1
|
Shukla H, John D, Banerjee S, Tiwari AK. Drug repurposing for neurodegenerative diseases. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2024; 207:249-319. [PMID: 38942541 DOI: 10.1016/bs.pmbts.2024.03.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/30/2024]
Abstract
Neurodegenerative diseases (NDDs) are neuronal problems that include the brain and spinal cord and result in loss of sensory and motor dysfunction. Common NDDs include Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), Multiple Sclerosis (MS), and Amyotrophic Lateral Sclerosis (ALS) etc. The occurrence of these diseases increases with age and is one of the challenging problems among elderly people. Though, several scientific research has demonstrated the key pathologies associated with NDDs still the underlying mechanisms and molecular details are not well understood and need to be explored and this poses a lack of effective treatments for NDDs. Several lines of evidence have shown that NDDs have a high prevalence and affect more than a billion individuals globally but still, researchers need to work forward in identifying the best therapeutic target for NDDs. Thus, several researchers are working in the directions to find potential therapeutic targets to alter the disease pathology and treat the diseases. Several steps have been taken to identify the early detection of the disease and drug repurposing for effective treatment of NDDs. Moreover, it is logical that current medications are being evaluated for their efficacy in treating such disorders; therefore, drug repurposing would be an efficient, safe, and cost-effective way in finding out better medication. In the current manuscript we discussed the utilization of drugs that have been repurposed for the treatment of AD, PD, HD, MS, and ALS.
Collapse
Affiliation(s)
- Halak Shukla
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Diana John
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Shuvomoy Banerjee
- Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India
| | - Anand Krishna Tiwari
- Genetics and Developmental Biology Laboratory, Department of Biotechnology and Bioengineering, Institute of Advanced Research (IAR), Gandhinagar, Gujarat, India.
| |
Collapse
|
2
|
Islam A, Mishra A, Ahsan R, Fareha S. Phytopharmaceuticals and Herbal Approaches to Target Neurodegenerative Disorders. Drug Res (Stuttg) 2023; 73:388-407. [PMID: 37308092 DOI: 10.1055/a-2076-7939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Neurodegeneration is characterized as the continuous functional and structural loss of neurons, resulting in various clinical and pathological manifestations and loss of functional anatomy. Medicinal plants have been oppressed from ancient years and are highly considered throughout the world as a rich source of therapeutic means for the prevention, treatment of various ailments. Plant-derived medicinal products are becoming popular in India and other nations. Further herbal therapies shows good impact on chronic long term illnesses including degenerative conditions of neurons and brain. The use of herbal medicines continues to expand rapidly across the world. The active phytochemical constituents of individual plants are sometimes insufficient to achieve the desirable therapeutic effects. Combining the multiple herbs in a particular ratio (polyherbalism) will give a better therapeutic effect and reduce toxicity. Herbal-based nanosystems are also being studied as a way to enhance the delivery and bioavailability of phytochemical compounds for the treatment of neurodegenerative diseases. This review mainly focuses on the importance of the herbal medicines, polyherbalism and herbal-based nanosystems and its clinical significance for neurodegenerative diseases.
Collapse
Affiliation(s)
- Anas Islam
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Rabia Ahsan
- Department of Pharmacy, Integral University, Dasauli, Lucknow, Uttar Pradesh, India
| | - Syed Fareha
- Department of Bioengineering, Integral University,, Lucknow, Uttar Pradesh, India
| |
Collapse
|
3
|
Pham Nguyen TP, Bravo L, Gonzalez-Alegre P, Willis AW. Geographic Barriers Drive Disparities in Specialty Center Access for Older Adults with Huntington's Disease. J Huntingtons Dis 2022; 11:81-89. [PMID: 35253771 DOI: 10.3233/jhd-210489] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Huntington's Disease Society of America Centers of Excellence (HDSA COEs) are primary hubs for Huntington's disease (HD) research opportunities and accessing new treatments. Data on the extent to which HDSA COEs are accessible to individuals with HD, particularly those older or disabled, are lacking. OBJECTIVE To describe persons with HD in the U.S. Medicare program and characterize this population by proximity to an HDSA COE. METHODS We conducted a cross-sectional study of Medicare beneficiaries ages ≥65 with HD in 2017. We analyzed data on benefit entitlement, demographics, and comorbidities. QGis software and Google Maps Interface were employed to estimate the distance from each patient to the nearest HDSA COE, and the proportion of individuals residing within 100 miles of these COEs at the state level. RESULTS Among 9,056 Medicare beneficiaries with HD, 54.5% were female, 83.0% were white; 48.5% were ≥65 years, but 64.9% originally qualified for Medicare due to disability. Common comorbidities were dementia (32.4%) and depression (35.9%), and these were more common in HD vs. non-HD patients. Overall, 5,144 (57.1%) lived within 100 miles of a COE. Race/ethnicity, sex, age, and poverty markers were not associated with below-average proximity to HDSA COEs. The proportion of patients living within 100 miles of a center varied from < 10% (16 states) to > 90% (7 states). Most underserved states were in the Mountain and West Central divisions. CONCLUSION Older Medicare beneficiaries with HD are frequently disabled and have a distinct comorbidity profile. Geographical, rather than sociodemographic factors, define the HD population with limited access to HDSA COEs.
