1
|
Rehman AU, Nazir S, Irshad R, Tahir K, ur Rehman K, Islam RU, Wahab Z. Toxicity of heavy metals in plants and animals and their uptake by magnetic iron oxide nanoparticles. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2020.114455] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
2
|
Martinez CS, Piagette JT, Escobar AG, Martín Á, Palacios R, Peçanha FM, Vassallo DV, Exley C, Alonso MJ, Salaices M, Miguel M, Wiggers GA. Egg White Hydrolysate: A new putative agent to prevent vascular dysfunction in rats following long-term exposure to aluminum. Food Chem Toxicol 2019; 133:110799. [PMID: 31493463 DOI: 10.1016/j.fct.2019.110799] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2019] [Revised: 08/20/2019] [Accepted: 08/30/2019] [Indexed: 02/07/2023]
Abstract
Aluminum (Al) is toxic for humans and animals. Here, we have tested the potential for Egg White Hydrolysate (EWH) to protect against cardiovascular changes in rats exposed to both high and low dietary levels of Al. Indeed, EWH has been previously shown to improve cardio metabolic dysfunctions induced by chronic exposure to heavy metals. Male Wistar rats received orally: Group 1) Low aluminum level (AlCl3 at a dose of 8.3 mg/kg b.w. during 60 days) with or without EWH treatment (1 g/kg/day); Group 2) High aluminum level (AlCl3 at a dose of 100 mg/kg b.w. during 42 days) with or without EWH treatment. After Al treatment, rats co-treated with EWH did not show vascular dysfunction or increased blood pressure as was observed in non EWH-cotreated animals. Indeed, co-treatment with EWH prevented the following effects observed in both aorta and mesenteric arteries: the increased vascular responses to phenylephrine (Phe), the decreased ACh-induced relaxation, the reduction on endothelial modulation of vasoconstrictor responses and the nitric oxide bioavailability, as well as the increased reactive oxygen species production from NAD(P)H oxidase. Altogether, our results suggest that EWH could be used as a protective agent against the harmful vascular effects after long term exposure to Al.
Collapse
Affiliation(s)
- Caroline Silveira Martinez
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil.
| | - Janaina Trindade Piagette
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne Gourlart Escobar
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Ángela Martín
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Roberto Palacios
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Franck Maciel Peçanha
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, 29040-090, Vitória, Espírito Santo, Brazil
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, ST5 5BG, UK
| | - María Jesús Alonso
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain
| | - Mercedes Salaices
- Instituto de Investigación Hospital La Paz, Spain and Centro de Investigación Biomédica en Red (CIBER) de Enfermedades Cardiovasculares, Madrid, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, C/ Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Marta Miguel
- Instituto de Investigación, Hospital La Paz, Spain; Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain.
| | - Giulia Alessandra Wiggers
- Cardiovascular Physiology Research Group, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| |
Collapse
|
3
|
Martinez CS, Piagette JT, Escobar AG, Martín Á, Palacios R, Peçanha FM, Vassallo DV, Exley C, Alonso MJ, Miguel M, Salaices M, Wiggers GA. Aluminum exposure at human dietary levels promotes vascular dysfunction and increases blood pressure in rats: A concerted action of NAD(P)H oxidase and COX-2. Toxicology 2017; 390:10-21. [PMID: 28826906 DOI: 10.1016/j.tox.2017.08.004] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 07/28/2017] [Accepted: 08/14/2017] [Indexed: 10/19/2022]
Abstract
Aluminum (Al) is a non-essential metal and a significant environmental contaminant and is associated with a number of human diseases including cardiovascular disease. We investigated the effects of Al exposure at doses similar to human dietary levels on the cardiovascular system over a 60day period. Wistar male rats were divided into two major groups and received orally: 1) Low aluminum level - rats were subdivided and treated for 60days as follows: a) Untreated - ultrapure water; b) AlCl3 at a dose of 8.3mg/kg bw for 60days, representing human Al exposure by diet; and 2) High aluminum level - rats were subdivided and treated for 42days as follows: C) Untreated - ultrapure water; d) AlCl3 at 100mg/kg bw for 42days, representing a high level of human exposure to Al. Effects on systolic blood pressure (SBP) and vascular function of aortic and mesenteric resistance arteries (MRA) were studied. Endothelium and smooth muscle