1
|
Merdivan S, Jenett-Siems K, Siems K, Niedermeyer TH, Schultze N, Steinborn C, Gründemann C, Lindequist U. Effects of extracts and compounds from Tricholoma populinum Lange on degranulation and IL-2/IL-8 secretion of immune cells. ACTA ACUST UNITED AC 2017; 72:277-283. [DOI: 10.1515/znc-2016-0247] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/11/2017] [Indexed: 11/15/2022]
Abstract
Abstract:
Tricholoma populinum Lange is an edible basidiomycete from the family Tricholomataceae. Extracts, fractions, and different metabolites isolated from the fruiting bodies of this mushroom were tested for degranulation-inhibiting activities on RBL-2H3 cells (rat basophils). Dichloromethane extracts decreased degranulation significantly, as did a fraction after column chromatography. In addition, the extract decreased the IL-2 release from Jurkat T cells and the release of IL-8 from HMC-1 human mast cells. The results show the significant effects of extracts of T. populinum on cells of the innate (basophils and mast cells) and adaptive (T cells) immune system and indicate the influence of the mushroom on different immunological processes. As one fraction showed activity, it seems to be possible that it includes an active principle. The compounds responsible for this effect, however, could not be identified as the contents oleic acid (1), ergosterol peroxide (2), and 9,11-dehydroergosterol peroxide (3) showed no effects. Nevertheless, the mushroom could be used for supporting allergy treatment in future studies.
Collapse
Affiliation(s)
- Simon Merdivan
- Institute of Pharmacy, Pharmaceutical Biology, Ernst-Moritz-Arndt University Greifswald , Felix-Hausdorff-Str. 1 , 17487 Greifswald , Germany
| | | | | | - Timo H.J. Niedermeyer
- Interfaculty Institute of Microbiology and Infection Medicine , Eberhard Karls University , Tübingen , Germany
- German Centre for Infection Research (DZIF), Partner Site , Tübingen , Germany
| | - Nadin Schultze
- Institute of Pharmacy , Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| | - Carmen Steinborn
- Center for Complementary Medicine, Institute for Environmental Health Sciences and Hospital Infection Control, Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Carsten Gründemann
- Center for Complementary Medicine, Institute for Environmental Health Sciences and Hospital Infection Control, Faculty of Medicine , University of Freiburg , Freiburg , Germany
| | - Ulrike Lindequist
- Institute of Pharmacy , Ernst-Moritz-Arndt University Greifswald , Greifswald , Germany
| |
Collapse
|
2
|
Gangwar RS, Landolina N, Arpinati L, Levi-Schaffer F. Mast cell and eosinophil surface receptors as targets for anti-allergic therapy. Pharmacol Ther 2016; 170:37-63. [PMID: 27773785 DOI: 10.1016/j.pharmthera.2016.10.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Roopesh Singh Gangwar
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Nadine Landolina
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Ludovica Arpinati
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel
| | - Francesca Levi-Schaffer
- Pharmacology & Experimental Therapeutics Unit, Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Israel.
| |
Collapse
|
3
|
Blank U, Charles N, Benhamou M. The high-affinity immunoglobulin E receptor as pharmacological target. Eur J Pharmacol 2016; 778:24-32. [PMID: 26130123 DOI: 10.1016/j.ejphar.2015.05.070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Revised: 04/29/2015] [Accepted: 05/17/2015] [Indexed: 01/02/2023]
|
4
|
Ayroldi E, Cannarile L, Migliorati G, Nocentini G, Delfino DV, Riccardi C. Mechanisms of the anti-inflammatory effects of glucocorticoids: genomic and nongenomic interference with MAPK signaling pathways. FASEB J 2012; 26:4805-20. [PMID: 22954589 DOI: 10.1096/fj.12-216382] [Citation(s) in RCA: 124] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Glucocorticoids (GCs) are steroid hormones produced by the adrenal gland and regulated by the hypothalamus-pituitary-adrenal axis. GCs mediate effects that mostly result in transcriptional regulation of glucocorticoid receptor target genes. Mitogen-activated protein kinases (MAPKs) comprise a family of signaling proteins that convert extracellular stimuli into the activation of intracellular transduction pathways via phosphorylation of a cascade of substrates. They modulate a variety of physiological cell processes, such as proliferation, apoptosis, and development. However, when MAPKs are improperly activated by proinflammatory and/or extracellular stress stimuli, they contribute to the regulation of proinflammatory transcription factors, thus perpetuating activation of the inflammatory cascade. One of the mechanisms by which GCs exert their anti-inflammatory effects is negative interference with MAPK signaling pathways. Several functional interactions between GCs and MAPK signaling have been discovered and studied. Some of these interactions involve the GC-mediated up-regulation of proteins that in turn interfere with the activation of MAPK, such as glucocorticoid-induced-leucine zipper, MAPK phosphatase-1, and annexin-1. Other mechanisms include activated GR directly interacting with components of the MAPK pathway and negatively regulating their activation. The multiple interactions between GCs and MAPK pathways and their potential biological relevance in mediating the anti-inflammatory effects of GCs are reviewed.
