1
|
Lake D, Corrêa SAL, Müller J. NMDA receptor-dependent signalling pathways regulate arginine vasopressin expression in the paraventricular nucleus of the rat. Brain Res 2019; 1722:146357. [PMID: 31369731 DOI: 10.1016/j.brainres.2019.146357] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 07/14/2019] [Accepted: 07/29/2019] [Indexed: 02/07/2023]
Abstract
The antidiuretic hormone arginine vasopressin (AVP) regulates water homeostasis, blood pressure and a range of stress responses. It is synthesized in the hypothalamus and released from the posterior pituitary into the general circulation upon a range of stimuli. While the mechanisms leading to AVP secretion have been widely investigated, the molecular mechanisms regulating AVP gene expression are mostly unclear. Here we investigated the neurotransmitters and signal transduction pathways that activate AVP gene expression in the paraventricular nucleus (PVN) of the rat using acute brain slices and quantitative real-time PCR. We show that stimulation with l-glutamate robustly induced AVP gene expression in acute hypothalamic brain slices containing the PVN. More specifically, we show that AVP transcription was stimulated by NMDA. Using pharmacological treatments, our data further reveal that the activation of ERK1/2 (PD184352), CaMKII (KN-62) and PI3K (LY294002; 740 Y-P) is involved in the NMDA-induced AVP gene expression in the PVN. Together, this study identifies NMDA-mediated cell signalling pathways that regulate AVP gene expression in the rat PVN.
Collapse
Affiliation(s)
- David Lake
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK
| | - Sonia A L Corrêa
- School of Life Sciences, University of Warwick, Coventry CV4 7AL, UK; School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK
| | - Jürgen Müller
- Warwick Medical School, University of Warwick, Coventry CV4 7AL, UK; School of Pharmacy and Medical Sciences, University of Bradford, Bradford BD7 1DP, UK.
| |
Collapse
|
2
|
Fotowat H, Lee C, Jun JJ, Maler L. Neural activity in a hippocampus-like region of the teleost pallium is associated with active sensing and navigation. eLife 2019; 8:44119. [PMID: 30942169 PMCID: PMC6469930 DOI: 10.7554/elife.44119] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Accepted: 04/01/2019] [Indexed: 01/13/2023] Open
Abstract
Most vertebrates use active sensing strategies for perception, cognition and control of motor activity. These strategies include directed body/sensor movements or increases in discrete sensory sampling events. The weakly electric fish, Gymnotus sp., uses its active electric sense during navigation in the dark. Electric organ discharge rate undergoes transient increases during navigation to increase electrosensory sampling. Gymnotus also use stereotyped backward swimming as an important form of active sensing that brings objects toward the electroreceptor dense fovea-like head region. We wirelessly recorded neural activity from the pallium of freely swimming Gymnotus. Spiking activity was sparse and occurred only during swimming. Notably, most units tended to fire during backward swims and their activity was on average coupled to increases in sensory sampling. Our results provide the first characterization of neural activity in a hippocampal (CA3)-like region of a teleost fish brain and connects it to active sensing of spatial environmental features.
