1
|
Meur S, Mukherjee S, Roy S, Karati D. Role of PIM Kinase Inhibitor in the Treatment of Alzheimer's Disease. Mol Neurobiol 2024; 61:10941-10955. [PMID: 38816674 DOI: 10.1007/s12035-024-04257-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 05/21/2024] [Indexed: 06/01/2024]
Abstract
Alzheimer's disease (AD), a neurodegenerative disorder, is the most prevalent form of senile dementia, causing progressive deterioration of cognition, behavior, and rational skills. Neuropathologically, AD is characterized by two hallmark proteinaceous aggregates: amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) formed of hyperphosphorylated tau. A significant study has been done to understand how Aβ and/or tau accumulation can alter signaling pathways that affect neuronal function. A conserved protein kinase known as the mammalian target of rapamycin (mTOR) is essential for maintaining the proper balance between protein synthesis and degradation. Overwhelming evidence shows mTOR signaling's primary role in age-dependent cognitive decline and the pathogenesis of AD. Postmortem human AD brains consistently show an upregulation of mTOR signaling. Confocal microscopy findings demonstrated a direct connection between mTOR and intraneuronal Aβ42 through molecular processes of PRAS40 phosphorylation. By attaching to the mTORC1 complex, PRAS40 inhibits the activity of mTOR. Furthermore, inhibiting PRAS40 phosphorylation can stop the Aβ-mediated increase in mTOR activity, indicating that the accumulation of Aβ may aid in PRAS40 phosphorylation. Physiologically, PRAS40 is phosphorylated by PIM1 which is a serine/threonine kinase of proto-oncogene PIM kinase family. Pharmacological inhibition of PIM1 activity prevents the Aβ-induced mTOR hyperactivity in vivo by blocking PRAS40 phosphorylation and restores cognitive impairments by enhancing proteasome function. Recently identified small-molecule PIM1 inhibitors have been developed as potential therapeutic to reduce AD-neuropathology. This comprehensive study aims to address the activity of PIM1 inhibitor that has been tested for the treatment of AD, in addition to the pharmacological and structural aspects of PIM1.
Collapse
Affiliation(s)
- Shreyasi Meur
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata-Group of Institutions, 124, B.L Saha Road, Kolkata, 700053, West Bengal, India
| | - Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, 700091, West Bengal, India.
| |
Collapse
|
2
|
Expression of PIM kinases in Reed-Sternberg cells fosters immune privilege and tumor cell survival in Hodgkin lymphoma. Blood 2017; 130:1418-1429. [PMID: 28698206 DOI: 10.1182/blood-2017-01-760702] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 07/02/2017] [Indexed: 12/26/2022] Open
Abstract
Reed-Sternberg (RS) cells of classical Hodgkin lymphoma (cHL) express multiple immunoregulatory proteins that shape the cHL microenvironment and allow tumor cells to evade immune surveillance. Expression of certain immunoregulatory proteins is modulated by prosurvival transcription factors, such as NFκB and STATs. Because these factors also induce expression of the oncogenic PIM1/2/3 serine/threonine kinases, and as PIMs modulate transcriptional activity of NFκB and STATs, we hypothesized that these kinases support RS cell survival and foster their immune privilege. Here, we investigated PIM1/2/3 expression in cHL and assessed their role in developing RS cell immune privilege and survival. PIM1/2/3 were ubiquitously expressed in primary and cultured RS cells, and their expression was driven by JAK-STAT and NFκB activity. Genetic or chemical PIM inhibition with a newly developed pan-PIM inhibitor, SEL24-B489, induced RS cell apoptosis. PIM inhibition decreased cap-dependent protein translation, blocked JAK-STAT signaling, and markedly attenuated NFκB-dependent gene expression. In a cHL xenograft model, SEL24-B489 delayed tumor growth by 95.8% (P = .0002). Furthermore, SEL24-B489 decreased the expression of multiple molecules engaged in developing the immunosuppressive microenvironment, including galectin-1 and PD-L1/2. In coculture experiments, T cells incubated with SEL24-B489-treated RS cells exhibited higher expression of activation markers than T cells coincubated with control RS cells. Taken together, our data indicate that PIM kinases in cHL exhibit pleiotropic effects, orchestrating tumor immune escape and supporting RS cell survival. Inhibition of PIM kinases decreases RS cell viability and disrupts signaling circuits that link these cells with their niches. Thus, PIM kinases are promising therapeutic targets in cHL.
