1
|
Dong C, Wang X, Li N, Zhang K, Wang X, Zhang H, Wang H, Wang B, An M, Ma B. microRNA-mediated GAS1 downregulation promotes the proliferation of synovial fibroblasts by PI3K-Akt signaling in osteoarthritis. Exp Ther Med 2019; 18:4273-4286. [PMID: 31777535 PMCID: PMC6862556 DOI: 10.3892/etm.2019.8101] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Accepted: 09/04/2019] [Indexed: 12/22/2022] Open
Abstract
Hyperplastic synovial fibroblasts (SFs) serve a critical role in the pathogenesis of knee osteoarthritis (OA); however, the molecular mechanism involved in OA during synovial tissue hyperproliferation remains unclear. Growth arrest-specific gene 1 (GAS1), a cell growth repressor gene, was found to be downregulated in OASFs according to previous preliminary experiments. It was therefore hypothesized that reduced GAS1 expression may participate in the hyperproliferation of SFs in OA development, downstream of possible microRNA (miR) regulation, in hyperplastic OASFs. In the present study, GAS1 expression was indeed decreased in OASFs and interleukin-1β-induced SFs by reverse transcription-quantitative PCR and western blot analysis. Further cell viability assays, cell cycle and apoptosis analyses revealed that the overexpression of GAS1 can inhibited proliferation, induced cell cycle arrest and promoted apoptosis in SFs. In contrast, GAS1 knockdown in SFs accelerated cell proliferation, enhanced cell cycle progression and suppressed apoptosis. Notably, the suppressive effects of GAS1 were mediated through the inactivation of the PI3K-Akt pathway. Finally, miR-34a-5p and miR-181a-5p were predicted and subsequently verified to directly target the 3′-untranslated region of the GAS1 gene, downregulating GAS1 levels in OASFs and IL-1β-induced SFs. In conclusion, the present study demonstrated that downregulation of GAS1 can lead to the hyperproliferation of SFs in OA pathogenesis through the PI3K-Akt pathway, and miR-34a-5p and miR-181a-5p are potential regulators of GAS1 expression in OA. Therefore, it may be promising to investigate the potential of GAS1 as a novel therapeutic target for preventing SF hyperplasia in OA.
Collapse
Affiliation(s)
- Chuan Dong
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Xinli Wang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Nan Li
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Kailiang Zhang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Xiaoyan Wang
- Department of Rheumatology and Immunology, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150086, P.R. China
| | - Haomeng Zhang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Haipeng Wang
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Bo Wang
- Department of Bone and Joint Diseases, Honghui Hospital of Xi'an Jiaotong University, College of Medicine, Xi'an, Shaanxi 710054, P.R. China
| | - Ming An
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| | - Baoan Ma
- Department of Orthopedics, The Second Affiliated Hospital of The Air Force Medical University (Tangdu Hospital of Fourth Military Medical University), Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
2
|
Feng W, Chakraborty A. Fragility Extraordinaire: Unsolved Mysteries of Chromosome Fragile Sites. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2017; 1042:489-526. [PMID: 29357071 DOI: 10.1007/978-981-10-6955-0_21] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chromosome fragile sites are a fascinating cytogenetic phenomenon now widely implicated in a slew of human diseases ranging from neurological disorders to cancer. Yet, the paths leading to these revelations were far from direct, and the number of fragile sites that have been molecularly cloned with known disease-associated genes remains modest. Moreover, as more fragile sites were being discovered, research interests in some of the earliest discovered fragile sites ebbed away, leaving a number of unsolved mysteries in chromosome biology. In this review we attempt to recount some of the early discoveries of fragile sites and highlight those phenomena that have eluded intense scrutiny but remain extremely relevant in our understanding of the mechanisms of chromosome fragility. We then survey the literature for disease association for a comprehensive list of fragile sites. We also review recent studies addressing the underlying cause of chromosome fragility while highlighting some ongoing debates. We report an observed enrichment for R-loop forming sequences in fragile site-associated genes than genomic average. Finally, we will leave the reader with some lingering questions to provoke discussion and inspire further scientific inquiries.