Collapse
Affiliation(s)
- Thanh Phuong Pham Nguyen
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology Translational Center for Excellence for Neuroepidemiology and Neurological Outcomes Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Licia Bravo
- Xavier University of Louisiana, New Orleans, LA, USA.,Penn Access Summer Scholars Program, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Pedro Gonzalez-Alegre
- Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Raymond G. Perelman Center for Cellular & Molecular Therapy, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Allison W Willis
- Center for Pharmacoepidemiology Research and Training, Center for Clinical Epidemiology and Biostatistics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Center for Clinical Epidemiology and Biostatistics, Department of Biostatistics, Epidemiology, and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.,Department of Neurology Translational Center for Excellence for Neuroepidemiology and Neurological Outcomes Research, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA.,Leonard Davis Institute of Health Economics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
4
|
Hussain R, Zubair H, Pursell S, Shahab M. Neurodegenerative Diseases: Regenerative Mechanisms and Novel Therapeutic Approaches. Brain Sci 2018; 8:E177. [PMID: 30223579 PMCID: PMC6162719 DOI: 10.3390/brainsci8090177] [Citation(s) in RCA: 139] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 09/03/2018] [Accepted: 09/12/2018] [Indexed: 12/12/2022] Open
Abstract
Regeneration refers to regrowth of tissue in the central nervous system. It includes generation of new neurons, glia, myelin, and synapses, as well as the regaining of essential functions: sensory, motor, emotional and cognitive abilities. Unfortunately, regeneration within the nervous system is very slow compared to other body systems. This relative slowness is attributed to increased vulnerability to irreversible cellular insults and the loss of function due to the very long lifespan of neurons, the stretch of cells and cytoplasm over several dozens of inches throughout the body, insufficiency of the tissue-level waste removal system, and minimal neural cell proliferation/self-renewal capacity. In this context, the current review summarized the most common features of major neurodegenerative disorders; their causes and consequences and proposed novel therapeutic approaches.
Collapse
Affiliation(s)
- Rashad Hussain
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Hira Zubair
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| | - Sarah Pursell
- Center for Translational Neuromedicine, University of Rochester, NY 14642, USA.
| | - Muhammad Shahab
- Department of Animal Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan.
| |
Collapse
|
5
|
Rekha KR, Inmozhi Sivakamasundari R. Geraniol Protects Against the Protein and Oxidative Stress Induced by Rotenone in an In Vitro Model of Parkinson's Disease. Neurochem Res 2018; 43:1947-1962. [PMID: 30141137 DOI: 10.1007/s11064-018-2617-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 07/21/2018] [Accepted: 08/17/2018] [Indexed: 12/27/2022]
Abstract
Dysfunction of autophagy, mitochondrial dynamics and endoplasmic reticulum (ER) stress are currently considered as major contributing factors in the pathogenesis of Parkinson's disease (PD). Accumulation of oxidatively damaged cytoplasmic organelles and unfolded proteins in the lumen of the ER causes ER stress and it is associated with dopaminergic cell death in PD. Rotenone is a pesticide that selectively kills dopaminergic neurons by a variety of mechanism, has been implicated in PD. Geraniol (GE; 3,7-dimethylocta-trans-2,6-dien-1-ol) is an acyclic monoterpene alcohol occurring in the essential oils of several aromatic plants. In this study, we investigated the protective effect of GE on rotenone-induced mitochondrial dysfunction dependent oxidative stress leads to cell death in SK-N-SH cells. In addition, we assessed the involvement of GE on rotenone-induced dysfunction in autophagy machinery via α-synuclein accumulation induced ER stress. We found that pre-treatment of GE enhanced cell viability, ameliorated intracellular redox, preserved mitochondrial membrane potential and improves the level of mitochondrial complex-1 in rotenone treated SK-N-SH cells. Furthermore, GE diminishes autophagy flux by reduced autophagy markers, and decreases ER stress by reducing α-synuclein expression in SK-N-SH cells. Our results demonstrate that GE possess its neuroprotective effect via reduced rotenone-induced oxidative stress by enhanced antioxidant status and maintain mitochondrial function. Furthermore, GE reduced ER stress and improved autophagy flux in the neuroblastomal SK-N-SH cells. The present study could suggest that GE a novel therapeutic avenue for clinical intervention in neurodegenerative diseases especially for PD.