Collapse
|
3
|
Kleppe M, Levine RL. New pieces of a puzzle: the current biological picture of MPN. Biochim Biophys Acta Rev Cancer 2012; 1826:415-22. [PMID: 22824378 DOI: 10.1016/j.bbcan.2012.07.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2012] [Revised: 07/12/2012] [Accepted: 07/12/2012] [Indexed: 12/14/2022]
Abstract
Over the last years, we have witnessed significant improvement in our ability to elucidate the genetic events, which contribute to the pathogenesis of acute and chronic leukemias, and also in patients with myeloproliferative neoplasms (MPN). However, despite significant insight into the role of specific mutations, including the JAK2V617F mutation, in MPN pathogenesis, the precise mechanisms by which specific disease alleles contribute to leukemic transformation in MPN remain elusive. Here we review recent studies aimed at understanding the role of downstream signaling pathways in MPN initiation and phenotype, and discuss how these studies have begun to lead to novel insights with biologic, clinical, and therapeutic relevance.
Collapse
Affiliation(s)
- Maria Kleppe
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | |
Collapse
|
4
|
Abstract
OBJECTIVES We investigated the signaling pathways activated in response to interleukin 6 (IL-6) in pancreatic cell lines, with a focus on signal transducer and activator of transcription 3 (STAT3) and proto-oncogene serine/threonine-protein (Pim-1) kinase. METHODS Interleukin 6 receptor (IL-6R) expression and IL-6-induced cell signaling was measured by Western blotting in human pancreatic cell lines. Cucurbitacin I was used as a pharmacological tool to investigate the role of STAT3 in Pim-1 activation. Stably overexpressing Pim-1 kinase cell lines were characterized for their response to IL-6 in vitro and for their growth rate as flank tumors in scid mice. RESULTS Interleukin 6 receptor was expressed across multiple cancer cell lines. In Panc-1 cells, IL-6 treatment increased expression of phosphorylation of signal transducer and activator of transcription 3 and Pim-1 kinase. Cucurbitacin I treatment alone increased pErk1/2 expression in wild-type and Pim-1-overexpressing cell lines and resulted in exaggerated Pim-1 kinase protein levels in control and IL-6-stimulated cells, suggesting that up-regulation of Pim-1 may be partially STAT3 independent. Pim-1 overexpression did not significantly affect growth rate in vitro or in vivo in Panc-1 or MiaPaCa2 cell lines. CONCLUSIONS Interleukin 6 activates STAT3 and stimulates Pim-1 kinase in pancreatic cell line models. The regulation and consequence of Pim-1 expression seems to be highly context dependent.
Collapse
|
5
|
Piotrowska H, Kucinska M, Murias M. Biological activity of piceatannol: Leaving the shadow of resveratrol. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2012; 750:60-82. [DOI: 10.1016/j.mrrev.2011.11.001] [Citation(s) in RCA: 275] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2011] [Revised: 10/26/2011] [Accepted: 11/03/2011] [Indexed: 01/27/2023]
|
6
|
Vu HA, Xinh PT, Kano Y, Tokunaga K, Sato Y. The juxtamembrane domain in ETV6/FLT3 is critical for PIM-1 up-regulation and cell proliferation. Biochem Biophys Res Commun 2009; 383:308-13. [PMID: 19345670 DOI: 10.1016/j.bbrc.2009.03.157] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2009] [Accepted: 03/28/2009] [Indexed: 11/19/2022]
Abstract
We recently reported that the ETV6/FLT3 fusion protein conferred interleukin-3-independent growth on Ba/F3 cells. The present study has been conducted to assess role of the juxtamembrane domain of FLT3 for signal transduction and cell transformation. The wild-type ETV6/FLT3 fusion protein in transfected cells was a constitutively activated tyrosine kinase that led to up-regulation of PIM-1 and activations of STAT5, AKT, and MAPK. Deletion of the juxtamembrane domain abrogated interleukin-3-independent growth of the transfected cells and PIM-1 up-regulation, whereas it retained compatible levels of phosphorylations of STAT5, AKT, and MAPK. Further deletion of N-terminal region of the tyrosine kinase I domain of FLT3 completely abolished these phosphorylations. Our data indicate that the juxtamembrane domain of FLT3 in ETV6/FLT3 fusion protein is critical for cell proliferation and PIM-1 up-regulation that might be independent of a requirement for signaling through STAT5, MAPK, and AKT pathways.
