1
|
Singh P, Ravanan P, Talwar P. Death Associated Protein Kinase 1 (DAPK1): A Regulator of Apoptosis and Autophagy. Front Mol Neurosci 2016; 9:46. [PMID: 27445685 PMCID: PMC4917528 DOI: 10.3389/fnmol.2016.00046] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Accepted: 05/30/2016] [Indexed: 11/13/2022] Open
Abstract
Death-Associated Protein Kinase 1 (DAPK1) belongs to a family of five serine/threonine (Ser/Thr) kinases that possess tumor suppressive function and also mediate a wide range of cellular processes, including apoptosis and autophagy. The loss and gain-of–function of DAPK1 is associated with various cancer and neurodegenerative diseases respectively. In recent years, mechanistic studies have broadened our knowledge of the molecular mechanisms involved in DAPK1-mediated autophagy/apoptosis. In the present review, we have discussed the structural information and various cellular functions of DAPK1 in a comprehensive manner.
Collapse
Affiliation(s)
- Pratibha Singh
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Palaniyandi Ravanan
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| | - Priti Talwar
- Apoptosis and Cell Survival Research Laboratory, Department of Bio-Sciences, School of Bio Sciences and Technology, Vellore Institute of Technology (VIT) University Vellore, Tamil Nadu, India
| |
Collapse
|
2
|
Carlson DA, Franke AS, Weitzel DH, Speer BL, Hughes PF, Hagerty L, Fortner CN, Veal JM, Barta TE, Zieba BJ, Somlyo AV, Sutherland C, Deng JT, Walsh MP, MacDonald JA, Haystead TAJ. Fluorescence linked enzyme chemoproteomic strategy for discovery of a potent and selective DAPK1 and ZIPK inhibitor. ACS Chem Biol 2013; 8:2715-23. [PMID: 24070067 DOI: 10.1021/cb400407c] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
DAPK1 and ZIPK (also called DAPK3) are closely related serine/threonine protein kinases that regulate programmed cell death and phosphorylation of non-muscle and smooth muscle myosin. We have developed a fluorescence linked enzyme chemoproteomic strategy (FLECS) for the rapid identification of inhibitors for any element of the purinome and identified a selective pyrazolo[3,4-d]pyrimidinone (HS38) that inhibits DAPK1 and ZIPK in an ATP-competitive manner at nanomolar concentrations. In cellular studies, HS38 decreased RLC20 phosphorylation. In ex vivo studies, HS38 decreased contractile force generated in mouse aorta, rabbit ileum, and calyculin A stimulated arterial muscle by decreasing RLC20 and MYPT1 phosphorylation. The inhibitor also promoted relaxation in Ca(2+)-sensitized vessels. A close structural analogue (HS43) with 5-fold lower affinity for ZIPK produced no effect on cells or tissues. These findings are consistent with a mechanism of action wherein HS38 specifically targets ZIPK in smooth muscle. The discovery of HS38 provides a lead scaffold for the development of therapeutic agents for smooth muscle related disorders and a chemical means to probe the function of DAPK1 and ZIPK across species.
Collapse
Affiliation(s)
- David A. Carlson
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Aaron S. Franke
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Douglas H. Weitzel
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Brittany L. Speer
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Philip F. Hughes
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Laura Hagerty
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Christopher N. Fortner
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - James M. Veal
- Quanticel
Pharmaceuticals, San Francisco, California 94158, United States
| | - Thomas E. Barta
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| | - Bartosz J. Zieba
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Avril V. Somlyo
- Department
of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, Virginia 22908, United States
| | - Cindy Sutherland
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Jing Ti Deng
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Michael P. Walsh
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Justin A. MacDonald
- Smooth Muscle Research Group at the Libin Cardiovascular Institute of Alberta. Department of Biochemistry & Molecular Biology, University of Calgary, 3280 Hospital Drive NW, Calgary, AB T2N 4Z6, Canada
| | - Timothy A. J. Haystead
- Department
of Pharmacology and Cancer Biology, Duke University Medical Center, Durham, North Carolina 27710, United States
| |
Collapse
|
3
|