Collapse
Affiliation(s)
- Karamkolly R Rekha
- Division of Biochemistry, Faculty of Medicine, Raja Muthaiah Medical College, Annamalai University, Annamalai Nagar, Tamilnadu, 608 002, India
| | - Ramu Inmozhi Sivakamasundari
- Division of Biochemistry, Faculty of Medicine, Raja Muthaiah Medical College, Annamalai University, Annamalai Nagar, Tamilnadu, 608 002, India.
| |
Collapse
|
6
|
Valdeolivas S, Pazos MR, Bisogno T, Piscitelli F, Iannotti FA, Allarà M, Sagredo O, Di Marzo V, Fernández-Ruiz J. The inhibition of 2-arachidonoyl-glycerol (2-AG) biosynthesis, rather than enhancing striatal damage, protects striatal neurons from malonate-induced death: a potential role of cyclooxygenase-2-dependent metabolism of 2-AG. Cell Death Dis 2013; 4:e862. [PMID: 24136226 PMCID: PMC3920947 DOI: 10.1038/cddis.2013.387] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Accepted: 09/02/2013] [Indexed: 12/16/2022]
Abstract
The cannabinoid CB2 receptor, which is activated by the endocannabinoid 2-arachidonoyl-glycerol (2-AG), protects striatal neurons from apoptotic death caused by the local administration of malonate, a rat model of Huntington's disease (HD). In the present study, we investigated whether endocannabinoids provide tonic neuroprotection in this HD model, by examining the effect of O-3841, an inhibitor of diacylglycerol lipases, the enzymes that catalyse 2-AG biosynthesis, and JZL184 or OMDM169, two inhibitors of 2-AG inactivation by monoacylglycerol lipase (MAGL). The inhibitors were injected in rats with the striatum lesioned with malonate, and several biochemical and morphological parameters were measured in this brain area. Similar experiments were also conducted in vitro in cultured M-213 cells, which have the phenotypic characteristics of striatal neurons. O-3841 produced a significant reduction in the striatal levels of 2-AG in animals lesioned with malonate. However, surprisingly, the inhibitor attenuated malonate-induced GABA and BDNF deficiencies and the reduction in Nissl staining, as well as the increase in GFAP immunostaining. In contrast, JZL184 exacerbated malonate-induced striatal damage. Cyclooxygenase-2 (COX-2) was induced in the striatum 24 h after the lesion simultaneously with other pro-inflammatory responses. The COX-2-derived 2-AG metabolite, prostaglandin E2 glyceryl ester (PGE2-G), exacerbated neurotoxicity, and this effect was antagonized by the blockade of PGE2-G action with AGN220675. In M-213 cells exposed to malonate, in which COX-2 was also upregulated, JZL184 worsened neurotoxicity, and this effect was attenuated by the COX-2 inhibitor celecoxib or AGN220675. OMDM169 also worsened neurotoxicity and produced measurable levels of PGE2-G. In conclusion, the inhibition of 2-AG biosynthesis is neuroprotective in rats lesioned with malonate, possibly through the counteraction of the formation of pro-neuroinflammatory PGE2-G, formed from COX-2-mediated oxygenation of 2-AG. Accordingly, MAGL inhibition or the administration of PGE2-G aggravates the malonate toxicity.
Collapse
Affiliation(s)
- S Valdeolivas
- 1] Departamento de Bioquímica y Biología Molecular, Instituto Universitario de Investigación en Neuroquímica (IUIN), Facultad de Medicina, Universidad Complutense, Madrid, Spain [2] Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Madrid, Spain [3] Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Jarem DA, Wilson NR, Schermerhorn KM, Delaney S. Incidence and persistence of 8-oxo-7,8-dihydroguanine within a hairpin intermediate exacerbates a toxic oxidation cycle associated with trinucleotide repeat expansion. DNA Repair (Amst) 2011; 10:887-96. [PMID: 21727036 PMCID: PMC3146575 DOI: 10.1016/j.dnarep.2011.06.003] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2011] [Revised: 06/09/2011] [Accepted: 06/09/2011] [Indexed: 02/07/2023]
Abstract
The repair protein 8-oxo-7,8-dihydroguanine glycosylase (OGG1) initiates base excision repair (BER) in mammalian cells by removing the oxidized base 8-oxo-7,8-dihydroguanine (8-oxoG) from DNA. Interestingly, OGG1 has been implicated in somatic expansion of the trinucleotide repeat (TNR) sequence CAG/CTG. Furthermore, a 'toxic oxidation cycle' has been proposed for age-dependent expansion in somatic cells. In this cycle, duplex TNR DNA is (1) oxidized by endogenous species; (2) BER is initiated by OGG1 and the DNA is further processed by AP endonuclease 1 (APE1); (3) a stem-loop hairpin forms during strand-displacement synthesis by polymerase β (pol β); (4) the hairpin is ligated and (5) incorporated into duplex DNA to generate an expanded CAG/CTG region. This expanded region is again subject to oxidation and the cycle continues. We reported previously that the hairpin adopted by TNR repeats contains a hot spot for oxidation. This finding prompted us to examine the possibility that the generation of a hairpin during a BER event exacerbates the toxic oxidation cycle due to accumulation of damage. Therefore, in this work we used mixed-sequence and TNR substrates containing a site-specific 8-oxoG lesion to define the kinetic parameters of human OGG1 (hOGG1) activity on duplex and hairpin substrates. We report that hOGG1 activity on TNR duplexes is indistinguishable from a mixed-sequence control. Thus, BER is initiated on TNR sequences as readily as non-repetitive DNA in order to start the toxic oxidation cycle. However, we find that for hairpin substrates hOGG1 has reduced affinity and excises 8-oxoG at a significantly slower rate as compared to duplexes. Therefore, 8-oxoG is expected to accumulate in the hairpin intermediate. This damage-containing hairpin can then be incorporated into duplex, resulting in an expanded TNR tract that now contains an oxidative lesion. Thus, the cycle restarts and the DNA can incrementally expand.
