1
|
Lei Q, Huang Y, Deng F, Zheng H, Hong X, Wang P, Lv J, Chen H, Ji Z. NOL-7 serves as a potential prognostic-related biomarker for hepatocellular carcinoma. Discov Oncol 2025; 16:69. [PMID: 39836310 PMCID: PMC11751243 DOI: 10.1007/s12672-024-01551-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 11/06/2024] [Indexed: 01/22/2025] Open
Abstract
BACKGROUND Nucleolar protein 7 (NOL7), a specific protein found in the nucleolus, is crucial for maintaining cell division and proliferation. While the involvement of NOL7 in influencing the unfavorable prognosis of metastatic melanoma has been reported, its significance in predicting the prognosis of patients with Hepatocellular Carcinoma (HCC) remains unclear. METHODS Aberrant expression of NOL7 in HCC and its prognostic value were evaluated using multiple databases, including TCGA, GTEx, Xiantao Academic, HCCDB, UALCAN, TISCH, and STRING. Immunohistochemistry (IHC) and quantitative real-time PCR were used to validate NOL7 expression levels in patients with HCC. RESULTS NOL7 expression was higher in the HCC samples than in the normal samples (P < 0.05). NOL7 was strongly associated with elevated AFP levels, vascular invasion, TNM stage, poorer tumor differentiation, and poorer survival (all P < 0.05). Elevated NOL7 expression correlated with decreased overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) (all P < 0.05). Multivariate analysis revealed that NOL7 was an independent prognostic factor that was significantly related to OS and DSS. The nomogram showed a good predictive performance based on the calibration plot. In addition, NOL7 expression was significantly correlated with cell cycle modulators, immune checkpoints, and various immune cell populations. In addition, we identified eight potential pathways associated with NOL7 as the most promising pathways for NOL7 in HCC. Low-risk specimens were more sensitive to oxaliplatin, cisplatin, irinotecan, sorafenib, and cytarabine than high-risk specimens. CONCLUSION NOL7 may serve as a potential biomarker for predicting clinical outcomes and may provide guidance for clinical therapy in patients with HCC.
Collapse
Affiliation(s)
- Qiucheng Lei
- School of Medicine, Southeast University, Nanjing, Jiangsu, China
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Yingchun Huang
- Department of Outpatient, Jinling Hospital, School of Medicine, Nanjing University, Nanjing, Jiangsu, China
| | - Feiwen Deng
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huazhen Zheng
- Department of Clinical Laboratory, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Xitao Hong
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Peng Wang
- Department of Gastrointestinal Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Jin Lv
- Department of Pathology, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Huanwei Chen
- Organ Transplant Center, The First People's Hospital of Foshan, Foshan, Guangdong, China
| | - Zhenling Ji
- School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, Jiangsu, China.
- Department of General Surgery, Nanjing Jiangbei Hospital, Nantong University Xinglin College, Nanjing, Jiangsu, China.
| |
Collapse
|
2
|
Macias RI, Monte MJ, Serrano MA, González-Santiago JM, Martín-Arribas I, Simão AL, Castro RE, González-Gallego J, Mauriz JL, Marin JJ. Impact of aging on primary liver cancer: epidemiology, pathogenesis and therapeutics. Aging (Albany NY) 2021; 13:23416-23434. [PMID: 34633987 PMCID: PMC8544321 DOI: 10.18632/aging.203620] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 09/28/2021] [Indexed: 01/18/2023]
Abstract
Aging involves progressive physiological and metabolic reprogramming to adapt to gradual deterioration of organs and functions. This includes mechanisms of defense against pre-malignant transformations. Thus, certain tumors are more prone to appear in elderly patients. This is the case of the two most frequent types of primary liver cancer, i.e., hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (iCCA). Accordingly, aging hallmarks, such as genomic instability, telomere attrition, epigenetic alterations, altered proteostasis, mitochondrial dysfunction, cellular senescence, exhaustion of stem cell niches, impaired intracellular communication, and deregulated nutrient sensing can play an important role in liver carcinogenesis in the elders. In addition, increased liver fragility determines a worse response to risk factors, which more frequently affect the aged population. This, together with the difficulty to carry out an early detection of HCC and iCCA, accounts for the late diagnosis of these tumors, which usually occurs in patients with approximately 60 and 70 years, respectively. Furthermore, there has been a considerable controversy on what treatment should be used in the management of HCC and iCCA in elderly patients. The consensus reached by numerous studies that have investigated the feasibility and safety of different curative and palliative therapeutic approaches in elders with liver tumors is that advanced age itself is not a contraindication for specific treatments, although the frequent presence of comorbidities in these individuals should be taken into consideration for their management.
