monomeric protein (cytochrome cb562) as a model building block, we employed MDPSA and MeTIR to create a diverse array of functional supramolecular architectures which range from structurally tunable oligomers to metalloprotein complexes that can properly self-assemble in living cells into novel metalloenzymes. The design principles and strategies outlined herein should be readily applicable to other protein systems with the goal of creating new PPIs and protein assemblies with structures and functions not yet produced by natural evolution.
Collapse
Affiliation(s)
- J B Bailey
- University of California, San Diego, La Jolla, CA, United States
| | - R H Subramanian
- University of California, San Diego, La Jolla, CA, United States
| | - L A Churchfield
- University of California, San Diego, La Jolla, CA, United States
| | - F A Tezcan
- University of California, San Diego, La Jolla, CA, United States.
| |
Collapse
|
10
|
Mathavan A, Ramdass A, Rajagopal S. A Spectroscopy Approach for the Study of the Interaction of Oxovanadium(IV)-Salen Complexes with Proteins. J Fluoresc 2015; 25:1141-9. [PMID: 26139532 DOI: 10.1007/s10895-015-1604-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/15/2015] [Indexed: 11/26/2022]
Abstract
Oxovanadium(IV)-salen complexes bind with bovine serum albumin (BSA) and ovalbumin (OVA) strongly with binding constant in the range 10(4)-10(7) M(-1) at physiological pH (7.4) confirmed using UV-visible absorption, fluorescence spectral and circular dichroism (CD) study. CD results show that the binding of oxovanadium(IV) complexes induces the conformational change with the loss of α-helicity in the proteins. Docking studies indicate that mode of binding of oxovanadium(IV)-salen complexes with proteins is hydrophobic in nature.
Collapse
Affiliation(s)
- Alagarsamy Mathavan
- Department of Chemistry, V. O. Chidambaram College, Tuticorin, 628 008, India
| | | | | |
Collapse
|
11
|
Rhenium(I)-based fluorescence resonance energy transfer probe for conformational changes of bovine serum albumin. J Photochem Photobiol A Chem 2012. [DOI: 10.1016/j.jphotochem.2011.10.022] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
12
|
A novel secretory poly-cysteine and histidine-tailed metalloprotein (Ts-PCHTP) from Trichinella spiralis (Nematoda). PLoS One 2010; 5:e13343. [PMID: 20967224 PMCID: PMC2954182 DOI: 10.1371/journal.pone.0013343] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2010] [Accepted: 09/16/2010] [Indexed: 11/19/2022] Open
Abstract
Background Trichinella spiralis is an unusual parasitic intracellular nematode causing dedifferentiation of the host myofiber. Trichinella proteomic analyses have identified proteins that act at the interface between the parasite and the host and are probably important for the infection and pathogenesis. Many parasitic proteins, including a number of metalloproteins are unique for the nematodes and trichinellids and therefore present good targets for future therapeutic developments. Furthermore, detailed information on such proteins and their function in the nematode organism would provide better understanding of the parasite - host interactions. Methodology/Principal Findings In this study we report the identification, biochemical characterization and localization of a novel poly-cysteine and histidine-tailed metalloprotein (Ts-PCHTP). The native Ts-PCHTP was purified from T. spiralis muscle larvae that were isolated from infected rats as a model system. The sequence analysis showed no homology with other proteins. Two unique poly-cysteine domains were found in the amino acid sequence of Ts-PCHTP. This protein is also the first reported natural histidine tailed protein. It was suggested that Ts-PCHTP has metal binding properties. Total Reflection X-ray Fluorescence (TXRF) assay revealed that it binds significant concentrations of iron, nickel and zinc at protein:metal ratio of about 1∶2. Immunohistochemical analysis showed that the Ts-PCHTP is localized in the cuticle and in all tissues of the larvae, but that it is not excreted outside the parasite. Conclusions/Significance Our data suggest that Ts-PCHTP is the first described member of a novel nematode poly-cysteine protein family and its function could be metal storage and/or transport. Since this protein family is unique for parasites from Superfamily Trichinelloidea its potential applications in diagnostics and treatment could be exploited in future.
