1
|
Bastos AEP, Costa PF, Varderidou-Minasian S, Altelaar M, Lima PA. Feeding cycle alters the biophysics and molecular expression of voltage-gated Na + currents in rat hippocampal CA1 neurones. Eur J Neurosci 2018; 49:1418-1435. [PMID: 30588669 DOI: 10.1111/ejn.14331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 12/04/2018] [Accepted: 12/14/2018] [Indexed: 11/28/2022]
Abstract
The function of hippocampus as a hub for energy balance is a subject of broad and current interest. This study aims at providing more evidence on this regard by addressing the effects of feeding cycle on the voltage-gated sodium (Na+ ) currents of acutely isolated Wistar rat hippocampal CA1 neurones. Specifically, by applying patch clamp techniques (whole cell voltage clamp and single channel in inside-out patches) we assessed the influence of feeding and fasting conditions on the intrinsic biophysical properties of Na+ currents. Additionally, mass spectrometry and western blotting experiments were used to address the effect of feeding cycle over the Na+ channel population of the rat hippocampus. Na+ currents were recorded in neurones obtained from fed and fasted animals (here termed "fed neurones" and "fasted neurones", respectively). Whole cell Na+ currents of fed neurones, as compared to fasted neurones, showed increased mean maximum current density and a higher "window current" amplitude. We demonstrate that these results are supported by an increased single channel Na+ conductance in fed neurones and, also, by a greater Nav1.2 channel density in plasma membrane-enriched fractions of fed samples (but not in whole hippocampus preparations). These results imply fast variations on the biophysics and molecular expression of Na+ currents of rat hippocampal CA1 neurones, throughout the feeding cycle. Thus, one may expect a differentiated regulation of the intrinsic neuronal excitability, which may account for the role of the hippocampus as a processor of satiety information.
Collapse
Affiliation(s)
- André E P Bastos
- Department of Chemistry and Biochemistry, Centre of Chemistry and Biochemistry, Faculty of Sciences University of Lisbon, Lisbon, Portugal.,Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal.,Sea4Us, Biotechnology and Marine Resources, Lda., Sagres, Portugal
| | - Pedro F Costa
- Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal
| | | | - Maarten Altelaar
- Biomolecular Mass Spectrometry and Proteomics, Utrecht University, Utrecht, The Netherlands
| | - Pedro A Lima
- Department of Physiology, Nova Medical School/Faculdade de Ciências Médicas, Lisbon, Portugal.,Sea4Us, Biotechnology and Marine Resources, Lda., Sagres, Portugal
| |
Collapse
|
2
|
Patel R, Sesti F. Oxidation of ion channels in the aging nervous system. Brain Res 2016; 1639:174-85. [PMID: 26947620 DOI: 10.1016/j.brainres.2016.02.046] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2015] [Revised: 02/24/2016] [Accepted: 02/25/2016] [Indexed: 12/19/2022]
Abstract
Ion channels are integral membrane proteins that allow passive diffusion of ions across membranes. In neurons and in other excitable cells, the harmonious coordination between the numerous types of ion channels shape and propagate electrical signals. Increased accumulation of reactive oxidative species (ROS), and subsequent oxidation of proteins, including ion channels, is a hallmark feature of aging and may contribute to cell failure as a result. In this review we discuss the effects of ROS on three major types of ion channels of the central nervous system, namely the potassium (K(+)), calcium (Ca(2+)) and sodium (Na(+)) channels. We examine two general mechanisms through which ROS affect ion channels: via direct oxidation of specific residues and via indirect interference of pathways that regulate the channels. The overall status of the present studies indicates that the interaction of ion channels with ROS is multimodal and pervasive in the central nervous system and likely constitutes a general mechanism of aging susceptibility.
Collapse
Affiliation(s)
- Rahul Patel
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA
| | - Federico Sesti
- Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Rutgers University, 683 Hoes Lane West, Piscataway, NJ 08854, USA.