Collapse
Affiliation(s)
- Emira Ayroldi
- Section of Pharmacology, Department of Clinical and Experimental Medicine, University of Perugia, Via del Giochetto, 06122 Perugia, Italy.
| | | | | | | | | | | |
Collapse
|
5
|
Winter PW, Al-Qatati A, Wolf-Ringwall AL, Schoeberl S, Chatterjee PB, Barisas BG, Roess DA, Crans DC. The anti-diabetic bis(maltolato)oxovanadium(iv) decreases lipid order while increasing insulin receptor localization in membrane microdomains. Dalton Trans 2012; 41:6419-30. [DOI: 10.1039/c2dt30521f] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
6
|
Kerr WG, Colucci F. Inositol phospholipid signaling and the biology of natural killer cells. J Innate Immun 2011; 3:249-57. [PMID: 21422750 DOI: 10.1159/000323920] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2010] [Accepted: 12/07/2010] [Indexed: 12/30/2022] Open
Abstract
A family of phosphoinositide-3 kinase (PI3K) isoenzymes catalyzes the production of second messengers that recruit critical regulators of cell growth, survival, proliferation and motility. Conversely, 3'-(phosphatase and tensin homolog) and 5'-inositol polyphosphatases (SH2-containing inositol phosphatases 1/2, SHIP1/2) are recruited to sites of PI3K signaling at the plasma membrane to oppose or, in some cases, to modify and enhance PI3K signaling. A substantial and growing body of literature demonstrates that these enzymes which mediate interchange of phosphates on inositol phospholipid species at the plasma membrane have prominent roles in natural killer cell biology, including development, effector functions and trafficking. Here, we review the salient points of these recent papers with a special emphasis on the role of p110δ and SHIP1 in natural killer cells.
Collapse
Affiliation(s)
- William G Kerr
- Department of Microbiology and Immunology, SUNY Upstate Medical University, Syracuse, NY 13210, USA.
| | | |
Collapse
|
7
|
Abstract
SHIP1 is at the nexus of intracellular signaling pathways in immune cells that mediate bone marrow (BM) graft rejection, production of inflammatory and immunosuppressive cytokines, immunoregulatory cell formation, the BM niche that supports development of the immune system, and immune cancers. This review summarizes how SHIP participates in normal immune physiology or the pathologies that result when SHIP is mutated. This review also proposes that SHIP can have either inhibitory or activating roles in cell signaling that are determined by whether signaling pathways distal to PI3K are promoted by SHIP's substrate (PI(3,4,5)P(3) ) or its product (PI(3,4)P(2) ). This review also proposes the "two PIP hypothesis" that postulates that both SHIP's product and its substrate are necessary for a cancer cell to achieve and sustain a malignant state. Finally, due to the recent discovery of small molecule antagonists and agonists for SHIP, this review discusses potential therapeutic settings where chemical modulation of SHIP might be of benefit.
Collapse
Affiliation(s)
- William G Kerr
- SUNY Upstate Medical University, Syracuse, New York, USA.
| |
Collapse
|
8
|
Inhibitory C-type lectin receptors in myeloid cells. Immunol Lett 2010; 136:1-12. [PMID: 20934454 PMCID: PMC3061320 DOI: 10.1016/j.imlet.2010.10.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2010] [Revised: 10/01/2010] [Accepted: 10/01/2010] [Indexed: 01/31/2023]
Abstract
C-type lectin receptors encoded by the natural killer gene complex play critical roles in enabling NK cell discrimination between self and non-self. In recent years, additional genes at this locus have been identified with patterns of expression that extend to cells of the myeloid lineage where many of the encoded inhibitory receptors have equally important functions as regulators of immune homeostasis. In the present review we highlight the roles of some of these receptors including recent insights gained with regard to the identification of exogenous and endogenous ligands, mechanisms of cellular inhibition and activation, regulated expression within different cellular and immune contexts, as well as functions that include the regulation of bone homeostasis and involvement in autoimmunity.