Collapse
Affiliation(s)
| | | | | | - Sarah Delaney
- Department of Chemistry, Brown University, Providence RI 02912
| |
Collapse
|
8
|
Sagredo O, González S, Aroyo I, Pazos MR, Benito C, Lastres-Becker I, Romero JP, Tolón RM, Mechoulam R, Brouillet E, Romero J, Fernández-Ruiz J. Cannabinoid CB2 receptor agonists protect the striatum against malonate toxicity: relevance for Huntington's disease. Glia 2009; 57:1154-67. [PMID: 19115380 PMCID: PMC2706932 DOI: 10.1002/glia.20838] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cannabinoid agonists might serve as neuroprotective agents in neurodegenerative disorders. Here, we examined this hypothesis in a rat model of Huntington's disease (HD) generated by intrastriatal injection of the mitochondrial complex II inhibitor malonate. Our results showed that only compounds able to activate CB2 receptors were capable of protecting striatal projection neurons from malonate-induced death. That CB2 receptor agonists are neuroprotective was confirmed by using the selective CB2 receptor antagonist, SR144528, and by the observation that mice deficient in CB2 receptor were more sensitive to malonate than wild-type animals. CB2 receptors are scarce in the striatum in healthy conditions, but they are markedly upregulated after the lesion with malonate. Studies of double immunostaining revealed a significant presence of CB2 receptors in cells labeled with the marker of reactive microglia OX-42, and also in cells labeled with GFAP (a marker of astrocytes). We further showed that the activation of CB2 receptors significantly reduced the levels of tumor necrosis factor-alpha (TNF-alpha) that had been increased by the lesion with malonate. In summary, our results demonstrate that stimulation of CB2 receptors protect the striatum against malonate toxicity, likely through a mechanism involving glial cells, in particular reactive microglial cells in which CB2 receptors would be upregulated in response to the lesion. Activation of these receptors would reduce the generation of proinflammatory molecules like TNF-alpha. Altogether, our results support the hypothesis that CB2 receptors could constitute a therapeutic target to slowdown neurodegeneration in HD.
Collapse
Affiliation(s)
- Onintza Sagredo
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | - Sara González
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | - Ilia Aroyo
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | - María Ruth Pazos
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | - Cristina Benito
- Laboratorio de Investigación and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Fundación Hospital Alcorcón, 28922-Madrid, Spain
| | - Isabel Lastres-Becker
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | - Juan P. Romero
- Laboratorio de Investigación and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Fundación Hospital Alcorcón, 28922-Madrid, Spain
| | - Rosa M. Tolón
- Laboratorio de Investigación and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Fundación Hospital Alcorcón, 28922-Madrid, Spain
| | - Raphael Mechoulam
- Department of Medicinal Chemistry and Natural Products, Medical Faculty, Hebrew University, Jerusalem 91120, Israel
| | - Emmanuel Brouillet
- Neuronal Death Group, URA CEA-CNRS 2210, Service Hospitalier Frédéric Joliot, DRM, DSV, CEA, 91401-Orsay Cedex, France
| | - Julián Romero
- Laboratorio de Investigación and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Fundación Hospital Alcorcón, 28922-Madrid, Spain
| | - Javier Fernández-Ruiz
- Departamento de Bioquímica y Biología Molecular and Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| |
Collapse
|
9
|
Jarem DA, Wilson NR, Delaney S. Structure-dependent DNA damage and repair in a trinucleotide repeat sequence. Biochemistry 2009; 48:6655-63. [PMID: 19527055 DOI: 10.1021/bi9007403] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Triplet repeat sequences, such as CAG/CTG, expand in the human genome to cause several neurological disorders. As part of the expansion process the formation of non-B DNA conformations by the repeat sequence has previously been proposed. Furthermore, the base excision repair enzyme 7,8-dihydro-8-oxoguanine glycosylase (OGG1) has recently been implicated in the repeat expansion [Kovtun, I. V., Liu, Y., Bjoras, M., Klugland, A., Wilson, S. H., and McMurray, C. T. (2007) Nature 447, 447-452]. In this work we have found that the non-B conformation adopted by (CAG)(10), a hairpin, is hypersusceptible to DNA damage relative to the (CAG)(10)/(CTG)(10) duplex and, in particular, that a hot spot for DNA damage exists. Specifically, we find that a single guanine in the loop of the hairpin is susceptible to modification by peroxynitrite. Interestingly, we find that human OGG1 (hOGG1) is able to excise 7,8-dihydro-8-oxoguanine (8-oxoG) from the loop of a hairpin substrate, albeit with a marked decrease in efficiency relative to duplex substrates; the hOGG1 enzyme removes 8-oxoG from the loop of a hairpin with a rate that is approximately 700-fold slower than that observed for DNA duplex. Thus, while damage is preferentially generated in the loop of the hairpin, DNA repair is less efficient. These observed structure-dependent patterns of DNA damage and repair may contribute to the OGG1-dependent mechanism of trinucleotide repeat expansion.