Collapse
Affiliation(s)
- Rocio I.R. Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria J. Monte
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Maria A. Serrano
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jesús M. González-Santiago
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - Isabel Martín-Arribas
- Department of Gastroenterology and Hepatology, University Hospital of Salamanca, IBSAL, Salamanca, Spain
| | - André L. Simão
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Rui E. Castro
- Research Institute for Medicines (iMed.ULisboa), Faculty of Pharmacy, Universidade de Lisboa, Lisbon, Portugal
| | - Javier González-Gallego
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - José L. Mauriz
- Institute of Biomedicine (IBIOMED), University of León, León, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Jose J.G. Marin
- Experimental Hepatology and Drug Targeting (HEVEPHARM) Group, University of Salamanca, IBSAL, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| |
Collapse
|
3
|
Scharf I, Bierbaumer L, Huber H, Wittmann P, Haider C, Pirker C, Berger W, Mikulits W. Dynamics of CRISPR/Cas9-mediated genomic editing of the AXL locus in hepatocellular carcinoma cells. Oncol Lett 2018; 15:2441-2450. [PMID: 29434956 DOI: 10.3892/ol.2017.7605] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/04/2017] [Indexed: 01/01/2023] Open
Abstract
Genomic editing using the CRISPR/Cas9 technology allows selective interference with gene expression. With this method, a multitude of haploid and diploid cells from different organisms have been employed to successfully generate knockouts of genes coding for proteins or small RNAs. Yet, cancer cells exhibiting an aberrant ploidy are considered to be less accessible to CRISPR/Cas9-mediated genomic editing, as amplifications of the targeted gene locus could hamper its effectiveness. Here we examined the suitability of CRISPR/Cas9 to knockout the receptor tyrosine kinase Axl in the human hepatoma cell lines HLF and SNU449. The genomic editing events were validated in two single cell clones each from putative HLF and SNU449 knockout cells (HLF-Axl--1, HLF-Axl--2, SNU449-Axl--1, SNU449-Axl--2). Sequence analysis of respective AXL loci revealed one to six editing events in each individual Axl- clone. The majority of insertions and deletions in the AXL gene at exon 7/8 resulted in a frameshift and thus a premature stop in the coding region. However, one genomic editing event led to an insertion of two amino acids resulting in an altered protein sequence rather than in a frameshift in the AXL locus of the SNU449-Axl--1 cells. Notably, while no Axl protein expression could be detected by immunoblotting in all four cell clones, both expression of total Axl as well as release of soluble Axl into the supernatant was observed by ELISA in incompletely edited SNU449-Axl--1 cells. Importantly, a comparative genomic hybridization array revealed comparable genomic changes in Axl knockout cells as well as in cells expressing Cas9 nickase without guide RNAs in SNU449 and HLF cells, indicating vast alterations in genomic DNA triggered by nickase. Together, these data show that the dynamics of CRISPR/Cas9 may cause incomplete editing events in cancer cell lines, as gene copy numbers vary based on genomic heterogeneity.