integrity were evaluated by concentration-response curves to acetylcholine (ACh) and sodium nitroprusside. Vasoconstrictor responses to phenylephrine (Phe) in the presence and absence of endothelium and in the presence of the NOS inhibitor L-NAME, the potassium channels blocker TEA, the NAD(P)H oxidase inhibitor apocynin, superoxide dismutase (SOD), the non-selective COX inhibitor indomethacin and the selective COX-2 inhibitor NS 398 were analyzed. Vascular reactive oxygen species (ROS), lipid peroxidation and total antioxidant capacity, were measured. The mRNA expressions of eNOS, NAD(P)H oxidase 1 and 2, SOD1, COX-2 and thromboxane A2 receptor (TXA-2 R) were also investigated. Al exposure at human dietary levels impaired the cardiovascular system and these effects were almost the same as Al exposure at much higher levels. Al increased SBP, decreased ACh-induced relaxation, increased response to Phe, decreased endothelial modulation of vasoconstrictor responses, the bioavailability of nitric oxide (NO), the involvement of potassium channels on vascular responses, as well as increased ROS production from NAD(P)H oxidase and contractile prostanoids mainly from COX-2 in both aorta and mesenteric arteries. Al exposure increased vascular ROS production and lipid peroxidation as well as altered the antioxidant status in aorta and MRA. Al decreased vascular eNOS and SOD1 mRNA levels and increased the NAD(P)H oxidase 1, COX-2 and TXA-2 R mRNA levels. Our results point to an excess of ROS mainly from NAD(P)H oxidase after Al exposure and the increased vascular prostanoids from COX-2 acting in concert to decrease NO bioavailability, thus inducing vascular dysfunction and increasing blood pressure. Therefore, 60-day chronic exposure to Al, which reflects common human dietary Al intake, appears to pose a risk for the cardiovascular system.
Collapse
Affiliation(s)
- Caroline Silveira Martinez
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Janaina Trindade Piagette
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Alyne Gourlart Escobar
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Ángela Martín
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Ciber de Enfermedades Cardiovasculares, Spain
| | - Roberto Palacios
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Ciber de Enfermedades Cardiovasculares, Spain
| | - Franck Maciel Peçanha
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil
| | - Dalton Valentim Vassallo
- Departments of Physiological Sciences, Universidade Federal do Espírito Santo and School of Medicine of Santa Casa de Misericórdia (EMESCAM), Av. Marechal Campos 1468, Zip Code: 29040-090, Vitória, Espírito Santo, Brazil
| | - Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire ST5 5BG, UK
| | - María Jesús Alonso
- Department of Ciencias Básicas de la Salud, Universidad Rey Juan Carlos, Avda. de Atenas s/n, Alcorcón, Spain; Ciber de Enfermedades Cardiovasculares, Spain
| | - Marta Miguel
- Bioactivity and Food Analysis Laboratory, Instituto de Investigación en Ciencias de la Alimentación, Nicolás Cabrera, 9, Campus Universitario de Cantoblanco, Madrid, Spain
| | - Mercedes Salaices
- Ciber de Enfermedades Cardiovasculares, Spain; Department of Pharmacology, Universidad Autónoma de Madrid, Instituto de Investigación Hospital La Paz (IdiPaz), C/ Arzobispo Morcillo 4, 28029, Madrid, Spain
| | - Giulia Alessandra Wiggers
- Postgraduate Program in Biochemistry, Universidade Federal do Pampa, BR 472 - Km 592 - PO box 118, Zip Code: 97500-970, Uruguaiana, Rio Grande do Sul, Brazil.
| |
Collapse
|
4
|
|
5
|
Exley C, Siesjö P, Eriksson H. The immunobiology of aluminium adjuvants: how do they really work? Trends Immunol 2010; 31:103-9. [PMID: 20153253 DOI: 10.1016/j.it.2009.12.009] [Citation(s) in RCA: 134] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Revised: 12/23/2009] [Accepted: 12/23/2009] [Indexed: 12/31/2022]
Abstract
Aluminium adjuvants potentiate the immune response, thereby ensuring the potency and efficacy of typically sparingly available antigen. Their concomitant critical importance in mass vaccination programmes may have prompted recent intense interest in understanding how they work and their safety. Progress in these areas is stymied, however, by a lack of accessible knowledge pertaining to the bioinorganic chemistry of aluminium adjuvants, and, consequently, the inappropriate application and interpretation of experimental models of their mode of action. The objective herein is, therefore, to identify the many ways that aluminium chemistry contributes to the wide and versatile armoury of its adjuvants, such that future research might be guided towards a fuller understanding of their role in human vaccinations.