Collapse
Affiliation(s)
- Daniel A Jarem
- Department of Chemistry, Brown University, Providence, Rhode Island 02912, USA
| | | | | |
Collapse
|
10
|
Ryu HL, Lee SY, Park K, Kim C, Jin BK, Min CK. Differentiation of Rat Neural Stem Cells Following Transplantation in the Brain of Huntington's Disease Rat Model. Exp Neurobiol 2009. [DOI: 10.5607/en.2009.18.1.37] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Affiliation(s)
- Hwa Lee Ryu
- Department of Biological Sciences, School of Medicine, Ajou University, Suwon 443-749, Korea
| | - So Yeon Lee
- Department of Biological Sciences, School of Medicine, Ajou University, Suwon 443-749, Korea
| | - Keunwoo Park
- Brain Diseases Research Center, School of Medicine, Ajou University, Suwon 443-749, Korea
| | - Changhoon Kim
- Brain Diseases Research Center, School of Medicine, Ajou University, Suwon 443-749, Korea
| | - Byung Kwan Jin
- Brain Diseases Research Center, School of Medicine, Ajou University, Suwon 443-749, Korea
| | - Churl K. Min
- Department of Biological Sciences, School of Medicine, Ajou University, Suwon 443-749, Korea
| |
Collapse
|
11
|
Ghosh T, Pandey N, Maitra A, Brahmachari SK, Pillai B. A role for voltage-dependent anion channel Vdac1 in polyglutamine-mediated neuronal cell death. PLoS One 2007; 2:e1170. [PMID: 18000542 PMCID: PMC2064964 DOI: 10.1371/journal.pone.0001170] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2007] [Accepted: 10/19/2007] [Indexed: 12/04/2022] Open
Abstract
Expansion of trinucleotide repeats in coding and non-coding regions of genes is associated with sixteen neurodegenerative disorders. However, the molecular effects that lead to neurodegeneration have remained elusive. We have explored the role of transcriptional dysregulation by TATA-box binding protein (TBP) containing an expanded polyglutamine stretch in a mouse neuronal cell culture based model. We find that mouse neuronal cells expressing a variant of human TBP harboring an abnormally expanded polyQ tract not only form intranuclear aggregates, but also show transcription dysregulation of the voltage dependent anion channel, Vdac1, increased cytochrome c release from the mitochondria and upregulation of genes involved in localized neuronal translation. On the other hand, unfolded protein response seemed to be unaffected. Consistent with an increased transcriptional effect, we observe an elevated promoter occupancy by TBP in vivo in TATA containing and TATA-less promoters of differentially expressed genes. Our study suggests a link between transcriptional dysfunction and cell death in trinucleotide repeat mediated neuronal dysfunction through voltage dependent anion channel, Vdac1, which has been recently recognized as a critical determinant of cell death.