Collapse
Affiliation(s)
- Haleh Fotowat
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, United States
| | - Candice Lee
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| | - James Jaeyoon Jun
- Center for Computational Biology, Flatiron Institute, New York, United States
| | - Len Maler
- Department of Cellular and Molecular Medicine, Brain and Mind Institute and Centre for Neural Dynamics, University of Ottawa, Ottawa, Canada
| |
Collapse
|
3
|
Kawaguchi M, Hagio H, Yamamoto N, Matsumoto K, Nakayama K, Akazome Y, Izumi H, Tsuneoka Y, Suto F, Murakami Y, Ichijo H. Atlas of the telencephalon based on cytoarchitecture, neurochemical markers, and gene expressions in Rhinogobius flumineus [Mizuno, 1960]. J Comp Neurol 2018; 527:874-900. [PMID: 30516281 DOI: 10.1002/cne.24547] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 09/18/2018] [Accepted: 09/23/2018] [Indexed: 11/10/2022]
Abstract
Gobiida is a basal subseries of percomorphs in teleost fishes, holding a useful position for comparisons with other orders of Percomorpha as well as other cohort of teleosts. Here, we describe a telencephalic atlas of a Gobiida species Rhinogobius flumineus (Mizuno, Memoirs of the College of Science, University of Kyoto, Series B: Biology, 1960; 27, 3), based on cytoarchitectural observations, combined with analyses of the distribution patterns of neurochemical markers and transcription factors. The telencephalon of R. flumineus shows a number of features distinct from those of other teleosts. Among others, the followings were of special note. (a) The lateral part of dorsal telencephalon (Dl), which is known as a visual center in other teleosts, is composed of as many as seven regions, some of which are conspicuous, circumscribed by cell plates. These subdivisions of the Dl can be differentiated clearly by differential soma size and color with Nissl-staining, and distribution patterns of neural markers. (b) Cell populations continuous with the ventral region of dorsal part of ventral telencephalon (vVd) exhibit extensive dimension. Especially, portion 1 of the central part of ventral telencephalon appears to represent a cell population laterally translocated from the vVd, forming a large cluster of small cells that penetrate deep into the central part of dorsal telencephalon. (c) The magnocellular subdivision of dorsal part of dorsal telencephalon (Ddmg) contains not only large cells but also vglut2a-positive clusters of small cells that cover a wide range of the caudal Ddmg. Such clusters of small cells have not been observed in the Ddmg of other teleosts.
Collapse
Affiliation(s)
- Masahumi Kawaguchi
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.,Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Hanako Hagio
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | - Naoyuki Yamamoto
- Graduate School of Bioagricultural Sciences, Nagoya University, Nagoya, Japan
| | | | - Kei Nakayama
- Center for Marine Environmental Studies, Ehime University, Matsuyama, Japan
| | - Yasuhisa Akazome
- Department of Anatomy, St. Marianna University School of Medicine, Kawasaki, Japan
| | - Hironori Izumi
- Division of Molecular Genetics Research, Life Science Research Center, University of Toyama, Toyama, Japan
| | - Yousuke Tsuneoka
- Department of Anatomy, School of Medicine, Toho University, Tokyo, Japan
| | - Fumikazu Suto
- National Institute of Neuroscience, National Center of Neurology and Psychiatry, Kodaira, Japan
| | - Yasunori Murakami
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
| | - Hiroyuki Ichijo
- Department of Anatomy and Neuroscience, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
4
|
Olivera-Pasilio V, Lasserre M, Castelló ME. Cell Proliferation, Migration, and Neurogenesis in the Adult Brain of the Pulse Type Weakly Electric Fish, Gymnotus omarorum. Front Neurosci 2017; 11:437. [PMID: 28860962 PMCID: PMC5562682 DOI: 10.3389/fnins.2017.00437] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Accepted: 07/17/2017] [Indexed: 01/04/2023] Open
Abstract
Adult neurogenesis, an essential mechanism of brain plasticity, enables brain development along postnatal life, constant addition of new neurons, neuronal turnover, and/or regeneration. It is amply distributed but negatively modulated during development and along evolution. Widespread cell proliferation, high neurogenic, and regenerative capacities are considered characteristics of teleost brains during adulthood. These anamniotes are promising models to depict factors that modulate cell proliferation, migration, and neurogenesis, and might be intervened to promote brain plasticity in mammals. Nevertheless, the migration path of derived cells to their final destination was not studied in various teleosts, including most weakly electric fish. In this group adult brain morphology is attributed to sensory specialization, involving the concerted evolution of peripheral electroreceptors and electric organs, encompassed by the evolution of neural networks involved in electrosensory information processing. In wave type gymnotids adult brain morphology is proposed to result from lifelong region specific cell proliferation and neurogenesis. Consistently, pulse type weakly electric gymnotids and mormyrids show widespread distribution of proliferation zones that persists in adulthood, but their neurogenic potential is still unknown. Here we studied the migration process and differentiation of newborn cells into the neuronal phenotype in the pulse type gymnotid Gymnotus omarorum. Pulse labeling of S-phase cells with 5-Chloro-2′-deoxyuridine thymidine followed by 1 to 180 day survivals evidenced long distance migration of newborn cells from the rostralmost telencephalic ventricle to the olfactory bulb, and between layers of all cerebellar divisions. Shorter migration appeared in the tectum opticum and torus semicircularis. In many brain regions, derived cells expressed early neuronal markers doublecortin (chase: 1–30 days) and HuC/HuD (chase: 7–180 days). Some newborn cells expressed the mature neuronal marker tyrosine hydroxylase in the subpallium (chase: 90 days) and olfactory bulb (chase: 180 days), indicating the acquisition of a mature neuronal phenotype. Long term CldU labeled newborn cells of the granular layer of the corpus cerebelli were also retrogradely labeled “in vivo,” suggesting their insertion into the neural networks. These findings evidence the neurogenic capacity of telencephalic, mesencephalic, and rhombencephalic brain proliferation zones in G. omarorum, supporting the phylogenetic conserved feature of adult neurogenesis and its functional significance.