Collapse
Affiliation(s)
- Hoang Anh Vu
- Consolidated Research Institute for Advanced Science and Medical Care, Waseda University, Tokyo, Japan
| | | | | | | | | |
Collapse
|
7
|
Hu XF, Li J, Vandervalk S, Wang Z, Magnuson NS, Xing PX. PIM-1-specific mAb suppresses human and mouse tumor growth by decreasing PIM-1 levels, reducing Akt phosphorylation, and activating apoptosis. J Clin Invest 2009; 119:362-75. [PMID: 19147983 DOI: 10.1172/jci33216] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2007] [Accepted: 12/03/2008] [Indexed: 12/14/2022] Open
Abstract
Provirus integration site for Moloney murine leukemia virus (PIM1) is a proto-oncogene that encodes a serine/threonine kinase with multiple cellular functions. Overexpression of PIM-1 plays a critical role in progression of prostatic and hematopoietic malignancies. Here we describe the generation of a mAb specific for GST-PIM-1, which reacted strongly with most human and mouse cancer tissues and cell lines of prostate, breast, and colon origin but only weakly (if at all) with normal tissues. The mAb binds to PIM-1 in the cytosol and nucleus as well as to PIM-1 on the surface of human and murine cancer cells. Treatment of human and mouse prostate cancer cell lines with the PIM-1-specific mAb resulted in disruption of PIM-1/Hsp90 complexes, decreased PIM-1 and Hsp90 levels, reduced Akt phosphorylation at Ser473, reduced phosphorylation of Bad at Ser112 and Ser136, and increased cleavage of caspase-9, an indicator of activation of the mitochondrial cell death pathway. The mAb induced cancer cell apoptosis and synergistically enhanced antitumor activity when used in combination with cisplatin and epirubicin. In tumor models, the PIM-1-specific mAb substantially inhibited growth of the human prostate cancer cell line DU145 in SCID mice and the mouse prostate cancer cell TRAMP-C1 in C57BL/6 mice. These findings are important because they provide what we believe to be the first in vivo evidence that treatment of prostate cancer may be possible by targeting PIM-1 using an Ab-based therapy.
Collapse
Affiliation(s)
- Xiu Feng Hu
- Cancer Immunotherapy Laboratory, Burnet Institute Incorporating Austin Research Institute, Heidelberg, Victoria, Australia
| | | | | | | | | | | |
Collapse
|
8
|
Abstract
Prolactin (PRL) is a 23-kDa protein hormone that binds to a single-span membrane receptor, a member of the cytokine receptor superfamily, and exerts its action via several interacting signaling pathways. PRL is a multifunctional hormone that affects multiple reproductive and metabolic functions and is also involved in tumorigenicity. In addition to being a classical pituitary hormone, PRL in humans is produced by many tissues throughout the body where it acts as a cytokine. The objective of this review is to compare and contrast multiple aspects of PRL, from structure to regulation, and from physiology to pathology in rats, mice, and humans. At each juncture, questions are raised whether, or to what extent, data from rodents are relevant to PRL homeostasis in humans. Most current knowledge on PRL has been obtained from studies with rats and, more recently, from the use of transgenic mice. Although this information is indispensable for understanding PRL in human health and disease, there is sufficient disparity in the control of the production, distribution, and physiological functions of PRL among these species to warrant careful and judicial extrapolation to humans.