Collapse
Affiliation(s)
- Irene Scharf
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Lisa Bierbaumer
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Heidemarie Huber
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Philipp Wittmann
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christine Haider
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Christine Pirker
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Walter Berger
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| | - Wolfgang Mikulits
- Department of Medicine I, Institute of Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, A-1090 Vienna, Austria
| |
Collapse
|
4
|
Fornari F, Milazzo M, Chieco P, Negrini M, Marasco E, Capranico G, Mantovani V, Marinello J, Sabbioni S, Callegari E, Cescon M, Ravaioli M, Croce CM, Bolondi L, Gramantieri L. In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. J Pathol 2012; 227:275-85. [PMID: 22262409 DOI: 10.1002/path.3995] [Citation(s) in RCA: 159] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2011] [Revised: 11/30/2011] [Accepted: 01/12/2012] [Indexed: 12/11/2022]
Abstract
MiR-519d belongs to the chromosome 19 miRNA cluster (C19MC), the largest human miRNA cluster. One of its members, miR-519d, is over-expressed in hepatocellular carcinoma (HCC) and we characterized its contribution to hepatocarcinogenesis. In HCC cells, the over-expression of miR-519d promotes cell proliferation, invasion and impairs apoptosis following anticancer treatments. These functions are, at least in part, exerted through the direct targeting of CDKN1A/p21, PTEN, AKT3 and TIMP2. The mechanisms underlying miR-519d aberrant expression in HCC were assayed by genomic DNA amplification, methylation analysis and ChIP assay. The aberrant hypomethylation of C19MC and TP53 were respectively identified as an epigenetic change allowing the aberrant expression of miR-519d and one of the factors able to activate its transcription. In conclusion, we assessed the oncogenic role of miR-519d in HCC by characterizing its biological functions, including the modulation of response to anticancer treatments and by identifying CDKN1A/p21, PTEN, AKT3 and TIMP2 among its targets.
Collapse
Affiliation(s)
- Francesca Fornari
- Centro di Ricerca Biomedica Applicata, Policlinico S. Orsola-Malpighi e Università di Bologna, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Aigelsreiter A, Haybaeck J, Schauer S, Kiesslich T, Bettermann K, Griessbacher A, Stojakovic T, Bauernhofer T, Samonigg H, Kornprat P, Lackner C, Pichler M. NEMO expression in human hepatocellular carcinoma and its association with clinical outcome. Hum Pathol 2011; 43:1012-9. [PMID: 22176836 DOI: 10.1016/j.humpath.2011.08.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2011] [Revised: 08/16/2011] [Accepted: 08/18/2011] [Indexed: 12/19/2022]
Abstract
The nuclear factor κ-light-chain enhancer of activated B-cells (NF-κB) signaling pathway is regarded as an important factor in inflammation and carcinogenesis. Recently, a role in hepatocarcinogenesis has been attributed to the NF-κB regulatory subunit IKKγ (NEMO) using knockout mice. However, a detailed investigation of NEMO expression in human hepatocellular carcinomas (HCCs) has not yet been reported. We selected 85 HCC patients who had undergone curative liver resection and analyzed NEMO expression of the respective tumors by immunohistochemistry, Western blotting, and real-time PCR. NEMO expression was correlated with clinicopathological parameters, and the impact on 5-year disease-free survival and 5-year overall survival was calculated using multivariate Cox proportional models. In our study, complete loss of NEMO immunoreactivity was found in 34 (40%) of 85 HCCs compared with their adjacent nonneoplastic tissue (P < .05). NEMO messenger RNA (mRNA) expression was detected in all HCC cases; however, no correlation between NEMO immunoreactivity and mRNA level was found. Five-year overall survival rates for patients with low and high NEMO expression were 22% and 50%, respectively (P = .049). However, high tumor stage, but not level of NEMO expression, was confirmed as an independent poor prognostic factor for 5-year disease-free survival (hazards ratio [HR] = 2.1, 95% confidence interval [CI] = 1.3-3.6, P = .009) and 5-year overall survival (HR = 2.5, CI = 1.4-4.4, P = .002). In conclusion, a loss of NEMO immunoreactivity occurs in a substantial proportion of human HCCs. Although low NEMO expression is correlated with a poor 5-year overall survival in patients with HCC, NEMO cannot be regarded as an independent prognostic marker for predicting the clinical outcome of patients suffering from HCC.
Collapse
|
6
|
Abstract
Hepatocellular carcinoma is among the most lethal and prevalent cancers in the human population. Despite its significance, there is only an elemental understanding of the molecular, cellular and environmental mechanisms that drive disease pathogenesis, and there are only limited therapeutic options, many with negligible clinical benefit. This Review summarizes the current state of knowledge of this, the most common and dreaded liver neoplasm, and highlights the principal challenges and scientific opportunities that are relevant to controlling this accelerating global health crisis.