Collapse
Affiliation(s)
- Valentina Olivera-Pasilio
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay.,Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la RepúblicaMontevideo, Uruguay.,IIBE "Histología de Sistemas Sensoriales", Unidad Asociada F. de MedicinaMontevideo, Uruguay
| | - Moira Lasserre
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay
| | - María E Castelló
- Desarrollo y Evolución Neural, Departamento de Neurociencias Integrativas y Computacionales, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y CulturaMontevideo, Uruguay.,IIBE "Histología de Sistemas Sensoriales", Unidad Asociada F. de MedicinaMontevideo, Uruguay
| |
Collapse
|
5
|
Giassi ACC, Duarte TT, Ellis W, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: II. Extrinsic connections. J Comp Neurol 2013; 520:3338-68. [PMID: 22430442 DOI: 10.1002/cne.23109] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
This study describes the extrinsic connections of the dorsal telencephalon (pallium) of gymnotiform fish. We show that the afferents to the dorsolateral and dorsomedial pallial subdivisions of gymnotiform fish arise from the preglomerular complex. The preglomerular complex receives input from four clearly distinct regions: (1) descending input from the pallium itself (dorsomedial and dorsocentral subdivisions and nucleus taenia); (2) other diencephalic nuclei (centroposterior, glomerular, and anterior tuberal nuclei and nucleus of the posterior tuberculum); (3) mesencephalic sensory structures (optic tectum, dorsal and ventral torus semicircularis); and (4) basal forebrain, preoptic area, and hypothalamic nuclei. Previous studies have implicated the majority of the diencephalic and mesencephalic nuclei in electrosensory, visual, and acousticolateral functions. Here we discuss the implications of preglomerular/pallial electrosensory-associated afferents with respect to a major functional dichotomy of the electric sense. The results allow us to hypothesize that a functional distinction between electrocommunication vs. electrolocation is maintained within the input and output pathways of the gymnotiform pallium. Electrocommunication information is conveyed to the pallium through complex indirect pathways that originate in the nucleus electrosensorius, whereas electrolocation processing follows a conservative pathway inherent to all vertebrates, through the optic tectum. We hypothesize that cells responsive to communication signals do not converge onto the same targets in the preglomerular complex as cells responsive to moving objects. We also hypothesize that efferents from the dorsocentral (DC) telencephalon project to the dorsal torus semicircularis to regulate processing of electrocommunication signals, whereas DC efferents to the tectum modulate sensory control of movement.
Collapse
Affiliation(s)
- Ana C C Giassi
- Department of Cell and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, Ontario K1N 6N5, Canada.