Kuczera K, Kursula P. Interactions of calmodulin with death-associated protein kinase peptides: experimental and modeling studies. J Biomol Struct Dyn 2012; 30:45-61. [PMID: 22571432 DOI: 10.1080/07391102.2012.674221] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Abstract
We have studied the interactions between calmodulin (CaM) and three target peptides from the death-associated protein kinase (DAPK) protein family using both experimental and modeling methods, aimed at determining the details of the underlying biological regulation mechanisms. Experimentally, calorimetric binding free energies were determined for the complexes of CaM with peptides representing the DAPK2 wild-type and S308D mutant, as well as DAPK1. The observed affinity of CaM was very similar for all three studied peptides. The DAPK2 and DAPK1 peptides differ significantly in sequence and total charge, while the DAPK2 S308D mutant is designed to model the effects of DAPK2 Ser308 phosphorylation. The crystal structure of the CaM-DAPK2 S308D mutant peptide is also reported. The structures of CaM-DAPK peptide complexes present a mode of CaM-kinase interaction, in which bulky hydrophobic residues at positions 10 and 14 are both bound to the same hydrophobic cleft. To explain the microscopic effects underlying these interactions, we performed free energy calculations based on the approximate MM-PBSA approach. For these highly charged systems, standard MM-PBSA calculations did not yield satisfactory results. We proposed a rational modification of the approach which led to reasonable predictions of binding free energies. All three complexes are strongly stabilized by two effects: electrostatic interactions and buried surface area. The strong favorable interactions are to a large part compensated by unfavorable entropic terms, in which vibrational entropy is the largest contributor. The electrostatic component of the binding free energy followed the trend of the overall peptide charge, with strongest interactions for DAPK1 and weakest for the DAPK2 mutant. The electrostatics was dominated by interactions of the positively charged residues of the peptide with the negatively charged residues of CaM. The nonpolar binding free energy was comparable for all three peptides, the largest contribution coming from the Trp305. About two-thirds of the buried surface area corresponds to nonpolar residues, showing that hydrophobic interactions play an important role in these CaM-peptide complexes. The simulation results agree with the experimental data in predicting a small effect of the S308D mutation on CaM interactions with DAPK2, suggesting that this mutation is not a good model for the S308 phosphorylation.
Collapse
Affiliation(s)
- Krzysztof Kuczera
- Departments of Chemistry and Biochemistry, University of Kansas, Lawrence, KS, 66045, USA.
| | | |
Collapse
|
4
|
Patel AK, Yadav RP, Majava V, Kursula I, Kursula P. Structure of the dimeric autoinhibited conformation of DAPK2, a pro-apoptotic protein kinase. J Mol Biol 2011; 409:369-83. [PMID: 21497605 DOI: 10.1016/j.jmb.2011.03.065] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 03/24/2011] [Accepted: 03/28/2011] [Indexed: 11/27/2022]
Abstract
The death-associated protein kinase (DAPK) family has been characterized as a group of pro-apoptotic serine/threonine kinases that share specific structural features in their catalytic kinase domain. Two of the DAPK family members, DAPK1 and DAPK2, are calmodulin-dependent protein kinases that are regulated by oligomerization, calmodulin binding, and autophosphorylation. In this study, we have determined the crystal and solution structures of murine DAPK2 in the presence of the autoinhibitory domain, with and without bound nucleotides in the active site. The crystal structure shows dimers of DAPK2 in a conformation that is not permissible for protein substrate binding. Two different conformations were seen in the active site upon the introduction of nucleotide ligands. The monomeric and dimeric forms of DAPK2 were further analyzed for solution structure, and the results indicate that the dimers of DAPK2 are indeed formed through the association of two apposed catalytic domains, as seen in the crystal structure. The structures can be further used to build a model for DAPK2 autophosphorylation and to compare with closely related kinases, of which especially DAPK1 is an actively studied drug target. Our structures also provide a model for both homodimerization and heterodimerization of the catalytic domain between members of the DAPK family. The fingerprint of the DAPK family, the basic loop, plays a central role in the dimerization of the kinase domain.