Collapse
Affiliation(s)
- Christopher Exley
- The Birchall Centre, Lennard-Jones Laboratories, Keele University, Staffordshire, ST5 5BG, UK.
| | | | | |
Collapse
|
6
|
Sprague RS, Olearczyk JJ, Spence DM, Stephenson AH, Sprung RW, Lonigro AJ. Extracellular ATP signaling in the rabbit lung: erythrocytes as determinants of vascular resistance. Am J Physiol Heart Circ Physiol 2003; 285:H693-700. [PMID: 12689860 DOI: 10.1152/ajpheart.01026.2002] [Citation(s) in RCA: 75] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Previously, it was reported that red blood cells (RBCs) are required to demonstrate participation of nitric oxide (NO) in the regulation of rabbit pulmonary vascular resistance (PVR). RBCs do not synthesize NO; hence, we postulated that ATP, present in millimolar amounts in RBCs, was the mediator, which evoked NO synthesis in the vascular endothelium. First, we found that deformation of RBCs, as occurs on passage across the pulmonary circulation with increasing flow rate, evoked increments in ATP release. Here, ATP (300 nM), administered to isolated, salt solution-perfused (PSS) rabbit lungs, decreased total and upstream (arterial) PVR, a response inhibited by NG-nitro-L-arginine methyl ester (L-NAME, 100 microM). In lungs perfused with PSS containing RBCs, L-NAME increased total and upstream PVR. In lungs perfused with PSS containing glibenclamide-treated RBCs, which inhibits ATP release, L-NAME was without effect. Apyrase grade VII (8 U/ml), which degrades ATP to AMP, was without effect on PVR in PSS-perfused lungs. These results are consistent with the hypothesis that ATP, released from RBCs as they traverse the pulmonary circulation, evokes endogenous NO synthesis.
Collapse
Affiliation(s)
- Randy S Sprague
- Department of Pharmacological and Physiological Science, School of Medicine, Saint Louis University, 1402 South Grand Blvd., St. Louis, MO 63104, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Lader AS, Xiao YF, O'Riordan CR, Prat AG, Jackson GR, Cantiello HF. cAMP activates an ATP-permeable pathway in neonatal rat cardiac myocytes. Am J Physiol Cell Physiol 2000; 279:C173-87. [PMID: 10898729 DOI: 10.1152/ajpcell.2000.279.1.c173] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The molecular mechanisms associated with intracellular ATP release by the heart are largely unknown. In this study the luciferin-luciferase assay and patch-clamp techniques were used to characterize the pathways responsible for ATP release in neonatal rat cardiac myocytes (NRCM). Spontaneous ATP release by NRCM was significantly increased after cAMP stimulation under physiological conditions. cAMP stimulation also induced an anion-selective electrodiffusional pathway that elicited linear, diphenylamine-2-carboxylate (DPC)-inhibitable Cl(-) currents in either symmetrical MgCl(2) or NaCl. ATP, adenosine 5'-O-(3-thiotriphosphate), and the ATP derivatives ADP and AMP, permeated this pathway; however, GTP did not. The cAMP-induced ATP currents were inhibited by DPC and glibenclamide and by a monoclonal antibody raised against the R domain of the cystic fibrosis transmembrane conductance regulator (CFTR). The channel-like nature of the cAMP-induced ATP-permeable pathway was also determined by assessing protein kinase A-activated single channel Cl(-) and ATP currents in excised inside-out patches of NRCM. Single channel currents were inhibited by DPC and the anti-CFTR R domain antibody. Thus the data in this report demonstrate the presence of a cAMP-inducible electrodiffusional ATP transport mechanism in NRCM. Based on the pharmacology, patch-clamping data, and luminometry studies, the data are most consistent with the role of a functional CFTR as the anion channel implicated in cAMP-activated ATP transport in NRCM.
Collapse
Affiliation(s)
- A S Lader
- Renal Unit, Massachusetts General Hospital East, Charlestown 02129, Massachusetts, USA
| | | | | | | | | | | |
Collapse
|
8
|
Korchazhkina O, Wright G, Exley C. No effect of aluminium upon the hydrolysis of ATP in the coronary circulation of the isolated working rat heart. J Inorg Biochem 1999; 76:121-6. [PMID: 10612064 DOI: 10.1016/s0162-0134(99)00123-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Adenosine 5'-triphosphate (ATP) is now recognised as an important extracellular signalling molecule. Its action at a number of specific receptors is mediated by the activity of ectonucleotidases. We have optimised a high performance liquid chromatography (HPLC) method to allow the simultaneous determination of ATP, and the products of its hydrolysis, in the coronary effluent of an isolated working rat heart. The method is extremely sensitive allowing picomolar quantities of product to be determined. We have used this method to investigate the influence of aluminium on the hydrolysis of ATP by an ecto-ATPase located in the luminal surface of the coronary endothelium of the rat heart. Aluminium did not influence the hydrolysis of ATP by this enzyme.