Collapse
Affiliation(s)
- Wenyi Feng
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA.
| | - Arijita Chakraborty
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA
| |
Collapse
|
3
|
Vojtechova Z, Sabol I, Salakova M, Turek L, Grega M, Smahelova J, Vencalek O, Lukesova E, Klozar J, Tachezy R. Analysis of the integration of human papillomaviruses in head and neck tumours in relation to patients' prognosis. Int J Cancer 2015; 138:386-95. [PMID: 26239888 DOI: 10.1002/ijc.29712] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Accepted: 07/22/2015] [Indexed: 11/11/2022]
Abstract
Integration, which leads to the disruption of the circular HPV genome, is considered as a critical, albeit not obligatory, step in carcinogenic progression. Although cervical carcinomas with extrachromosomal HPV plasmid genomes have been described, the virus is integrated in 70% of HPV16-positive cervical tumours. Limited information is available about HPV integration in head and neck tumours (HNC). In this study, we have characterised the physical status of HPV in a set of tonsillar tumour samples using different methods--the mapping of E2 integration breakpoint at the mRNA level, the 3' RACE based Amplification of Papillomavirus Oncogene Transcripts (APOT) assay and Southern blot. Furthermore, the impact of HPV integration on patients' prognosis has been evaluated in a larger set of 186 patients with head and neck cancer. Based on the analysis of E2 mRNA, HPV was integrated in the host genome in 43% of the HPV-positive samples. Extrachromosomal or mixed form was present in 57%. In fresh frozen samples, the APOT and E2 mapping results were in agreement. The results were confirmed using Southern blotting. Furthermore, the type and exact site of integration were determined. The survival analysis of 186 patients revealed HPV positivity, tumour size and lymph node positivity as factors that influence disease specific survival. However, no statistically significant difference was found in disease specific survival between patients with HPV-positive integrated vs. extrachromosomal/mixed forms of the virus.
Collapse
Affiliation(s)
- Zuzana Vojtechova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Czech Republic
| | - Ivan Sabol
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Martina Salakova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Lubomir Turek
- Veterans Affairs Healthcare System and Department of Pathology, University of Iowa, Iowa City, IA
| | - Marek Grega
- Department of Pathology and Molecular Medicine, 2nd Faculty of Medicine, Charles University in Prague, Prague, Czech Republic
| | - Jana Smahelova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | - Ondrej Vencalek
- Department of Mathematical Analysis and Applications of Mathematics, Faculty of Science of the Palacky University in Olomouc, Czech Republic
| | - Eva Lukesova
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czech Republic
| | - Jan Klozar
- Department of Otorhinolaryngology and Head and Neck Surgery, 1st Faculty of Medicine, Charles University in Prague, Motol University Hospital, Prague, Czech Republic
| | - Ruth Tachezy
- Department of Immunology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic.,Department of Genetics and Microbiology, Faculty of Science, Charles University in Prague, Czech Republic
| |
Collapse
|
4
|
Martínez-Nava GA, Torres-Poveda K, Lagunas-Martínez A, Bahena-Román M, Zurita-Díaz MA, Ortíz-Flores E, García-Carrancá A, Madrid-Marina V, Burguete-García AI. Cervical cancer-associated promoter polymorphism affects akna expression levels. Genes Immun 2014; 16:43-53. [PMID: 25373726 DOI: 10.1038/gene.2014.60] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Revised: 09/02/2014] [Accepted: 09/24/2014] [Indexed: 12/17/2022]
Abstract
Cervical cancer (CC) is responsible for >260,000 deaths worldwide each year. Efforts are being focused on identifying genetic susceptibility factors, especially in genes related to the immune response. Akna has been proposed to be one of them, but data regarding its functional role in the disease is scarce. Supporting the notion of akna as a CC susceptibility gene, we found two polymorphisms associated with squamous intraepithelial lesion (SIL) and CC; moreover, we identified an association between high akna expression levels and CC and SIL, but its direction differs in each disease stage. To show the potential existence of a cis-acting polymorphism, we assessed akna allelic expression imbalance for the alleles of the -1372C>A polymorphism. We found that, regardless of the study group, the number of transcripts derived from the A allele was significantly higher than those from the C allele. Our results support the hypothesis that akna is a CC susceptibility genetic factor and suggest that akna transcriptional regulation has a role in the disease. We anticipate our study to be a starting point for in vitro evaluation of akna transcriptional regulation and for the identification of transcription factors and cis-elements regulating AKNA function that are involved in carcinogenesis.