Collapse
Affiliation(s)
- Nira Ben-Jonathan
- Department of Cell and Cancer Biology, University of Cincinnati, Cincinnati, Ohio 45255, USA.
| | | | | |
Collapse
|
9
|
Muraski JA, Rota M, Misao Y, Fransioli J, Cottage C, Gude N, Esposito G, Delucchi F, Arcarese M, Alvarez R, Siddiqi S, Emmanuel GN, Wu W, Fischer K, Martindale JJ, Glembotski CC, Leri A, Kajstura J, Magnuson N, Berns A, Beretta RM, Houser SR, Schaefer EM, Anversa P, Sussman MA. Pim-1 regulates cardiomyocyte survival downstream of Akt. Nat Med 2007; 13:1467-75. [PMID: 18037896 DOI: 10.1038/nm1671] [Citation(s) in RCA: 186] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2007] [Accepted: 09/24/2007] [Indexed: 01/11/2023]
Abstract
The serine-threonine kinases Pim-1 and Akt regulate cellular proliferation and survival. Although Akt is known to be a crucial signaling protein in the myocardium, the role of Pim-1 has been overlooked. Pim-1 expression in the myocardium of mice decreased during postnatal development, re-emerged after acute pathological injury in mice and was increased in failing hearts of both mice and humans. Cardioprotective stimuli associated with Akt activation induced Pim-1 expression, but compensatory increases in Akt abundance and phosphorylation after pathological injury by infarction or pressure overload did not protect the myocardium in Pim-1-deficient mice. Transgenic expression of Pim-1 in the myocardium protected mice from infarction injury, and Pim-1 expression inhibited cardiomyocyte apoptosis with concomitant increases in Bcl-2 and Bcl-X(L) protein levels, as well as in Bad phosphorylation levels. Relative to nontransgenic controls, calcium dynamics were significantly enhanced in Pim-1-overexpressing transgenic hearts, associated with increased expression of SERCA2a, and were depressed in Pim-1-deficient hearts. Collectively, these data suggest that Pim-1 is a crucial facet of cardioprotection downstream of Akt.
Collapse
Affiliation(s)
- John A Muraski
- San Diego State University Heart Institute, San Diego State University, 5500 Campanile Drive, San Diego, California 92182, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Holder S, Lilly M, Brown ML. Comparative molecular field analysis of flavonoid inhibitors of the PIM-1 kinase. Bioorg Med Chem 2007; 15:6463-73. [PMID: 17637507 DOI: 10.1016/j.bmc.2007.06.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2006] [Revised: 05/23/2007] [Accepted: 06/12/2007] [Indexed: 12/31/2022]
Abstract
The PIM-1 protein, the product of the pim-1 oncogene, is a serine/threonine kinase. Dysregulation of the PIM-1 kinase has been implicated in the development of human malignancies including lymphomas, leukemias, and prostate cancer. Comparative molecular field analysis (CoMFA) is a 3-D QSAR technique that has been widely used, with notable success, to correlate biological activity with the steric and electrostatic properties of ligands. We have used a set of 15 flavonoid inhibitors of the PIM-1 kinase, aligned de novo by common substructure, to generate a CoMFA model for the purpose of elucidating the steric and electrostatic properties involved in flavonoid binding to the PIM-1 kinase. Partial least squares correlation between observed and predicted inhibitor potency (expressed as -logIC50), using a non-cross-validated partial least squares analysis, generated a non-cross-validated q2=0.805 for the training set (n=15) of flavonoids. The CoMFA generated steric map indicated that the PIM-1-binding site was sterically hindered, leading to more efficient binding of planar molecules over (R) or (S) compounds. The electrostatic map identified that positive charges near the flavonoid atom C8 and negative charges near C4' increased flavonoid binding. The CoMFA model accurately predicted the potency of a test set of flavonoids (n=6), generating a correlation between observed and predicted potency of q2=0.825. CoMFA models generated from additional alignment rules, which were guided by co-crystal structure ligand orientations, did not improve the correlative value of the model. Superimposing the PIM-1 kinase crystal structure onto the CoMFA contours validated the steric and electrostatic maps, elucidating the amino acid residues that potentially contribute to the CoMFA fields. Thus we have generated the first predictive model that may be used for the rational design of small-molecule inhibitors of the PIM-1 kinase.