Collapse
Affiliation(s)
- Ashok K Patel
- Department of Biochemistry, University of Oulu, Finland
| | | | | | | | | |
Collapse
|
5
|
|
6
|
Kanazawa Y, Makino M, Morishima Y, Yamada K, Nabeshima T, Shirasaki Y. Degradation of PEP-19, a calmodulin-binding protein, by calpain is implicated in neuronal cell death induced by intracellular Ca2+ overload. Neuroscience 2008; 154:473-81. [PMID: 18502590 DOI: 10.1016/j.neuroscience.2008.03.044] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2008] [Revised: 03/13/2008] [Accepted: 03/18/2008] [Indexed: 10/22/2022]
Abstract
Excessive elevation of intracellular Ca2+ levels and, subsequently, hyperactivation of Ca2+/calmodulin-dependent processes might play an important role in the pathologic events following cerebral ischemia. PEP-19 is a neuronally expressed polypeptide that acts as an endogenous negative regulator of calmodulin by inhibiting the association of calmodulin with enzymes and other proteins. The aims of the present study were to investigate the effect of PEP-19 overexpression on cell death triggered by Ca2+ overload and how the polypeptide levels are affected by glutamate-induced excitotoxicity and cerebral ischemia. Expression of PEP-19 in HEK293T cells suppressed calmodulin-dependent signaling and protected against cell death elicited by Ca2+ ionophore. Likewise, primary cortical neurons overexpressing PEP-19 became resistant to glutamate-induced cell death. In immunoprecipitation assay, wild type PEP-19 associated with calmodulin, whereas mutated PEP-19, which contains mutations within the calmodulin binding site of PEP-19, failed to associate with calmodulin. We found that the mutation abrogates both the ability to suppress calmodulin-dependent signaling and to protect cells from death. Additionally, the endogenous PEP-19 levels in neurons were significantly reduced following glutamate exposure, this reduction precedes neuronal cell death and can be blocked by treatment with calpain inhibitors. These data suggest that PEP-19 is a substrate for calpain, and that the decreased PEP-19 levels result from its degradation by calpain. A similar reduction of PEP-19 also occurred in the hippocampus of gerbils subjected to transient global ischemia. In contrast to the reduction in PEP-19, no changes in calmodulin occurred following excitotoxicity, suggesting the loss of negative regulation of calmodulin by PEP-19. Taken together, these results provide evidence that PEP-19 overexpression enhances resistance to Ca2+-mediated cytotoxicity, which might be mediated through calmodulin inhibition, and also raises the possibility that PEP-19 degradation by calpain might produce an aberrant activation of calmodulin functions, which in turn causes neuronal cell death.
Collapse
Affiliation(s)
- Y Kanazawa
- Biological Research Laboratories 1, Daiichi Sankyo Co., Ltd., Tokyo, Japan
| | | | | | | | | | | |
Collapse
|
7
|
Haystead TAJ. ZIP kinase, a key regulator of myosin protein phosphatase 1. Cell Signal 2005; 17:1313-22. [PMID: 16005610 DOI: 10.1016/j.cellsig.2005.05.008] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2005] [Accepted: 05/06/2005] [Indexed: 10/25/2022]
Abstract
Two major physiological roles have been defined for zipper interacting protein kinase (ZIPK), regulation of apoptosis in non-muscle cells and regulation of Ca(2+) sensitization in smooth muscle. Although much attention has focused on the role of ZIPK in the regulation of apoptotic events, its roles in smooth muscle are likely to have equal if not greater physiological relevance. We first identified ZIPK as a major protein kinase controlling the phosphorylation of myosin phosphatase (SMPP-1M) and the inhibitor protein CPI17 in smooth muscle. Phosphorylation of SMPP-1M and CPI17 by ZIPK inhibits phosphatase activity towards myosin and causes profound Ca(2+) sensitization and contraction in smooth muscle. ZIPK will also directly phosphorylate both muscle and non-muscle myosin. The highly selective actions of ZIPK in the control of myosin phosphorylation potentially make the enzyme an ideal candidate for the development of novel therapeutics to treat smooth muscle related disorders such as hypertension or asthma.
Collapse
Affiliation(s)
- Timothy A J Haystead
- Department of Pharmacology and Cancer Biology, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
8
|
Watterson DM, Velentza AV, Zasadzki M, Craft JM, Haiech J, Van Eldik LJ. Discovery of a new class of synthetic protein kinase inhibitors that suppress selective aspects of glial activation and protect against beta-amyloid induced injury: a foundation for future medicinal chemistry efforts focused on targeting Alzheimer's disease progression. J Mol Neurosci 2003; 20:411-23. [PMID: 14501026 DOI: 10.1385/jmn:20:3:411] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2002] [Accepted: 03/24/2003] [Indexed: 11/11/2022]
Abstract
A prevailing hypothesis in Alzheimer's disease (AD) research is that chronically activated glia may contribute to neuronal dysfunction, through generation of a detrimental state of neuroinflammation. This raises the possibility in drug discovery research of targeting the cycle of untoward glial activation and neuronal dysfunction that characterizes neuroinflammation. Success over the past century with effective anti-inflammatory drug development, in which the molecular targets are intracellular enzymes involved in signal transduction events and cellular homeostasis, demands that a similar approach be tried with neuroinflammation. Suggestive clinical correlations between inflammation markers and AD contribute to the urgency in addressing the hypothesis that targeting selective glial activation processes might be a therapeutic approach complementary to existing drugs and discovery efforts. An academic collaboratorium initiated a rapid inhibitor discovery effort 2 yr ago, focused on development of novel compounds with new mechanisms of action in AD-relevant cellular processes, in order to obtain the small-molecule compounds required to address the neuroinflammation hypothesis and provide a proof of concept for future medicinal chemistry efforts. We summarize here our progress toward this goal in which novel pyridazine-based inhibitors of gene-regulating protein kinases have been discovered. Feasibility studies indicate their potential utility in current medicinal chemistry efforts focused on improvement in molecular properties and the longer term targeting of AD-related pathogenic processes.