Collapse
Affiliation(s)
- Tanay Ghosh
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | - Neeraj Pandey
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
| | | | | | - Beena Pillai
- Institute of Genomics and Integrative Biology (IGIB), New Delhi, India
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
12
|
Bohr VA, Ottersen OP, Tønjum T. Genome instability and DNA repair in brain, ageing and neurological disease. Neuroscience 2007; 145:1183-6. [PMID: 17400394 DOI: 10.1016/j.neuroscience.2007.03.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- V A Bohr
- Laboratory of Molecular Gerontology, National Institute of Aging, IRP, National Institutes of Health, 5600 Nathan Shock Drive, Baltimore, MD 21224, USA
| | | | | |
Collapse
|
13
|
Shim S, Kim Y, Shin J, Kim J, Park S. Regulation of EphA8 gene expression by TALE homeobox transcription factors during development of the mesencephalon. Mol Cell Biol 2006; 27:1614-30. [PMID: 17178831 PMCID: PMC1820445 DOI: 10.1128/mcb.01429-06] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
The mouse ephA8 gene is expressed in a rostral-to-caudal gradient in the developing superior colliculus, and these EphA gradients may contribute to the proper development of the retinocollicular projection. Thus, it is of considerable interest to elucidate how the ephA8 gene expression is controlled by upstream regulators during the development of the mesencephalon. In this study, we employed in vivo expression analysis in transgenic mouse embryos to dissect the cis-acting DNA regulatory region, leading to the identification of a CGGTCA sequence critical for the ephA8 enhancer activity. Using this element as the target in a yeast one-hybrid system, we identified a Meis homeobox transcription factor. Significantly, DNA binding sites for Pbx, another TALE homeobox transcription factor, were also identified in the ephA8 enhancer region. Meis2 and Pbx1/2 are specifically expressed in the entire region of the dorsal mesencephalon, where specific colocalization of EphA8 and Meis is restricted to a subset of cells. Meis2 and Pbx2 synergistically bind the ephA8 regulatory sequence in vitro, and this interaction is critical for the transcriptional activation of a reporter construct bearing the ephA8 regulatory region in the presence of histone deacetylase inhibitor. More importantly, when expressed in the embryonic midbrain, the dominant-negative form of Meis down-regulates endogenous ephA8. Interestingly, we found that both Meis2 and Pbx2 are constitutively bound in the ephA8 regulatory region in the dorsal mesencephalon. These studies strongly suggest that Meis and Pbx homeobox transcription factors tightly associate with the ephA8 regulatory sequence and require an additional unidentified regulator to ensure the specific activation of ephA8.
Collapse
Affiliation(s)
- Sungbo Shim
- Department of Biological Science, Sookmyung Women's University, Chungpa-Dong 2-Ka, Yongsan-Ku, Seoul 140-742, South Korea
| | | | | | | | | |
Collapse
|
14
|
Cattaneo E, Zuccato C, Tartari M. Normal huntingtin function: an alternative approach to Huntington's disease. Nat Rev Neurosci 2005; 6:919-30. [PMID: 16288298 DOI: 10.1038/nrn1806] [Citation(s) in RCA: 458] [Impact Index Per Article: 22.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Several neurological diseases are characterized by the altered activity of one or a few ubiquitously expressed cell proteins, but it is not known how these normal proteins turn into harmful executors of selective neuronal cell death. We selected huntingtin in Huntington's disease to explore this question because the dominant inheritance pattern of the disease seems to exclude the possibility that the wild-type protein has a role in the natural history of this condition. However, even in this extreme case, there is considerable evidence that normal huntingtin is important for neuronal function and that the activity of some of its downstream effectors, such as brain-derived neurotrophic factor, is reduced in Huntington's disease.
Collapse
Affiliation(s)
- Elena Cattaneo
- Department of Pharmacological Sciences and Center of Excellence on Neurodegenerative Diseases, University of Milan, Via Balzaretti 9, 20133 Milano, Italy.
| | | | | |
Collapse
|
15
|
Bailey CDC, Graham RM, Nanda N, Davies PJA, Johnson GVW. Validity of mouse models for the study of tissue transglutaminase in neurodegenerative diseases. Mol Cell Neurosci 2004; 25:493-503. [PMID: 15033177 DOI: 10.1016/j.mcn.2003.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Revised: 11/24/2003] [Accepted: 11/25/2003] [Indexed: 02/06/2023] Open
Abstract
Tissue transglutaminase (tTG) is a multifunctional enzyme that catalyzes peptide cross-linking and polyamination reactions, and also is a signal-transducing GTPase. tTG protein content and enzymatic activity are upregulated in the brain in Huntington's disease and in other neurological diseases and conditions. Since mouse models are currently being used to study the role of tTG in Huntington's disease and other neurodegenerative diseases, it is critical that the level of its expression in the mouse forebrain be determined. In contrast to human forebrain where tTG is abundant, tTG can only be detected in mouse forebrain by immunoblotting a GTP-binding-enriched protein fraction. tTG mRNA content and transamidating activity are approximately 70% lower in mouse than in human forebrain. However, tTG contributes to the majority of transglutaminase activity within mouse forebrain. Thus, although tTG is expressed at lower levels in mouse compared with human forebrain, it likely plays important roles in neuronal function.