Collapse
|
9
|
Abstract
Mast cells are pivotal in innate immunity and play an important role in amplifying adaptive immunity. Nonetheless, they have long been known to be central to the initiation of allergic disorders. This results from the dysregulation of the immune response whereby normally innocuous substances are recognized as non-self, resulting in the production of IgE antibodies to these 'allergens'. Preformed and newly synthesized inflammatory (allergic) mediators are released from the mast cell following allergen-mediated aggregation of allergen-specific IgE bound to the high-affinity receptors for IgE (FcepsilonRI). Thus, the process by which the mast cell is able to interpret the engagement of FcepsilonRI into the molecular events necessary for release of their allergic mediators is of considerable therapeutic interest. Unraveling these molecular events has led to the discovery of a functional class of proteins that are essential in organizing activated signaling molecules and in coordinating and compartmentalizing their activity. These so-called 'adapters' bind multiple signaling proteins and localize them to specific cellular compartments, such as the plasma membrane. This organization is essential for normal mast cell responses. Here, we summarize the role of adapter proteins in mast cells focusing on the most recent advances toward understanding how these molecules work upon FcepsilonRI engagement.
Collapse
Affiliation(s)
- Damiana Alvarez-Errico
- Laboratory of Molecular Immunogenetics, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | | |
Collapse
|
10
|
Mashima R, Hishida Y, Tezuka T, Yamanashi Y. The roles of Dok family adapters in immunoreceptor signaling. Immunol Rev 2010; 232:273-85. [PMID: 19909370 DOI: 10.1111/j.1600-065x.2009.00844.x] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The mammalian Dok protein family has seven members (Dok-1-Dok-7). The Dok proteins share structural similarities characterized by the NH2-terminal pleckstrin homology and phosphotyrosine-binding domains followed by SH2 target motifs in the COOH-terminal moiety, indicating an adapter function. Indeed, Dok-1 was originally identified as a 62 kDa protein that binds with p120 rasGAP, a potent inhibitor of Ras, upon tyrosine phosphorylation by a variety of protein tyrosine kinases. Among the Dok family, only Dok-1, Dok-2, and Dok-3 are preferentially expressed in hematopoietic/immune cells. Dok-1 and its closest relative Dok-2 act as negative regulators of the Ras-Erk pathway downstream of many immunoreceptor-mediated signaling systems, and it is believed that recruitment of p120 rasGAP by Dok-1 and Dok-2 is critical to their negative regulation. By contrast, Dok-3 does not bind with p120 rasGAP. However, accumulating evidence has demonstrated that Dok-3 is a negative regulator of the activation of JNK and mobilization of Ca2+ in B-cell receptor-mediated signaling, where the interaction of Dok-3 with SHIP-1 and Grb2 appears to be important. Here, we review the physiological roles and underlying mechanisms of Dok family proteins.
Collapse
Affiliation(s)
- Ryuichi Mashima
- Division of Genetics, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | | | | | | |
Collapse
|
11
|
Park SK, Qiao H, Beaven MA. Src-like adaptor protein (SLAP) is upregulated in antigen-stimulated mast cells and acts as a negative regulator. Mol Immunol 2009; 46:2133-9. [PMID: 19371953 DOI: 10.1016/j.molimm.2009.03.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Accepted: 03/16/2009] [Indexed: 12/28/2022]
Abstract
Our studies in the RBL-2H3 mast cell line suggest that responses to antigen (Ag) are negatively modulated through upregulation of Src-like adaptor protein (SLAP). Ag stimulation of RBL-2H3 cells leads to increased levels of SLAP (but not SLAP2) transcripts and protein over a period of several hours. The effects of pharmacologic inhibitors indicate that the upregulation of SLAP is dependent on multiple signaling pathways. Knockdown of SLAP with anti-SLAP siRNA is associated with enhanced phosphorylation of Syk, the linker for activation of T cells (LAT), phospholipase C gamma, MAP kinases, and various transcription factors. Production of IL-3 and MCP-1, but not degranulation, is also enhanced. The upregulation of SLAP may thus serve to limit the duration of cytokine production in Ag-stimulated cells.