Collapse
|
13
|
Brodin JD, Medina-Morales A, Ni T, Salgado EN, Ambroggio XI, Tezcan FA. Evolution of metal selectivity in templated protein interfaces. J Am Chem Soc 2010; 132:8610-7. [PMID: 20515031 PMCID: PMC2896502 DOI: 10.1021/ja910844n] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Selective binding by metalloproteins to their cognate metal ions is essential to cellular survival. How proteins originally acquired the ability to selectively bind metals and evolved a diverse array of metal-centered functions despite the availability of only a few metal-coordinating functionalities remains an open question. Using a rational design approach (Metal-Templated Interface Redesign), we describe the transformation of a monomeric electron transfer protein, cytochrome cb(562), into a tetrameric assembly ((C96)RIDC-1(4)) that stably and selectively binds Zn(2+) and displays a metal-dependent conformational change reminiscent of a signaling protein. A thorough analysis of the metal binding properties of (C96)RIDC-1(4) reveals that it can also stably harbor other divalent metals with affinities that rival (Ni(2+)) or even exceed (Cu(2+)) those of Zn(2+) on a per site basis. Nevertheless, this analysis suggests that our templating strategy simultaneously introduces an increased bias toward binding a higher number of Zn(2+) ions (four high affinity sites) versus Cu(2+) or Ni(2+) (two high affinity sites), ultimately leading to the exclusive selectivity of (C96)RIDC-1(4) for Zn(2+) over those ions. More generally, our results indicate that an initial metal-driven nucleation event followed by the formation of a stable protein architecture around the metal provides a straightforward path for generating structural and functional diversity.
Collapse
Affiliation(s)
- Jeffrey D. Brodin
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356
| | - Annette Medina-Morales
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356
| | - Thomas Ni
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356
| | - Eric N. Salgado
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356
| | | | - F. Akif Tezcan
- Department of Chemistry and Biochemistry, University of California, San Diego, La Jolla, CA 92093-0356
| |
Collapse
|
14
|
Davies CL, Dux EL, Duhme-Klair AK. Supramolecular interactions between functional metal complexes and proteins. Dalton Trans 2009:10141-54. [DOI: 10.1039/b915776j] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Pan RH, Zhang TL, Han DX, Liu CL. Preparation and Characterization of a Novel Insulin-Disubstituted Co(III) Porphyrin. CHINESE J CHEM 2006. [DOI: 10.1002/cjoc.200690193] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
16
|
Samoylov AM, Samoylova TI, Pustovyy OM, Samoylov AA, Toivio-Kinnucan MA, Morrison NE, Globa LP, Gale WF, Vodyanoy V. Novel metal clusters isolated from blood are lethal to cancer cells. Cells Tissues Organs 2006; 179:115-24. [PMID: 15947462 DOI: 10.1159/000085003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/10/2005] [Indexed: 12/11/2022] Open
Abstract
Unfolding and subsequent aggregation of proteins is a common phenomenon that is linked to many human disorders. Misfolded hemoglobin is generally manifested in various autoimmune, infectious and inherited diseases. We isolated micrometer and submicrometer particles, termed proteons, from human and animal blood. Proteons lack nucleic acids but contain two major polypeptide populations with homology to the hemoglobin alpha-chain. Proteons form by reversible seeded aggregation of proteins around proteon nucleating centers (PNCs). PNCs are comprised of 1- to 2-nm metallic nanoclusters containing 40-300 atoms. Each milliliter of human blood contained approximately 7 x 10(13) PNCs and approximately 3 x 10(8) proteons. Exposure of isolated blood plasma to elevated temperatures increased the number of proteons. When an aliquot of this heated plasma was introduced into untreated plasma that was subsequently heated, the number of proteons further increased, reaching a maximum after a total of three such iterations. Small concentrations of PNCs were lethal to cultured cancer cells, whereas noncancerous cells were much less affected.