Collapse
Affiliation(s)
- Craig D C Bailey
- Department of Psychiatry and Behavioral Neurobiology, University of Alabama at Birmingham, Birmingham, AL 35294-0017, USA
| | | | | | | | | |
Collapse
|
16
|
Saulle E, Gubellini P, Picconi B, Centonze D, Tropepi D, Pisani A, Morari M, Marti M, Rossi L, Papa M, Bernardi G, Calabresi P. Neuronal vulnerability following inhibition of mitochondrial complex II: a possible ionic mechanism for Huntington's disease. Mol Cell Neurosci 2004; 25:9-20. [PMID: 14962736 DOI: 10.1016/j.mcn.2003.09.013] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2003] [Revised: 09/16/2003] [Accepted: 09/29/2003] [Indexed: 11/28/2022] Open
Abstract
An impaired complex II (succinate dehydrogenase, SD) striatal mitochondrial activity is one of the prominent metabolic alterations in Huntington's disease (HD), and intoxication with 3-nitropropionic acid (3-NP), an inhibitor of mitochondrial complex II, mimics the motor abnormalities and the pathology of HD. We found that striatal spiny neurons responded to this toxin with an irreversible membrane depolarization/inward current, while cholinergic interneurons showed a hyperpolarization/outward current. Both these currents were sensitive to intracellular concentration of ATP. The 3-NP-induced depolarization was associated with an increased release of endogenous GABA, while acetylcholine levels were reduced. Moreover, 3-NP induced a higher depolarization in presymptomatic R6/2 HD transgenic mice compared to wild-type (WT) mice, showing an increased susceptibility to SD inhibition. Conversely, the hyperpolarization did not significantly differ from the one recorded in WT mice. The diverse membrane changes induced by SD inhibition may contribute to the cell-type-specific neuronal death in HD.
Collapse
Affiliation(s)
- Emilia Saulle
- Clinica Neurologica, Dipartimento di Medicina Clinica e Sperimentale, Università di Ferrara, Ferrara, Italy
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Alberch J, Pérez-Navarro E, Canals JM. Neurotrophic factors in Huntington's disease. PROGRESS IN BRAIN RESEARCH 2004; 146:195-229. [PMID: 14699966 DOI: 10.1016/s0079-6123(03)46014-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease is a neurodegenerative disorder characterized by the selective loss of striatal neurons and, to a lesser extent, cortical neurons. The neurodegenerative process is caused by the mutation of huntingtin gene. Recent studies have established a link between mutant huntingtin, excitotoxicity and neurotrophic factors. Neurotrophic factors prevent cell death in degenerative processes but they can also enhance growth and function of neurons that are affected in Huntington's disease. The endogenous regulation of the expression of neurotrophic factors and their receptors in the striatum and its connections can be important to protect striatal cells and maintains basal ganglia connectivity. The administration of exogenous neurotrophic factors, in animal models of Huntington's disease, has been used to characterize the trophic requirements of striatal and cortical neurons. Neurotrophins, glial cell line-derived neurotrophic factor family members and ciliary neurotrophic factor have shown a potent neuroprotective effects on different neuronal populations of the striatum. Furthermore, they are also useful to maintain the integrity of the corticostriatal pathway. Thus, these neurotrophic factors may be suitable for the development of a neuroprotective therapy for neurodegenerative disorders of the basal ganglia.
Collapse
Affiliation(s)
- Jordi Alberch
- Department of Cell Biology and Pathology, Medical School, IDIBAPS, University of Barcelona, Casanova 143, E-08036 Barcelona, Spain.
| | | | | |
Collapse
|
18
|
Synthesis, stereochemistry confirmation and biological activity evaluation of a constituent from Isodon excisus. Tetrahedron 2003. [DOI: 10.1016/j.tet.2003.10.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
19
|
|
20
|
Lastres-Becker I, Bizat N, Boyer F, Hantraye P, Brouillet E, Fernández-Ruiz J. Effects of cannabinoids in the rat model of Huntington's disease generated by an intrastriatal injection of malonate. Neuroreport 2003; 14:813-6. [PMID: 12858038 DOI: 10.1097/00001756-200305060-00007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Cannabinoids could provide neuroprotection in neurodegenerative disorders. In this study, we examined whether a treatment with Delta9-tetrahydrocannabinol, a non-selective cannabinoid receptor agonist, or with SR141716, a selective antagonist for the cannabinoid CB(1) receptor subtype, could affect the toxicity of the complex II reversible inhibitor malonate injected into the striatum, which replicates the mitochondrial complex II deficiency seen in Huntington's disease patients. As expected, malonate injection produced a significant reduction in cytochrome oxidase activity in the striatum consistent with the expected neurodegeneration caused by this toxin. The administration of Delta9-tetrahydrocannabinol increased malonate-induced striatal lesions compared to vehicle and, surprisingly, SR141716, far from producing effects opposite to those of Delta9-tetrahydrocannabinol, also enhanced malonate effects, and to an even greater extent. In summary, our results are compatible with the idea that manipulating the endocannabinoid system can modify neurodegeneration in Huntington's disease, and suggest that highly selective CB(1) receptor agonists might be necessary to produce neuroprotective effects against indirect excitotoxicity.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- URA CEA CNRS 2210, Service Hospitalier Frédéric Joliot, DRM, DSV, CEA, 4 place du Général Leclerc, 91401-Orsay Cedex, France