| |
Collapse
|
3
|
French CR, Zeng Z, Williams DA, Hill-Yardin EL, O'Brien TJ. Properties of an intermediate-duration inactivation process of the voltage-gated sodium conductance in rat hippocampal CA1 neurons. J Neurophysiol 2016; 115:790-802. [DOI: 10.1152/jn.01000.2014] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2014] [Accepted: 11/02/2015] [Indexed: 12/13/2022] Open
Abstract
Rapid transmembrane flow of sodium ions produces the depolarizing phase of action potentials (APs) in most excitable tissue through voltage-gated sodium channels (NaV). Macroscopic currents display rapid activation followed by fast inactivation (IF) within milliseconds. Slow inactivation (IS) has been subsequently observed in several preparations including neuronal tissues. IS serves important physiological functions, but the kinetic properties are incompletely characterized, especially the operative timescales. Here we present evidence for an “intermediate inactivation” (II) process in rat hippocampal CA1 neurons with time constants of the order of 100 ms. The half-inactivation potentials ( V0.5) of steady-state inactivation curves were hyperpolarized by increasing conditioning pulse duration from 50 to 500 ms and could be described by a sum of Boltzmann relations. II state transitions were observed after opening as well as subthreshold potentials. Entry into II after opening was relatively insensitive to membrane potential, and recovery of II became more rapid at hyperpolarized potentials. Removal of fast inactivation with cytoplasmic papaine revealed time constants of INa decay corresponding to II and IS with long depolarizations. Dynamic clamp revealed attenuation of trains of APs over the 102-ms timescale, suggesting a functional role of II in repetitive firing accommodation. These experimental findings could be reproduced with a five-state Markov model. It is likely that II affects important aspects of hippocampal neuron response and may provide a drug target for sodium channel modulation.
Collapse
Affiliation(s)
- Christopher R. French
- Department of Neurobiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia; and
| | - Zhen Zeng
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia; and
| | - David A. Williams
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa L. Hill-Yardin
- Department of Physiology, University of Melbourne, Melbourne, Victoria, Australia
| | - Terence J. O'Brien
- Department of Neurobiology, Royal Melbourne Hospital, Melbourne, Victoria, Australia
- Department of Medicine, University of Melbourne, Melbourne, Victoria, Australia; and
| |
Collapse
|
4
|
Xiang H, Wang L, Cui J, Du J, Wang K, Xu A. Effects of recombinant neurotoxins on single Na(+) channels in isolated rat hippocampal neurons. J Biochem Mol Toxicol 2009; 23:244-55. [PMID: 19705351 DOI: 10.1002/jbt.20285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Four recombinant neurotoxins Hk2a, Hk7a, Hk8a, Hk16a, originally from a sea anemone species Anthopleura sp., were obtained by fusion expression of their genes in Escherichia coli. These neurotoxins were composed of 47 amino acid residues, among which the differences were found at positions 14, 22, 25, and 37, respectively. The effects of the four neurotoxins on single-channel current of sodium in rat hippocampal neurons were studied by cell-attached patch clamp. Each neurotoxin 2 microM could modulate the sodium channel by prolonging the opening dwell time and increasing the open probability, but did not change the amplitude of sodium channel currents. Based on the studies of the structure-function relationship, we found that Hk7a displayed the biggest increase of the open probability because His14 (from Arg14) makes its structure seem more compact in comparison with the other three toxins and Ap-A. Phe25 (Hk8a, Hk16a), which varied from Ala25 (Hk2a, Hk7a), showed that phenyl group might interfere with other key amino acid residue to decrease the activity of toxins. Arg37 (from His37) in Hk8a contributed to decrease of open probability. In our work, it was shown that these important amino acid sites might provide a reliable proof for the future pharmaceutical design.
Collapse
Affiliation(s)
- Hui Xiang
- Department of Biological Science and Technology, Sun Yat-sen, Zhongshan University, Guangzhou, Guangdong Province, People's Republic of China.
| | | | | | | | | | | |
Collapse
|
5
|
Vanoye CG, Lossin C, Rhodes TH, George AL. Single-channel properties of human NaV1.1 and mechanism of channel dysfunction in SCN1A-associated epilepsy. ACTA ACUST UNITED AC 2006; 127:1-14. [PMID: 16380441 PMCID: PMC2151481 DOI: 10.1085/jgp.200509373] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Mutations in genes encoding neuronal voltage-gated sodium channel subunits have been linked to inherited forms of epilepsy. The majority of mutations (>100) associated with generalized epilepsy with febrile seizures plus (GEFS+) and severe myoclonic epilepsy of infancy (SMEI) occur in SCN1A encoding the NaV1.1 neuronal sodium channel α-subunit. Previous studies demonstrated functional heterogeneity among mutant SCN1A channels, revealing a complex relationship between clinical and biophysical phenotypes. To further understand the mechanisms responsible for mutant SCN1A behavior, we performed a comprehensive analysis of the single-channel properties of heterologously expressed recombinant WT-SCN1A channels. Based on these data, we then determined the mechanisms for dysfunction of two GEFS+-associated mutations (R1648H, R1657C) both affecting the S4 segment of domain 4. WT-SCN1A has a slope conductance (17 pS) similar to channels found in native mammalian neurons. The mean open time is ∼0.3 ms in the −30 to −10 mV range. The R1648H mutant, previously shown to display persistent sodium current in whole-cell recordings, exhibited similar slope conductance but had an increased probability of late reopening and a subfraction of channels with prolonged open times. We did not observe bursting behavior and found no evidence for a gating mode shift to explain the increased persistent current caused by R1648H. Cells expressing R1657C exhibited conductance, open probability, mean open time, and latency to first opening similar to WT channels but reduced whole-cell current density, suggesting decreased number of functional channels at the plasma membrane. In summary, our findings define single-channel properties for WT-SCN1A, detail the functional phenotypes for two human epilepsy-associated sodium channel mutants, and clarify the mechanism for increased persistent sodium current induced by the R1648H allele.