Collapse
Affiliation(s)
- Sheldon Holder
- Center for Molecular Biology & Gene Therapy, Loma Linda University School of Medicine, Loma Linda, CA 92354, USA
| | | | | |
Collapse
|
11
|
Langenau DM, Keefe MD, Storer NY, Guyon JR, Kutok JL, Le X, Goessling W, Neuberg DS, Kunkel LM, Zon LI. Effects of RAS on the genesis of embryonal rhabdomyosarcoma. Genes Dev 2007; 21:1382-95. [PMID: 17510286 PMCID: PMC1877750 DOI: 10.1101/gad.1545007] [Citation(s) in RCA: 273] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2007] [Accepted: 04/03/2007] [Indexed: 02/07/2023]
Abstract
Embryonal rhabdomyosarcoma (ERMS) is a devastating cancer with specific features of muscle differentiation that can result from mutational activation of RAS family members. However, to date, RAS pathway activation has not been reported in a majority of ERMS patients. Here, we have created a zebrafish model of RAS-induced ERMS, in which animals develop externally visible tumors by 10 d of life. Microarray analysis and cross-species comparisons identified two conserved gene signatures found in both zebrafish and human ERMS, one associated with tumor-specific and tissue-restricted gene expression in rhabdomyosarcoma and a second comprising a novel RAS-induced gene signature. Remarkably, our analysis uncovered that RAS pathway activation is exceedingly common in human RMS. We also created a new transgenic coinjection methodology to fluorescently label distinct subpopulations of tumor cells based on muscle differentiation status. In conjunction with fluorescent activated cell sorting, cell transplantation, and limiting dilution analysis, we were able to identify the cancer stem cell in zebrafish ERMS. When coupled with gene expression studies of this cell population, we propose that the zebrafish RMS cancer stem cell shares similar self-renewal programs as those found in activated satellite cells.
Collapse
MESH Headings
- Adenosine Deaminase/genetics
- Animals
- Animals, Genetically Modified
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Cell Differentiation
- Cell Transformation, Neoplastic
- Cells, Cultured
- DNA-Binding Proteins/genetics
- Embryo, Nonmammalian/cytology
- Embryo, Nonmammalian/metabolism
- Gene Expression Profiling
- Gene Expression Regulation, Developmental
- Genes, ras/physiology
- Humans
- In Situ Hybridization
- Kidney/cytology
- Kidney/metabolism
- Kidney/pathology
- Microinjections
- Muscle, Skeletal/cytology
- Muscle, Skeletal/metabolism
- Muscle, Skeletal/pathology
- Oligonucleotide Array Sequence Analysis
- RNA-Binding Proteins
- Rhabdomyosarcoma, Embryonal/etiology
- Rhabdomyosarcoma, Embryonal/genetics
- Rhabdomyosarcoma, Embryonal/pathology
- Zebrafish/genetics
- Zebrafish/metabolism
Collapse
Affiliation(s)
- David M. Langenau
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Matthew D. Keefe
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Narie Y. Storer
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Jeffrey R. Guyon
- Program in Genomics and Howard Hughes Medical Institute at Children’s Hospital Boston, Boston, Massachusetts 02115, USA
| | - Jeffery L. Kutok
- Department of Pathology, Brigham and Women’s Hospital, Boston, Massachusetts 02115, USA
| | - Xiuning Le
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | - Wolfram Goessling
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | - Louis M. Kunkel
- Program in Genomics and Howard Hughes Medical Institute at Children’s Hospital Boston, Boston, Massachusetts 02115, USA
| | - Leonard I. Zon
- Stem Cell Program and Division of Hematology/Oncology, Children’s Hospital Boston and Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| |
Collapse
|
12
|
Yu Y, Piddington C, Fitzpatrick D, Twomey B, Xu R, Swanson SJ, Jing S. A novel method for detecting neutralizing antibodies against therapeutic proteins by measuring gene expression. J Immunol Methods 2006; 316:8-17. [PMID: 16989855 DOI: 10.1016/j.jim.2006.06.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2005] [Revised: 06/09/2006] [Accepted: 06/14/2006] [Indexed: 11/30/2022]
Abstract