Collapse
Affiliation(s)
- Alexander M Samoylov
- Department of Anatomy, Physiology and Pharmacology, College of Veterinary Medicine, Auburn University, Auburn, AL 36849, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Kung CCS, Huang WN, Huang YC, Yeh KC. Proteomic survey of copper-binding proteins inArabidopsis roots by immobilized metal affinity chromatography and mass spectrometry. Proteomics 2006; 6:2746-58. [PMID: 16526091 DOI: 10.1002/pmic.200500108] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
To plants, copper is vitally essential at low concentrations but extremely toxic at elevated concentrations. Plants have evolved a suite of mechanisms that modulate the uptake, distribution, and utilization of copper ions. These mechanisms require copper-interacting proteins for transporting, chelating, and sequestrating copper ions. In this study, we have systematically screened for copper-interacting proteins in Arabidopsis roots via copper-immobilized metal affinity chromatography (Cu-IMAC). We also compared Arabidopsis root metalloproteomes with affinity to Cu-IMAC and Zn-IMAC. From the identities of 38 protein spots with affinity to Cu-IMAC, 35 unique proteins were identified. Functional classification of these proteins includes redox/hydrolytic reactions, amino acid metabolism, glutathione metabolism, phosphorylation, translation machinery, membrane-associated proteins, and vegetative storage proteins. Potential copper-interacting motifs were predicted and scored. Six candidate motifs, H-(X)5 -H, H-(X)7 -H, H-(X)12 -H, H-(X)6 -M, M-(X)7 -H, and H-(X)3 -C, are present in Cu-IMAC-isolated proteins with higher frequency than in the whole Arabidopsis proteome.
Collapse
Affiliation(s)
- Cheng-Che S Kung
- Institute of BioAgricultural Sciences, Academia Sinica, Taipei, Taiwan, Republic of China
| | | | | | | |
Collapse
|
18
|
Garrity JD, Carenbauer AL, Herron LR, Crowder MW. Metal binding Asp-120 in metallo-beta-lactamase L1 from Stenotrophomonas maltophilia plays a crucial role in catalysis. J Biol Chem 2003; 279:920-7. [PMID: 14573595 DOI: 10.1074/jbc.m309852200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Metallo-beta-lactamase L1 from Stenotrophomonas maltophilia is a dinuclear Zn(II) enzyme that contains a metal-binding aspartic acid in a position to potentially play an important role in catalysis. The presence of this metal-binding aspartic acid appears to be common to most dinuclear, metal-containing, hydrolytic enzymes; particularly those with a beta-lactamase fold. In an effort to probe the catalytic and metal-binding role of Asp-120 in L1, three site-directed mutants (D120C, D120N, and D120S) were prepared and characterized using metal analyses, circular dichroism spectroscopy, and presteady-state and steady-state kinetics. The D120C, D120N, and D120S mutants were shown to bind 1.6 +/- 0.2, 1.8 +/- 0.2, and 1.1 +/- 0.2 mol of Zn(II) per monomer, respectively. The mutants exhibited 10- to 1000-fold drops in kcat values as compared with wild-type L1, and a general trend of activity, wild-type > D120N > D120C and D120S, was observed for all substrates tested. Solvent isotope and pH dependence studies indicate one or more protons in flight, with pKa values outside the range of pH 5-10 (except D120N), during a rate-limiting step for all the enzymes. These data demonstrate that Asp-120 is crucial for L1 to bind its full complement of Zn(II) and subsequently for proper substrate binding to the enzyme. This work also confirms that Asp-120 plays a significant role in catalysis, presumably via hydrogen bonding with water, assisting in formation of the bridging hydroxide/water, and a rate-limiting proton transfer in the hydrolysis reaction.
Collapse
Affiliation(s)
- James D Garrity
- Department of Chemistry and Biochemistry, Miami University, Oxford, Ohio 45056, USA
| | | | | | | |
Collapse
|