| | | | | | | |
Collapse
|
6
|
Giassi AC, Harvey-Girard E, Valsamis B, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: I. Cytoarchitectonics and cellular morphology. J Comp Neurol 2012; 520:3314-37. [DOI: 10.1002/cne.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
7
|
Giassi AC, Ellis W, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: III. Intrinsic connections. J Comp Neurol 2012; 520:3369-94. [DOI: 10.1002/cne.23108] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
8
|
Giassi ACC, Maler L, Moreira JE, Hoffmann A. Glomerular nucleus of the weakly electric fish, Gymnotus sp.: Cytoarchitecture, histochemistry, and fiber connections-Insights from neuroanatomy to evolution and behavior. J Comp Neurol 2011; 519:1658-76. [DOI: 10.1002/cne.22593] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
9
|
Cerdá-Reverter JM, Muriach B, Zanuy S, Muñoz-Cueto JA. A cytoarchitectonic study of the brain of a perciform species, the sea bass (Dicentrarchus labrax): the midbrain and hindbrain. Acta Histochem 2008; 110:433-50. [PMID: 18406450 DOI: 10.1016/j.acthis.2008.01.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2007] [Revised: 01/25/2008] [Accepted: 01/29/2008] [Indexed: 11/29/2022]
Abstract
This study is the third part of a comprehensive series of publications on the cytoarchitectonic organization of the brain of the European sea bass, Dicentrarchus labrax. This study provides an atlas of the brain stem based on Nissl-stained transverse sections as well as a description of cell masses and a discussion on comparative aspects of brain stem nuclei, including methodological studies in other species. By external examination, the sea bass exhibits a prominent Optic tectum and Corpus cerebelli as expected in a predator species with a highly developed visual system. However, no hypertrophy of the facial and vagal lobes was observed as reported in other non-perciform teleosts. The general organization pattern of the mesencephalon and rhombencephalon of the sea bass brain resembles that reported for other perciform teleosts. However, the Valvula cerebelli has been subdivided into anterior, central and posterior parts. In addition, the ventricular surface of the granular layer of the Valvula cerebelli appears to be in contact with those of the Torus longitudinalis. This cell apposition could be interpreted as a direct connection, but more studies demonstrating the absence of ependyma between both structures are needed. Furthermore, we have tentatively described the electro/mechano receptive pre-eminential nucleus in the rhombencephalon of the sea bass. This study completes one of the few descriptions, as well as the most complete and detailed available, of the brain of any marine perciform species.
Collapse
Affiliation(s)
- José Miguel Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura de Torre de la Sal, CSIC, Torre de la Sal, Ribera de Cabanes, 12595 Castellón, Spain
| | | | | | | |
Collapse
|
10
|
Giassi ACC, Corrêa SAL, Hoffmann A. Fiber connections of the diencephalic nucleus tuberis anterior in the weakly electric fish,Gymnotus cf. carapo: An in vivo tract-tracing study. J Comp Neurol 2007; 503:655-67. [PMID: 17559100 DOI: 10.1002/cne.21413] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Transport of biotinylated dextran amine shows the spatial segregation of mechanosensory afferents in the nucleus tuberis anterior (TA) of a gymnotiform fish, Gymnotus cf. carapo. Only the intermediate subdivision of this nucleus receives projections from the lateral region of the ventral torus semicircularis (TSv), which represents the principal midbrain center for mechanosensory information processing, and from the ventral nucleus praeeminentialis, which receives collaterals of ascending second order mechanosensory fibers that emerge from the mechanosensory lateral line lobe. Considering this aspect, a rostrocaudal subdivision of the TA is proposed. The TA also receives input from regions subserving other sensory modalities, suggesting a role in multisensory interaction. Another important finding of this work consisted in the demonstration of reciprocal connections between the TA and the inferior lobe of the hypothalamus, which is known to receive gustatory, visual, and electrosensory input and is therefore considered a multisensory integration center involved in feeding and aggressive behavior. Furthermore, reciprocal connections between the TA and the preelectromotor central-posterior/prepacemaker complex may provide an access for the processed mechanosensory information to interact with the transient modulations of the electric organ discharge that accompany different behaviors.
Collapse
Affiliation(s)
- Ana Catarina Casari Giassi
- Department of Physiology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, SP, Brazil.