Collapse
Affiliation(s)
- Seung-Kiel Park
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | |
Collapse
|
12
|
Abstract
The type I Fc epsilon receptor (Fc epsilon RI) is one of the better understood members of its class and is central to the immunological activation of mast cells and basophils, the key players in immunoglobulin E (IgE)-dependent immediate hypersensitivity. This review provides background information on several distinct regulatory mechanisms controlling this receptor's stimulus-response coupling network. First, we review the current understanding of this network's operation, and then we focus on the inhibitory regulatory mechanisms. In particular, we discuss the different known cytosolic molecules (e.g. kinases, phosphatases, and adapters) as well as cell membrane proteins involved in negatively regulating the Fc epsilon RI-induced secretory responses. Knowledge of this field is developing at a fast rate, as new proteins endowed with regulatory functions are still being discovered. Our understanding of the complex networks by which these proteins exert regulation is limited. Although the scope of this review does not include addressing several important biochemical and biophysical aspects of the regulatory mechanisms, it does provide general insights into a central field in immunology.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | |
Collapse
|
13
|
Licht A, Abramson J, Pecht I. Co-clustering activating and inhibitory receptors: impact at varying expression levels of the latter. Immunol Lett 2005; 104:166-70. [PMID: 16423412 DOI: 10.1016/j.imlet.2005.11.025] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 11/22/2005] [Accepted: 11/22/2005] [Indexed: 11/25/2022]
Abstract
Clustering the mast cell function-associated antigen (MAFA) has earlier been shown to inhibit mast cells' secretory response to the type 1 Fcepsilon receptor (FcepsilonRI) stimulus. MAFA is a type II membrane glycoprotein first identified on rat mast cells and contains an immunoreceptor tyrosine-based inhibitory motif (ITIM) in its cytosolic domain. This inhibition is induced already upon clustering MAFA alone. Still, the inhibitory capacity of MAFA-FcepsilonRI co-clustering has recently been characterized and co-clustered MAFA molecules were found to exhibit a markedly higher inhibition capacity than MAFA-clusters alone. We have now compared the inhibitory capacity of FcepsilonRI co-clustered MAFA on the secretory response of rat mucosal-type mast cells (RBL-2H3 line) expressing different levels of this inhibitory protein. Reacting these cells carrying an IgE class, 2,4 dinitrophenyl (DNP)-specific monoclonal antibody with DNP-conjugated F(ab')2 fragments of non-specific polyclonal mouse IgG causes clustering of the FcepsilonRI-IgE. Reaction of these cells with DNP-conjugated F(ab')2 fragments of the MAFA-specific, monoclonal antibody G63 co-aggregates MAFA together with the FcepsilonRI-IgE thereby producing FcepsilonRI-IgE-MAFA co-clusters. Results of measurements of the secretory responses of RBL-2H3 cells expressing higher or lower MAFA levels than those of unmodified cells provided further support to the notion that co-clustered MAFA molecules exhibit a markedly higher inhibition capacity than MAFA-clusters alone. The molecular basis for this enhanced inhibition is most probably the increased concentration of the inhibitory cell components in the immediate proximity of the co-clustered FcepsilonRI-MAFA.
Collapse
Affiliation(s)
- Arieh Licht
- Department of Immunology, The Weizmann Institute of Science, Rehovot 76100, Israel
| | | | | |
Collapse
|
14
|
Licht A, Pecht I, Schweitzer-Stenner R. Regulation of mast cells? secretory response by co-clustering the Type 1 Fc? receptor with the mast cell function-associated antigen. Eur J Immunol 2005; 35:1621-33. [PMID: 15827967 DOI: 10.1002/eji.200425964] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mast cell function-associated antigen (MAFA) is a type II membrane glycoprotein first identified on rat mast cells and basophils. Clustering MAFA inhibits these cells' secretory response to the type 1 Fcepsilon receptor (FcepsilonRI) stimulus. To quantitatively characterize this inhibition and its dependence on MAFA-FcepsilonRI co-clustering, we investigated the secretory response of rat mucosal-type mast cells of the RBL 2H3 line carrying an IgE class, 2,4 dinitrophenyl (DNP) specific monoclonal antibody to DNP-conjugated Fab and F(ab')(2) fragments of (1) mouse IgG, and (2) of the MAFA-specific, monoclonal antibody G63. The first reagent clusters FcepsilonRI-IgE complexes into oligomers by reacting with the DNP residues. The DNP conjugated G63 Fab and F(ab')(2) fragments, additionally aggregate MAFA and form FcepsilonRI-IgE-MAFA co-clusters. All experiments using these ligands were performed in the absence or presence of an excess of intact mAb G63, which clusters MAFA molecules. Empirical Hill functions were used to relate the secretory response of mast cells to the equilibrium concentrations of FcepsilonRI-IgE or MAFA clusters and co-clusters calculated as function of the employed ligands concentrations. This analysis of the experimental results indicates that co-clustered MAFA molecules have a markedly higher inhibitory capacity than MAFA-clusters alone. The molecular basis of the enhanced inhibition observed upon co-clustering MAFA with the FcepsilonRI is most probably the increased concentration of the inhibitory cell components in the immediate proximity of the activation coupling elements.