Collapse
Affiliation(s)
- G A Martínez-Nava
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - K Torres-Poveda
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A Lagunas-Martínez
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - M Bahena-Román
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - M A Zurita-Díaz
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - E Ortíz-Flores
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Distrito Federal, Mexico
| | - V Madrid-Marina
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| | - A I Burguete-García
- 193;rea de Infecciones Crónicas y Cáncer, Centro de Investigación sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca, Mexico
| |
Collapse
|
5
|
Georgakilas AG, Tsantoulis P, Kotsinas A, Michalopoulos I, Townsend P, Gorgoulis VG. Are common fragile sites merely structural domains or highly organized "functional" units susceptible to oncogenic stress? Cell Mol Life Sci 2014; 71:4519-44. [PMID: 25238782 PMCID: PMC4232749 DOI: 10.1007/s00018-014-1717-x] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Accepted: 08/28/2014] [Indexed: 01/07/2023]
Abstract
Common fragile sites (CFSs) are regions of the genome with a predisposition to DNA double-strand breaks in response to intrinsic (oncogenic) or extrinsic replication stress. CFS breakage is a common feature in carcinogenesis from its earliest stages. Given that a number of oncogenes and tumor suppressors are located within CFSs, a question that emerges is whether fragility in these regions is only a structural “passive” incident or an event with a profound biological effect. Furthermore, there is sparse evidence that other elements, like non-coding RNAs, are positioned with them. By analyzing data from various libraries, like miRbase and ENCODE, we show a prevalence of various cancer-related genes, miRNAs, and regulatory binding sites, such as CTCF within CFSs. We propose that CFSs are not only susceptible structural domains, but highly organized “functional” entities that when targeted, severe repercussion for cell homeostasis occurs.
Collapse
Affiliation(s)
- Alexandros G Georgakilas
- Physics Department, School of Applied Mathematical and Physical Sciences, National Technical University of Athens (NTUA), Zografou, 15780, Athens, Greece
| | | | | | | | | | | |
Collapse
|
6
|
Wang H, Zhou X, Zhang Y, Zhu H, Zhao L, Fan L, Wang Y, Gang Y, Wu K, Liu Z, Fan D. Growth arrest-specific gene 1 is downregulated and inhibits tumor growth in gastric cancer. FEBS J 2012; 279:3652-3664. [PMID: 22846196 DOI: 10.1111/j.1742-4658.2012.08726.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Gastric cancer is one of the leading causes of malignancy-related mortality in the world, and malignant growth is a crucial characteristic in gastric cancer. In our previous study, we found that growth arrest-specific gene 1 (GAS1) suppression was involved in making gastric cancer cells multidrug-resistant by protecting them from drug-induced apoptosis. In the present study, we investigated the potential role of GAS1 in the growth and proliferation of gastric cancer. We demonstrated that GAS1 expression was decreased in gastric cancer, and patients without GAS1 expression showed shorter survival times than those with GAS1 expression. Both gain-of-function (by overexpression of GAS1) and loss-of-function (by GAS1-specific small interfering RNA knockdown) studies showed that increased GAS1 expression significantly reduced the colony-forming ability of gastric cancer cells in vitro and reduced cell growth in vivo, whereas decreased GAS1 expression had the opposite effects. Moreover, upregulation of GAS1 induced cell apoptosis, and downregulation of GAS1 inhibited apoptosis. Furthermore, we demonstrated that GAS1 could induce gastric cancer cell apoptosis, at least in part through modulating the Bcl-2/Bax ratio and the activity of caspase-3. Taken together, our results strongly indicate that GAS1 expression was decreased in gastric cancer and was predictive of a poor prognosis. Restoration of GAS1 expression inhibited cell growth and promoted apoptosis of gastric cancer cells, at least in part through modulating the Bcl-2/Bax ratio and activating caspase-3, suggesting that GAS1 might be used as a novel therapeutic candidate for gastric cancer.