| | | | | |
Collapse
|
11
|
Duarte TT, Corrêa SAL, Santana UJ, Pereira ASF, Hoffmann A. Agonistic-like responses from the torus semicircularis dorsalis elicited by GABA A blockade in the weakly electric fish Gymnotus carapo. Braz J Med Biol Res 2006; 39:945-55. [PMID: 16862286 DOI: 10.1590/s0100-879x2006000700013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2005] [Accepted: 03/30/2006] [Indexed: 11/22/2022] Open
Abstract
Findings by our group have shown that the dorsolateral telencephalon of Gymnotus carapo sends efferents to the mesencephalic torus semicircularis dorsalis (TSd) and that presumably this connection is involved in the changes in electric organ discharge (EOD) and in skeletomotor responses observed following microinjections of GABA A antagonist bicuculline into this telencephalic region. Other studies have implicated the TSd or its mammalian homologue, the inferior colliculus, in defensive responses. In the present study, we explore the possible involvement of the TSd and of the GABA-ergic system in the modulation of the electric and skeletomotor displays. For this purpose, different doses of bicuculline (0.98, 0.49, 0.245, and 0.015 mM) and muscimol (15.35 mM) were microinjected (0.1 microL) in the TSd of the awake G. carapo. Microinjection of bicuculline induced dose-dependent interruptions of EOD and increased skeletomotor activity resembling defense displays. The effects of the two highest doses showed maximum values at 5 min (4.3 +/- 2.7 and 3.8 +/- 2.0 Hz, P < 0.05) and persisted until 10 min (11 +/- 5.7 and 8.7 +/- 5.2 Hz, P < 0.05). Microinjections of muscimol were ineffective. During the interruptions of EOD, the novelty response (increased frequency in response to sensory novelties) induced by an electric stimulus delivered by a pair of electrodes placed in the water of the experimental cuvette was reduced or abolished. These data suggest that the GABA-ergic mechanisms of the TSd inhibit the neural substrate of the defense reaction at this midbrain level.
Collapse
Affiliation(s)
- T T Duarte
- Departamento de Fisiologia, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brasil.
| | | | | | | | | |
Collapse
|
12
|
Teixeira Duarte T, Hoffmann A, de Souza Fim Pereira A, Aparecida Lopes Corrêa S. Potential output pathways for agonistic-like responses resulting from the GABAA blockade of the torus semicircularis dorsalis in weakly electric fish, Gymnotus carapo. Brain Res 2006; 1092:117-28. [PMID: 16696952 DOI: 10.1016/j.brainres.2006.03.082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2005] [Revised: 03/22/2006] [Accepted: 03/23/2006] [Indexed: 10/24/2022]
Abstract
The purpose of this study is to examine the pathways involved in the electromotor (electric organ discharge interruptions) and skeletomotor responses (defense-like) observed by blockade of GABAergic control of the torus semicircularis dorsalis (TSd) of the awake weakly electric fish Gymnotus carapo, described in a former study. Microinjection of NMDA (5 mM) into the pacemaker nucleus (PM) through a guide cannula previously implanted caused a prolonged interruption of the electric organ discharge (EOD) intermingled with reduction in frequency, similar to that described for TSd GABA(A) blockade, but without noticeable skeletomotor effects. The EOD alterations elicited by bicuculline microinjections (0.245 mM) into the TSd could be blocked or attenuated by a previous microinjection of AP-5 (0.5 mM), an NMDA antagonist, into the PM. Labeled terminals are found in the nucleus electrosensorius (nE) after injection of the biotinylated dextran amine (BDA) tracer into the TSd and into the sublemniscal prepacemaker nucleus (SPPn) subsequent to the tracer injection into the nE. Defense-like responses but not EOD interruptions are observed after microinjections of NMDA (5 mM) into the rhombencephalic reticular formation (RF), where labeled terminals are seen after BDA injection into the TSd and somata are filled after injection of the tracer into the spinal cord. In this last structure, marked fibers are seen subsequent to injection of BDA into the RF. These results suggest that two distinct pathways originate from the torus: one for EOD control, reaching PM through nE and SPPn, and the other one for skeletomotor control reaching premotor reticular neurons. Both paths could be activated by toral GABA(A) blockade.
Collapse
Affiliation(s)
- Terence Teixeira Duarte
- Department of Physiology, School of Medicine, University of São Paulo, Av. Bandeirantes 3900, 14049-900, Ribeirão Preto, SP, Brazil.
| | | | | | | |
Collapse
|
13
|
Phylogenetic systematics and historical biogeography of the Neotropical electric fishGymnotus(Teleostei: Gymnotidae). SYST BIODIVERS 2005. [DOI: 10.1017/s1477200004001574] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
14
|
Chandroo K, Duncan I, Moccia R. Can fish suffer?: perspectives on sentience, pain, fear and stress. Appl Anim Behav Sci 2004. [DOI: 10.1016/j.applanim.2004.02.004] [Citation(s) in RCA: 237] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|