Collapse
Affiliation(s)
- Paraskevi A Farazi
- Department of Genetics, Division of Medical Sciences, Harvard University, Boston, Massachusetts 02115, USA
| | | |
Collapse
|
7
|
Abstract
Chromosomal imbalances represent an important mechanism in cancer progression. A clear association between DNA copy-number aberrations and prognosis has been found in a variety of tumours. Comparative genomic hybridisation studies have detected copy-number increases affecting chromosome 6p in several types of cancer. A systematic analysis of large tumour cohorts is required to identify genomic imbalances of 6p that correlate with a distinct clinical feature of disease progression. Recent findings suggest that a central part of the short arm of chromosome 6p harbours one or more oncogenes directly involved in tumour progression. Gains at 6p have been associated with advanced or metastatic disease, poor prognosis, venous invasion in bladder, colorectal, ovarian and hepatocellular carcinomas. Copy number gains of 6p DNA have been described in a series of patients who presented initially with follicle centre lymphoma, which subsequently transformed to diffuse large B cell lymphoma. Melanoma cytogenetics has consistently identified aberrations of chromosome 6, and a correlation with lower overall survival has been described. Most of the changes observed in tumours to date map to the 6p21-p23 region, which encompasses approximately half of the genes on all of chromosome 6 and one third of the number of CpG islands in this chromosome. Analyses of the genes that cluster to the commonly amplified regions of chromosome 6p have helped to identify a small number of molecular pathways that become deregulated during tumour progression in diverse tumour types. Such pathways offer promise for new treatments in the future.
Collapse
Affiliation(s)
- Gda C Santos
- Department of Applied Molecular Oncology, Ontario Cancer Institute, Princess Margaret Hospital, University of Toronto, Toronto, Ontario, Canada
| | | | | | | |
Collapse
|
8
|
Park SJ, Jeong SY, Kim HJ. Y chromosome loss and other genomic alterations in hepatocellular carcinoma cell lines analyzed by CGH and CGH array. ACTA ACUST UNITED AC 2006; 166:56-64. [PMID: 16616112 DOI: 10.1016/j.cancergencyto.2005.08.022] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2005] [Revised: 08/16/2005] [Accepted: 08/23/2005] [Indexed: 11/26/2022]
Abstract
Hepatocellular carcinoma (HCC) is one of the most frequently occurring malignant tumors worldwide. The incidence of HCC is much higher in males than in females. In order to clarify the molecular basis of the male predominance in HCC, we have characterized the detailed genomic alterations in 5 hepatitis B virus integrated Korean HCC cell lines using G-banding, comparative genomic hybridization (CGH), fluorescence in situ hybridization (FISH), PCR, and CGH array. The commonest alterations were observed in chromosome 7 and Y, as well as chromosomal regions 1q, 8q, 4q, and 16q. The most frequent aberration of genomic material was gain of 1q and loss of chromosome Y. Significant loss of DNA copy number of the cancer related genes that are located on chromosome Y was detected by CGH array. By investigating the karyotypes of the previously reported 21 male HCC cell lines, we found 18 HCC cell lines with Y chromosome loss, indicating that this loss is a significant feature of HCC cell lines. We propose that Y chromosome loss in HCC cell lines may be responsible for the preponderance of males in HCC and its significance may lead to further studies for better understanding of carcinogenesis in HCC.