Collapse
Affiliation(s)
- Honghong Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Xiong Zhou
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yongguo Zhang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Hongwu Zhu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Lina Zhao
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Linni Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yingmei Wang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Yi Gang
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Kaichun Wu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Zhiguo Liu
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| | - Daiming Fan
- State Key Laboratory of Cancer Biology, Xijing Hospital of Digestive Diseases, the Fourth Military Medical Univeristy, Xi'an, China State Key Laboratory of Cancer Biology and Department of Pathology, Xijing Hospital, the Fourth Military Medical University, Xi'an, China
| |
Collapse
|
7
|
Marella NRV, Zeitz MJ, Malyavantham KS, Pliss A, Matsui SI, Goetze S, Bode J, Raska I, Berezney R. Ladder-like amplification of the type I interferon gene cluster in the human osteosarcoma cell line MG63. Chromosome Res 2008; 16:1177-92. [PMID: 19005637 PMCID: PMC2990676 DOI: 10.1007/s10577-008-1267-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2008] [Revised: 09/10/2008] [Accepted: 09/10/2008] [Indexed: 10/21/2022]
Abstract
The organization of the type I interferon (IFN) gene cluster (9p21.3) was studied in a human osteosarcoma cell line (MG63). Array comparative genomic hybridization (aCGH) showed an amplification of approximately 6-fold which ended at both ends of the gene cluster with a deletion that extended throughout the 9p21.3 band. Spectral karyotyping (SKY) combined with fluorescence in-situ hybridization (FISH) identified an arrangement of the gene cluster in a ladder-like array of 5-7 'bands' spanning a single chromosome termed the 'IFN chromosome'. Chromosome painting revealed that the IFN chromosome is derived from components of chromosomes 4, 8 and 9. Labelling with centromeric probes demonstrated a ladder-like amplification of centromeric 4 and 9 sequences that co-localized with each other and a similar banding pattern of chromosome 4, as well as alternating with the IFN gene clusters. In contrast, centromere 8 was not detected on the IFN chromosome. One of the amplified centromeric 9 bands was identified as the functional centromere based on its location at the chromosome constriction and immunolocalization of the CENP-C protein. A model is presented for the generation of the IFN chromosome that involves breakage-fusion-bridge events.