Collapse
Affiliation(s)
- D Martin Watterson
- Drug Discovery Program and Department of Molecular Pharmacology, Northwestern University Medical School, Chicago IL 60611, USA.
| | | | | | | | | | | |
Collapse
|
9
|
Velentza AV, Wainwright MS, Zasadzki M, Mirzoeva S, Schumacher AM, Haiech J, Focia PJ, Egli M, Watterson DM. An aminopyridazine-based inhibitor of a pro-apoptotic protein kinase attenuates hypoxia-ischemia induced acute brain injury. Bioorg Med Chem Lett 2003; 13:3465-70. [PMID: 14505650 DOI: 10.1016/s0960-894x(03)00733-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Death associated protein kinase (DAPK) is a calcium and calmodulin regulated enzyme that functions early in eukaryotic programmed cell death, or apoptosis. To validate DAPK as a potential drug discovery target for acute brain injury, the first small molecule DAPK inhibitor was synthesized and tested in vivo. A single injection of the aminopyridazine-based inhibitor administered 6 h after injury attenuated brain tissue or neuronal biomarker loss measured, respectively, 1 week and 3 days later. Because aminopyridazine is a privileged structure in neuropharmacology, we determined the high-resolution crystal structure of a binary complex between the kinase domain and a molecular fragment of the DAPK inhibitor. The co-crystal structure describes a structural basis for interaction and provides a firm foundation for structure-assisted design of lead compounds with appropriate molecular properties for future drug development.
Collapse
Affiliation(s)
- Anastasia V Velentza
- Drug Discovery Program, Northwestern University, 303 E. Chicago Avenue, Ward 8-196, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Wainwright MS, Rossi J, Schavocky J, Crawford S, Steinhorn D, Velentza AV, Zasadzki M, Shirinsky V, Jia Y, Haiech J, Van Eldik LJ, Watterson DM. Protein kinase involved in lung injury susceptibility: evidence from enzyme isoform genetic knockout and in vivo inhibitor treatment. Proc Natl Acad Sci U S A 2003; 100:6233-8. [PMID: 12730364 PMCID: PMC156355 DOI: 10.1073/pnas.1031595100] [Citation(s) in RCA: 119] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Acute lung injury (ALI) associated with sepsis and iatrogenic ventilator-induced lung injury resulting from mechanical ventilation are major medical problems with an unmet need for small molecule therapeutics. Prevailing hypotheses identify endothelial cell (EC) layer dysfunction as a cardinal event in the pathophysiology, with intracellular protein kinases as critical mediators of normal physiology and possible targets for drug discovery. The 210,000 molecular weight myosin light chain kinase (MLCK210, also called EC MLCK because of its abundance in EC) is hypothesized to be important for EC barrier function and might be a potential therapeutic target. To test these hypotheses directly, we made a selective MLCK210 knockout mouse that retains production of MLCK108 (also called smooth-muscle MLCK) from the same gene. The MLCK210 knockout mice are less susceptible to ALI induced by i.p. injection of the endotoxin lipopolysaccharide and show enhanced survival during subsequent mechanical ventilation. Using a complementary chemical biology approach, we developed a new class of small-molecule MLCK inhibitor based on the pharmacologically privileged aminopyridazine and found that a single i.p. injection of the inhibitor protected WT mice against ALI and death from mechanical ventilation complications. These convergent results from two independent approaches demonstrate a pivotal in vivo role for MLCK in susceptibility to lung injury and validate MLCK as a potential drug discovery target for lung injury.
Collapse
Affiliation(s)
- Mark S Wainwright
- Departments of Pediatrics, Northwestern University, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|