Collapse
Affiliation(s)
- Carlos G Vanoye
- Division of Genetic Medicine, Department of Medicine, Vanderbilt University, Nashville, TN 37232, USA
| | | | | | | |
Collapse
|
6
|
The YK, Fernandes J, Popa MO, Alekov AK, Timmer J, Lerche H. Modeling of single noninactivating Na+ channels: evidence for two open and several fast inactivated states. Biophys J 2006; 90:3511-22. [PMID: 16513781 PMCID: PMC1440733 DOI: 10.1529/biophysj.105.073072] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Voltage-gated Na(+) channels play a fundamental role in the excitability of nerve and muscle cells. Defects in fast Na(+) channel inactivation can cause hereditary muscle diseases with hyper- or hypoexcitability of the sarcolemma. To explore the kinetics and gating mechanisms of noninactivating muscle Na(+) channels on a molecular level, we analyzed single channel currents from wild-type and five mutant Na(+) channels. The mutations were localized in different protein regions which have been previously shown to be important for fast inactivation (D3-D4-linker, D3/S4-S5, D4/S4-S5, D4/S6) and exhibited distinct grades of defective fast inactivation with varying levels of persistent Na(+) currents caused by late channel reopenings. Different gating schemes were fitted to the data using hidden Markov models with a correction for time interval omission and compared statistically. For all investigated channels including the wild-type, two open states were necessary to describe our data. Whereas one inactivated state was sufficient to fit the single channel behavior of wild-type channels, modeling the mutants with impaired fast inactivation revealed evidence for several inactivated states. We propose a single gating scheme with two open and three inactivated states to describe the behavior of all five examined mutants. This scheme provides a biological interpretation of the collected data, based on previous investigations in voltage-gated Na(+) and K(+) channels.
Collapse
Affiliation(s)
- Yu-Kai The
- Institut für Physik, Freiburger Zentrum für Datenanalyse und Modellbildung, Universität Freiburg, Freiburg, Germany
| | | | | | | | | | | |
Collapse
|
7
|
Ribeiro MA, Costa PF. The sensitivity of sodium channels in immature and mature rat CA1 neurones to the local anaesthetics procaine and lidocaine. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 146:59-70. [PMID: 14643012 DOI: 10.1016/j.devbrainres.2003.09.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Sodium currents were recorded in CA1 hippocampal cells from new-born (P(4-10)) and older (P(>22)) rats, using whole-cell voltage clamp techniques. The effects of local anaesthetics (procaine and lidocaine) were studied in both cell populations. Parameters defining steady-state inactivation, removal of inactivation and the affinity of the anaesthetic molecules to the inactivated state were determined at both stages of maturation. Procaine and lidocaine induced a hyperpolarizing shift in steady-state inactivation curves, and slowed the rate of recovery from the inactivated state. Procaine disclosed differences between immature and older cells in what concerns block of the closed (resting) channels, drug affinity and binding to the inactivated state, i.e. the binding rate of procaine was found higher and the affinity lower in younger cells. The characteristics of procaine and lidocaine block on CA1 sodium currents differed in some particular aspects: magnitude of block on resting channels, shift in the voltage dependence and voltage sensitivity of steady-state inactivation, slow recovery from inactivation and use-dependent block.
Collapse
Affiliation(s)
- Maria Alexandra Ribeiro
- Departamento de Fisiologia, Faculdade de Ciências Médicas, U.N.L., Campo Santana 130, 1169-056, Lisbon, Portugal.
| | | |
Collapse
|