Collapse
Affiliation(s)
- Arieh Licht
- Department of Immunology, The Weizmann Institute of Science, Rehovot, Israel
| | | | | |
Collapse
|
15
|
Hiragun T, Peng Z, Beaven MA. Dexamethasone up-regulates the inhibitory adaptor protein Dok-1 and suppresses downstream activation of the mitogen-activated protein kinase pathway in antigen-stimulated RBL-2H3 mast cells. Mol Pharmacol 2005; 67:598-603. [PMID: 15608142 DOI: 10.1124/mol.104.008607] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The glucocorticoid dexamethasone suppresses antigen-induced degranulation, cytokine production, and intermediate signaling events in RBL-2H3 mast cells, although the exact mechanisms are uncertain. By microarray analysis, we discovered that expression of the inhibitory adaptor protein, downstream of tyrosine kinase (Dok)-1, was up-regulated 4-fold in dexamethasone-treated RBL-2H3 cells. The up-regulation was apparent with as little as 1 to 10 nM dexamethasone. Treatment with dexamethasone also enhanced tyrosine phosphorylation of Dok-1, augmented recruitment of Ras GTPase-activating protein (RasGAP) by Dok-1, and inhibited activation of the mitogen-activated protein (MAP) kinase pathway in antigen-stimulated cells. The same effects were obtained by transient overexpression of Dok-1 but not by overexpression of Dok-1 that was mutated in RasGAP-binding domain. The negative regulatory role of Dok-1 was further validated by the expression of small interfering RNA directed against Dok-1, which enhanced activation of MAP kinase and subsequent release of arachidonic acid and tumor necrosis factor-alpha. These findings identify Dok-1 as mediator of the antiallergic actions of dexamethasone and as a negative regulator of the MAP kinase pathway and downstream release of inflammatory mediators.
Collapse
Affiliation(s)
- Takaaki Hiragun
- Laboratory of Molecular Immunology, National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892-1760, USA
| | | | | |
Collapse
|
16
|
Kepley CL, Taghavi S, Mackay G, Zhu D, Morel PA, Zhang K, Ryan JJ, Satin LS, Zhang M, Pandolfi PP, Saxon A. Co-aggregation of FcgammaRII with FcepsilonRI on human mast cells inhibits antigen-induced secretion and involves SHIP-Grb2-Dok complexes. J Biol Chem 2004; 279:35139-49. [PMID: 15151996 DOI: 10.1074/jbc.m404318200] [Citation(s) in RCA: 92] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Signaling through the high affinity IgE receptor FcepsilonRI on human basophils and rodent mast cells is decreased by co-aggregating these receptors to the low affinity IgG receptor FcgammaRII. We used a recently described fusion protein, GE2, which is composed of key portions of the human gamma1 and the human epsilon heavy chains, to dissect the mechanisms that lead to human mast cell and basophil inhibition through co-aggregation of FcgammaRII and FcepsilonRI. Unstimulated human mast cells derived from umbilical cord blood express the immunoreceptor tyrosine-based inhibitory motif-containing receptor FcgammaRII but not FcgammaRI or FcgammaRIII. Interaction of the mast cells with GE2 alone did not cause degranulation. Co-aggregating FcepsilonRI and FcgammaRII with GE2 1) significantly inhibited IgE-mediated histamine release, cytokine production, and Ca(2+) mobilization, 2) reduced the antigen-induced morphological changes associated with mast cell degranulation, 3) reduced the tyrosine phosphorylation of several cellular substrates, and 4) increased the tyrosine phosphorylation of the adapter protein downstream of kinase 1 (p62(dok); Dok), growth factor receptor-bound protein 2 (Grb2), and SH2 domain containing inositol 5-phosphatase (SHIP). Tyrosine phosphorylation of Dok was associated with increased binding to Grb2. Surprisingly, in non-stimulated cells, there were complexes of phosphorylated SHIP-Grb2-Dok that were lost upon IgE receptor activation but retained under conditions of Fcepsilon-Fcgamma co-aggregation. Finally, studies using mast cells from Dok-1 knock-out mice showed that IgE alone triggers degranulation supporting an inhibitory role for Dok degranulation. Our results demonstrate how human FcepsilonRI-mediated responses can be inhibited by co-aggregation with FcgammaRIIB and implicate Dok, SHIP, and Grb2 as key intermediates in regulating antigen-induced mediator release.