The presence of neutralizing antibodies against protein therapeutics is a concern in the biomedical field. Such antibodies not only reduce the efficacy of protein therapeutics, but also impose potential dangers to the patients receiving them. To date, a small number of in vitro cell-based bioassays for detecting neutralizing antibodies against therapeutic proteins have been developed. Most of the existing assays, however, either involve the use of radioactive materials or have limited sensitivities and/or poor specificities. With advances in mRNA profiling and detection techniques, we have established a novel and non-radioactive bioassay system using branched DNA (bDNA) technology for detecting protein-therapeutic neutralizing antibodies in patient serum. Our assay measures the variations of target gene expression that reflect the biologic effect of the therapeutic agent and the capability of the antibodies, if present, to neutralize the therapeutics. Compared with most existing assays, the new assay is more sensitive and specific, and completely eliminates the use of radioactive materials. Application of the new assay system can be widely expanded if new target genes and responding cell lines for other therapeutics are identified or engineered.
Collapse
Affiliation(s)
- Yanbin Yu
- Department of Clinical Immunology, Amgen Inc, One Amgen Center Drive, Thousand Oaks, CA 91320, USA
| | | | | | | | | | | | | |
Collapse
|
13
|
Gapter LA, Magnuson NS, Ng KY, Hosick HL. Pim-1 kinase expression during murine mammary development. Biochem Biophys Res Commun 2006; 345:989-97. [PMID: 16712793 DOI: 10.1016/j.bbrc.2006.04.110] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2006] [Accepted: 04/18/2006] [Indexed: 11/19/2022]
Abstract
Pim-1 kinase phosphorylates substrates whose activities are linked to proliferation, survival, differentiation, and apoptosis. Although pim-1 is induced by hormones and cytokines, the hormonal control and contribution of Pim-1 to mammary gland development have not been evaluated. We examined Pim-1 expression in mammary cell lines, investigated whether Pim-1 levels could be altered in breast epithelia by mammogenic hormones, and evaluated Pim-1 expression during mammary development. We found that Pim-1 was elevated in most mammary carcinoma cell lines and progesterone increased Pim-1 protein to some extent in non-tumorigenic mammary epithelia. Pim-1 expression in situ was consistent with the documented profile of progesterone activity in mouse mammary glands. Pim-1 nuclear localization correlated with cytoplasmic distribution for its substrate, p21(CIP/Waf1), and we found that Pim-1 and p21 associate in vitro. Our results suggest that Pim-1 expression may be regulated by progesterone during mammary development and Pim-1 associates with p21 in mammary epithelial cells.
Collapse
Affiliation(s)
- Leslie A Gapter
- Department of Pharmacy, Faculty of Science, National University of Singapore, 117543, Republic of Singapore
| | | | | | | |
Collapse
|
14
|
Jacobs MD, Black J, Futer O, Swenson L, Hare B, Fleming M, Saxena K. Pim-1 Ligand-bound Structures Reveal the Mechanism of Serine/Threonine Kinase Inhibition by LY294002. J Biol Chem 2005; 280:13728-34. [PMID: 15657054 DOI: 10.1074/jbc.m413155200] [Citation(s) in RCA: 160] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Pim-1 is an oncogene-encoded serine/threonine kinase primarily expressed in hematopoietic and germ cell lines. Pim-1 kinase was originally identified in Maloney murine leukemia virus-induced T-cell lymphomas and is associated with multiple cellular functions such as proliferation, survival, differentiation, apoptosis, and tumorigenesis (Wang, Z., Bhattacharya, N., Weaver, M., Petersen, K., Meyer, M., Gapter, L., and Magnuson, N. S. (2001) J. Vet. Sci. 2, 167-179). The crystal structures of Pim-1 complexed with staurosporine and adenosine were determined. Although a typical two-domain serine/threonine protein kinase fold is observed, the inter-domain hinge region is unusual in both sequence and conformation; a two-residue insertion causes the hinge to bulge away from the ATP-binding pocket, and a proline residue in the hinge removes a conserved main chain hydrogen bond donor. Without this hydrogen bond, van der Waals interactions with the hinge serve to position the ligand. The hinge region of Pim-1 resembles that of phosphatidylinositol 3-kinase more closely than it does other protein kinases. Although the phosphatidylinositol 3-kinase inhibitor LY294002 also inhibits Pim-1, the structure of the LY294002.Pim-1 complex reveals a new binding mode that may be general for Ser/Thr kinases.