Collapse
Affiliation(s)
- Narasimha Rao V. Marella
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Michael J. Zeitz
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Kishore S. Malyavantham
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Artem Pliss
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| | - Sei-ichi Matsui
- SKY Core Resource Facility, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Sandra Goetze
- HZI, Helmholtz Centre for Infection Research/Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Juergen Bode
- HZI, Helmholtz Centre for Infection Research/Epigenetic Regulation, Inhoffenstr. 7, -38124 Braunschweig, Germany
| | - Ivan Raska
- First Faculty of Medicine, Charles University in Prague and Institute of Physiology, Academy of Sciences of the Czech Republic, v.v.i., Albertov 4, 128 00 Prague, Czech Republic
| | - Ronald Berezney
- Department of Biological Sciences, University at Buffalo, State University of New York, Buffalo, NY 14260, USA
| |
Collapse
|
8
|
Shinoda Y, Kozaki KI, Imoto I, Obara W, Tsuda H, Mizutani Y, Shuin T, Fujioka T, Miki T, Inazawa J. Association of KLK5 overexpression with invasiveness of urinary bladder carcinoma cells. Cancer Sci 2007; 98:1078-86. [PMID: 17459052 PMCID: PMC11158320 DOI: 10.1111/j.1349-7006.2007.00495.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
Array-based comparative genomic hybridization (array-CGH) has powerful potential for high-throughput identification of genetic aberrations in cell genomes. We identified high-level amplification of kallikrein (KLK) genes, which are mapped to 19q13.3 and belong to the serine protease family, in the course of a program to screen a panel of urinary bladder carcinoma cell lines for genomic copy number aberrations using our in-house CGH-array. Expression levels of KLK5, -6, -8 and -9 were significantly increased in three cell lines with copy number gains of these KLK genes. Knockdown of these KLK transcripts by specific small interfering RNA significantly inhibited the invasion of a bladder carcinoma cell line through Matrigel in vitro. Reverse transcription-polymerase chain reaction analysis of 42 primary bladder tumor samples showed that increased expression of KLK5 was frequently observed in invasive tumors (pT2-pT4) (14.3%, 6/42) compared with superficial tumors (pTa, pT1) (0%, 0/42; P = 0.0052), and expression levels of KLK5, -6, -8 and -9 mRNA were higher in invasive tumors than in superficial tumors (P < 0.0001, P = 0.0043, P = 0.0790 and P = 0.0037, respectively). These observations indicate that KLK5, -6, -8 and -9 may be the most likely targets of the 19q13.3 amplification, and may play a crucial role in promoting cancer-cell invasion in bladder tumor.
Collapse
Affiliation(s)
- Yasuo Shinoda
- Department of Molecular Cytogenetics, Medical Research Institute and School of Biomedical Science, Tokyo Medical and Dental University, Tokyo, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Nymark P, Wikman H, Ruosaari S, Hollmén J, Vanhala E, Karjalainen A, Anttila S, Knuutila S. Identification of specific gene copy number changes in asbestos-related lung cancer. Cancer Res 2006; 66:5737-43. [PMID: 16740712 DOI: 10.1158/0008-5472.can-06-0199] [Citation(s) in RCA: 54] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Asbestos is a well-known lung cancer-causing mineral fiber. In vitro and in vivo experiments have shown that asbestos can cause chromosomal damage and aberrations. Lung tumors, in general, have several recurrently amplified and deleted chromosomal regions. To investigate whether a distinct chromosomal aberration profile could be detected in the lung tumors of heavily asbestos-exposed patients, we analyzed the copy number profiles of 14 lung tumors from highly asbestos-exposed patients and 14 matched tumors from nonexposed patients using classic comparative genomic hybridization (CGH). A specific profile could lead to identification of the underlying genes that may act as mediators of tumor formation and progression. In addition, array CGH analyses on cDNA microarrays (13,000 clones) were carried out on 20 of the same patients. Classic CGH showed, on average, more aberrations in asbestos-exposed than in nonexposed patients, and an altered region in chromosome 2 seemed to occur more frequently in the asbestos-exposed patients. Array CGH revealed aberrations in 18 regions that were significantly associated with either of the two groups. The most significant regions were 2p21-p16.3, 5q35.3, 9q33.3-q34.11, 9q34.13-q34.3, 11p15.5, 14q11.2, and 19p13.1-p13.3 (P < 0.005). Furthermore, 11 fragile sites coincided with the 18 asbestos-associated regions (P = 0.08), which may imply preferentially caused DNA damage at these sites. Our findings are the first evidence, indicating that asbestos exposure may produce a specific DNA damage profile.
Collapse
Affiliation(s)
- Penny Nymark
- Department of Pathology, Haartman Institute, University of Helsinki and Helsinki University Central Hospital Diagnostics Laboratory, Helsinki University Central Hospital, Finland
| | | | | | | | | | | | | | | |
Collapse
|