Collapse
Affiliation(s)
- Christopher L Kepley
- Department of Internal Medicine, Virginia Commonwealth University Health Systems, Richmond, Virginia 23298, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abramson J, Rozenblum G, Pecht I. Stable knockdown of MAFA expression in RBL-2H3 cells by siRNA retrovirus-delivery system. Immunol Lett 2004; 92:179-84. [PMID: 15081543 DOI: 10.1016/j.imlet.2003.11.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2003] [Accepted: 11/21/2003] [Indexed: 11/25/2022]
Abstract
The mast cell function-associated antigen (MAFA) is a type II membranal glycoprotein first discovered on the surface of the rat mucosal-type mast cells of the RBL-2H3 line. A C-type lectin domain and an immunoreceptor tyrosine-based inhibitory motif (ITIM) are located in the extracellular and intracellular domains of MAFA, respectively. MAFA clustering by its specific monoclonal antibody G63, has been previously shown to cause a dose-dependent inhibition of the secretory response of these cells to the FcRI stimulus. More recently, human and mouse homologues of MAFA have also been discovered. However, they are expressed also or only by NK- and T cells, suggesting that MAFA may play additional functional role(s). To further pursue MAFA's functional significance in mast cells, we have employed the recently developed siRNA (small inhibitory RNA)-dependent gene-specific silencing protocol. We have first incorporated the key elements of the well-defined and commercially available siRNA vector (pSilencer1.0-U6) together with anti-MAFA hairpin into a retroviral vector (pLXSNneo). This enabled generating retroviruses that induced a stable and efficient downregulation (knockdown) of MAFA's expression. RBL-2H3 cells with either normal or knocked-down MAFA expression levels are currently examined for their biological responses e.g. FcRI mediated secretion, cell proliferation and cell adhesion. So far however, no significant changes were resolved in the above biological functions.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, 761 00 Rehovot, Israel
| | | | | |
Collapse
|
18
|
Abramson J, Xu R, Pecht I. An unusual inhibitory receptor--the mast cell function-associated antigen (MAFA). Mol Immunol 2002; 38:1307-13. [PMID: 12217400 DOI: 10.1016/s0161-5890(02)00080-9] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The mast cell function-associated antigen (MAFA) is a type II membranal glycoprotein that was first identified on the surface of rat mucosal-type mast cells of the RBL-2H3 line. A C-type lectin domain and an immunoreceptor tyrosine-based inhibitory motif (ITIM) are located in the extracellular and intracellular domains of MAFA, respectively. Human and mouse homologues of MAFA have been discovered recently. However, they are expressed also or only by NK and T-cells, where they most probably play different roles. MAFA clustering by its specific antibody mAb G63 has been previously shown to cause a dose-dependent inhibition of the secretory response of these cells to the FcepsilonRI stimulus. More recent results established that MAFA's inhibitory action involves at least two different enzymes: Following the tyrosyl-phosphorylation of MAFA ITIM by the PTK Lyn, two phosphatases SHIP and SHP2 are recruited to it at the plasma membrane where they propagate the inhibitory signals. The following is a brief report on this unusual inhibitory receptor and its functional activities.
Collapse
Affiliation(s)
- Jakub Abramson
- Department of Immunology, The Weizmann Institute of Science, 76100, Rehovot, Israel
| | | | | |
Collapse
|