Collapse
Affiliation(s)
- Marc D Jacobs
- Vertex Pharmaceuticals Incorporated, Cambridge, Massachusetts 02139, USA.
| | | | | | | | | | | | | |
Collapse
|
15
|
Nieborowska-Skorska M, Hoser G, Kossev P, Wasik MA, Skorski T. Complementary functions of the antiapoptotic protein A1 and serine/threonine kinase pim-1 in the BCR/ABL-mediated leukemogenesis. Blood 2002; 99:4531-9. [PMID: 12036885 DOI: 10.1182/blood.v99.12.4531] [Citation(s) in RCA: 96] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
BCR/ABL oncogenic tyrosine kinase activates STAT5, which plays an important role in leukemogenesis. The downstream effectors of the BCR/ABL-->STAT5 pathway remain poorly defined. We show here that expression of the antiapoptotic protein A1, a member of the Bcl-2 family, and the serine/threonine kinase pim-1 are enhanced by BCR/ABL. This up-regulation requires activation of STAT5 by the signaling from SH3+SH2 domains of BCR/ABL. Enhanced expression of A1 and pim-1 played a key role in the BCR/ABL-mediated cell protection from apoptosis. In addition, pim-1 promoted proliferation of the BCR/ABL-transformed cells. Both A1 and pim-1 were required to induce interleukin 3-independent cell growth, inhibit activation of caspase 3, and stimulate cell cycle progression. Moreover, simultaneous up-regulation of both A1 and pim-1 was essential for in vitro transformation and in vivo leukemogenesis mediated by BCR/ABL. These data indicate that induction of A1 and pim-1 expression may play a critical role in the BCR/ABL-dependent transformation.
Collapse
|
16
|
Abstract
Evidence accumulated over the past 20 y indicates that the anterior pituitary hormone, prolactin (PRL), is a critical, physiologically relevant immunomodulator. Results from early hormone-ablation studies in animals implicated PRL as a factor that contributes to maintenance of immunocompetence. However, the discovery of PRL receptors on T and B lymphocytes and the observation that these cells synthesize and secrete PRL spurred intensive investigation into the actions and underlying mechanisms triggered by the hormone in the immune system. In numerous cell culture systems, PRL was found to act as a co-mitogen, enhancing the efficacy of plant lectins and cytokines in the stimulation of lymphocyte proliferation. In addition, results from more recent studies suggest that PRL may promote survival of certain lymphocyte subsets presumably due to its capacity to augment expression of anti-apoptotic genes. In this review, we focus on the proliferative actions of PRL and its survival promoting properties in immune cells.
Collapse
Affiliation(s)
- A R Buckley
- College of Pharmacy and Department of Molecular and Cellular Physiology, University of Cincinnati Medical Center, Ohio 45267-0004, USA.
| |
Collapse
|
17
|
Alam R, Gorska M. Genomic microarrays: arraying order in biological chaos? Am J Respir Cell Mol Biol 2001; 25:405-8. [PMID: 11694444 DOI: 10.1165/ajrcmb.25.4.f217] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- R Alam
- Department of Internal Medicine, Division of Allergy & Immunology, University of Texas Medical Branch, Galveston, TX 77555-1083, USA.
| | | |
Collapse
|