Collapse
Affiliation(s)
- O Korchazhkina
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK.
| | | | | |
Collapse
|
9
|
Abstract
An abundance of research has continued to link aluminium (Al) with Alzheimer's disease (AD) (Strong et al., J. Toxicol. Environ. Health 48 (1996) 599; Savory et al., J. Toxicol. Environ. Health 48 (1996) 615). Animals loaded with Al develop both symptoms and brain lesions that are similar to those found in AD. However, these animal models of Al intoxication are not representative of human exposure to Al. They have not addressed the significance of a truly chronic exposure to Al. If Al is a cause of AD it is effective at the level of our everyday exposure to the metal and AD will be one possible outcome of the life-long presence of a low, though burgeoning, brain Al burden. Individual susceptibility to AD will be as much to do with differences in brain physiology as with changes in our everyday exposure to the metal. There will be a chemical response and indeed biochemical/physiological response in the brain to Al. The question is whether brain Al homeostasis could impact upon brain function. In reviewing the recent literature covering the neurotoxicity of Al and, in particular, of the known and probable mechanisms involved in brain Al homeostasis I have identified a mechanism through which a truly chronic exposure to Al would bring about subtle and persistent changes in neurotransmission which, in time, could instigate the cascade of events known collectively as AD. This mechanism involves the potentiation of the activities of neurotransmitters by the action of Al-ATP at adenosine 5'-triphosphate (ATP) receptors in the brain.
Collapse
Affiliation(s)
- C Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Staffordshire, UK.
| |
Collapse
|
10
|
Korchazhkina O, Wright G, Exley C. Intravascular ATP and coronary vasodilation in the isolated working rat heart. Br J Pharmacol 1999; 127:701-8. [PMID: 10401561 PMCID: PMC1566071 DOI: 10.1038/sj.bjp.0702610] [Citation(s) in RCA: 22] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
1. Adenosine-5'-triphosphate (ATP) is a potent coronary vasodilator. Because of the efficient hydrolysis of ATP, adenosine-5'-diphosphate (ADP) and adenosine-5'-monophosphate (AMP) by ectonucleotidases located in the coronary endothelium ATP-induced vasodilation may be mediated via both P1 (AMP and adenosine) and P2Y (ATP and ADP) receptors. We have used the change in total coronary resistance (TCR) induced by intravascular ATP in the isolated working rat heart to determine both the component of the vasodilation mediated via P2Y receptors and the identity of the subclass of receptor involved. 2. The dose response for ATP revealed a half maximal effect at an apparent ATP concentration of 0.08 +/- 0.009 microM. The response was saturated at apparent ATP concentrations greater than 0.23 microM. Contrary to much of the current literature, the perfusion of a 0.25 microM concentration of adenosine resulted in the identical response to an equimolar concentration of ATP suggesting a significant role for adenosine in coronary vasodilation. 3. The non-selective P1 receptor antagonist 8-(p-Sulfophenyl)theophylline (8-SPT) was used to show that the response to ATP was mediated via both P1 and P2Y receptors. Whilst 8-SPT abolished the effect of adenosine it reduced the effect of ATP by only 50%. Thus, at a saturating concentration of ATP, P1 and P2Y receptors were shown to contribute equally to the observed vasodilation. 4. Uridine-5'-triphosphate (UTP), ADP and adenosine-5'-O-thiotriphosphate (ATP gamma S) were used to characterize the component of coronary vasodilation that was mediated via P2Y receptors. UTP at 0.25 microM was ineffective and did not induce vasodilation. Perfusion with 0.25 microM ADP resulted in a vasodilation that was identical to 0.25 microM ATP. In the absence of 8-SPT the perfusion of 0.25 microM ATP gamma S produced a vasodilation that was significantly (P < 0.05) less than ATP. However, the vasodilation due to ATP gamma S, like that of adenosine, but unlike that of both ATP and ADP, was abolished in the presence of 8-SPT. The ability of ADP to induce vasodilation combined with both the lack of response to UTP and the ability of 8-SPT to abolish the vasodilation induced by ATP gamma S suggested very strongly that the component of ATP-induced coronary vasodilation in the isolated working rat heart that was mediated via P2Y receptors was achieved by the action of ADP (and not ATP) at P2Y1 receptors. 5. These results suggest that the vasodilatory action of intravascular ATP in the coronary circulation should be attributed to the dual and equal activities of adenosine and ADP acting at P1 and P2Y1 receptors respectively.
Collapse
Affiliation(s)
- Olga Korchazhkina
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Keele, Staffordshire ST5 5BG
- Author for correspondence:
| | - Gordon Wright
- Centre for Science and Technology in Medicine, Keele University, Keele, Staffordshire ST5 5BG
| | - Christopher Exley
- Birchall Centre for Inorganic Chemistry and Materials Science, Department of Chemistry, Keele University, Keele, Staffordshire ST5 5BG
| |
Collapse
|