Collapse
Affiliation(s)
- Sang-Jin Park
- Department of Medical Genetics, School of Medicine, Ajou University, Suwon 442-721, Korea
| | | | | |
Collapse
|
9
|
Ho JC, Cheung ST, Patil M, Chen X, Fan ST. Increased expression of glycosyl-phosphatidylinositol anchor attachment protein 1 (GPAA1) is associated with gene amplification in hepatocellular carcinoma. Int J Cancer 2006; 119:1330-7. [PMID: 16642471 DOI: 10.1002/ijc.22005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Glycosyl-phosphatidylinositol (GPI) anchor attachment protein 1 (GPAA1) transcript level was frequently up-regulated in our earlier study on gene expression profile. We therefore analyzed the potential involvement of GPAA1 in hepatocellular carcinoma (HCC) as GPAA1 gene locates at chromosome 8q24.3 which chromosome region is frequently amplified in HCCs. In this study, we observed that GPAA1 transcript in the HCCs (n = 93) showed a significantly higher expression level compared with their paralleled adjacent nontumor liver tissues, cirrhosis (n = 15) and normal (n = 16) liver tissues using real-time quantitative RT-PCR (p < 0.005). We also demonstrated that GPAA1 protein up-regulation was common in HCCs (90%, 9/10), and GPAA1 gene was frequently amplified (73%, 11/15) using quantitative microsatellite analysis. Increased GPAA1 expression was significantly associated with HCCs poor cellular differentiation (p = 0.011) and poor prognosis (p = 0.010). We then modulated the GPAA1 expression level in HCC cells (Hep3B) by transfection experiments, which was shown to positively regulate cell adhesion ability (p = 0.004) and proliferation rate (p = 0.037). Our data revealed GPAA1 gene amplification with overexpression of RNA and protein in HCC. GPAA1 is a potential amplification target of chromosome 8q and responsible to regulate tumor cells behavior.
Collapse
Affiliation(s)
- Jenny C Ho
- Centre for the Study of Liver Disease, The University of Hong Kong, Pokfulam, Hong Kong, China
| | | | | | | | | |
Collapse
|
10
|
Abstract
SNU (Seoul National University) cell lines have been established from Korean cancer patients since 1982. Of these 109 cell lines have been characterized and reported, i.e., 17 colorectal carcinoma, 12 hepatocellular carcinoma, 11 gastric carcinoma, 12 uterine cervical carcinoma, 17 B-lymphoblastoid cell lines derived from cancer patients, 5 ovarian carcinoma, 3 malignant mixed Mllerian tumor, 6 laryngeal squamous cell carcinoma, 7 renal cell carcinoma, 9 brain tumor, 6 biliary tract, and 4 pancreatic carcinoma cell lines. These SNU cell lines have been distributed to biomedical researchers domestic and worldwide through the KCLB (Korean Cell Line Bank), and have proven to be of value in various scientific research fields. The characteristics of these cell lines have been reported in over 180 international journals by our laboratory and by many other researchers from 1987. In this paper, the cellular and molecular characteristics of SNU human cancer cell lines are summarized according to their genetic and epigenetic alterations and functional analysis.
Collapse
Affiliation(s)
- Ja-Lok Ku
- Korean Cell Line Bank, Laboratory of Cell Biology, Cancer Research Center and Cancer Research Institute, Seoul National University College of Medicine, Seoul, Korea
| | | |
Collapse
|
11
|
Niebert M, Tönjes RR. Analyses of prevalence and polymorphisms of six replication-competent and chromosomally assigned porcine endogenous retroviruses in individual pigs and pig subspecies. Virology 2003; 313:427-34. [PMID: 12954210 DOI: 10.1016/s0042-6822(03)00316-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
As porcine endogenous retroviruses (PERV) productively infect human cells in vitro, they pose a serious risk in xenotransplantation and xenogeneic cell therapies. We have analyzed the prevalence of six well-characterized full-length PERV, five of them being replication-competent and four of them being chromosomally assigned (J. Virol. 75 (2001) 5465; J. Virol. 76 (2002) 2714). These analyses revealed a heterogeneous distribution of PERV among individuals and, as no PERV is present in every pig, it seems feasible to generate pigs free of functional PERV by conventional breeding. Conversely, as PERV are polymorphic, single proviruses may have escaped detection and this kind of assay must be performed for every herd used in xenotransplantation or xenogeneic cell therapies. In addition, specific proviruses show internal point mutations which significantly affect their replicational capacities. As there are two different types of PERV LTR structures showing varying levels of transcriptional capacity (J. Virol. 75 (2001) 6933), an analysis of 21 distinct chromosomal locations revealed that PERV which harbor highly active LTRs with repeat elements in U3 are dominant.
Collapse
|