| | | | | | | | | | | |
Collapse
|
21
|
Lastres-Becker I, de Miguel R, De Petrocellis L, Makriyannis A, Di Marzo V, Fernández-Ruiz J. Compounds acting at the endocannabinoid and/or endovanilloid systems reduce hyperkinesia in a rat model of Huntington's disease. J Neurochem 2003; 84:1097-109. [PMID: 12603833 DOI: 10.1046/j.1471-4159.2003.01595.x] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We have recently reported that the administration of AM404, an inhibitor of the endocannabinoid re-uptake process, which also has affinity for the vanilloid VR1 receptors, is able to reduce hyperkinesia, and causes recovery from neurochemical deficits, in a rat model of Huntington's disease (HD) generated by bilateral intrastriatal injections of 3-nitropropionic acid (3NP). In the present study, we wanted to explore the mechanism(s) by which AM404 produces its antihyperkinetic effect in 3NP-lesioned rats by employing several experimental approaches. First, we tried to block the effects of AM404 with selective antagonists for the CB1 or VR1 receptors, i.e. SR141716A and capsazepine, respectively. We found that the reduction caused by AM404 of the increased ambulation exhibited by 3NP-lesioned rats in the open-field test was reversed when the animals had been pre-treated with capsazepine but not with SR141716A, thus suggesting a major role of VR1 receptors in the antihyperkinetic effects of AM404. However, despite the lack of behavioral effects of the CB1 receptor antagonist, the pretreatment with this compound abolished the recovery of neurochemical [gamma-aminobutyric acid (GABA) and dopamine] deficits in the caudate- putamen caused by AM404, as also did capsazepine. In a second group of studies, we wanted to explore the potential antihyperkinetic effects of various compounds which, compared to AM404, exhibit more selectivity for either the endovanilloid or the endocannabinoid systems. First, we tested VDM11 or AM374, two selective inhibitors or the endocannabinoid re-uptake or hydrolysis, respectively. Both compounds were mostly unable to reduce hyperkinesia in 3NP-lesioned rats, although VDM11 produced a certain motor depression, and AM374 exhibited a trend to stimulate ambulation, in control rats. We also tested the effects of selective direct agonists for VR1 (capsaicin) or CB1 (CP55,940) receptors. Capsaicin exhibited a strong antihyperkinetic activity and, moreover, was able to attenuate the reductions in dopamine and GABA transmission provoked by the 3NP lesion, whereas CP55,940 had also antihyperkinetic activity but was unable to cause recovery of either dopamine or GABA deficits in the basal ganglia. In summary, our data indicate a major role for VR1 receptors, as compared to CB1 receptors, in the antihyperkinetic effects and the recovery of neurochemical deficits caused in 3NP-lesioned rats by compounds that activate both CB1 and VR1 receptors, either directly or via manipulation of the levels of endogenous agonists.
Collapse
Affiliation(s)
- Isabel Lastres-Becker
- Departamento de Bioquímica y Biología Molecular, Facultad de Medicina, Universidad Complutense, 28040-Madrid, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Windisch M, Hutter-Paier B, Schreiner E. Current drugs and future hopes in the treatment of Alzheimer's disease. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2003:149-64. [PMID: 12456060 DOI: 10.1007/978-3-7091-6139-5_15] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In spite of several years of experience with the use of cholinesterase inhibitors for treatment of symptoms of Alzheimer's disease their influence on disease progression remains still unclear. New cholinesterase inhibitors should provide an additional neuroprotective activity, because only substances which stop neuronal death can influence disease progression. New treatment strategies are focusing on amyloid processing, preventing the occurrence of toxic A beta(1-42) peptide. These procedures include the vaccination trials, but their clinical usefulness has to be proven. Also strategies focussing on neurofibrillary pathologies should be explored in detail. Drug development for Alzheimer's disease should include all pathological events associated with neurodegeneration, like oxidative stress, neuroinflammation or disturbances in growth factor signaling. Abnormal protein aggregation as a common feature of different neurodegenerative diseases might also be a promising drug target. Beside beta sheet breakers directed against beta-amyloid deposition the endogenous protein beta-synuclein or derivatives of it might be able to counteract aggregation of alpha-synuclein as well as of amyloid beta protein. Interaction with alpha-synuclein deserves special attention because it might be an early step of synaptic degeneration. Due to the complexity of the disease combination of different drugs might be the most promising way to go. The parallel development of early biological markers should enable intervention in pre-symptomatic disease stages.
Collapse
Affiliation(s)
- M Windisch
- JSW-Research Forschungslabor GmbH, Graz, Austria.
| | | | | |
Collapse
|
23
|
Pérez-Severiano F, Escalante B, Vergara P, Ríos C, Segovia J. Age-dependent changes in nitric oxide synthase activity and protein expression in striata of mice transgenic for the Huntington's disease mutation. Brain Res 2002; 951:36-42. [PMID: 12231454 DOI: 10.1016/s0006-8993(02)03102-5] [Citation(s) in RCA: 68] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Huntington's disease (HD) is an autosomal hereditary neurodegenerative disorder caused by an abnormal expansion of the CAG repeats that code for a polyglutamine tract in a novel protein called huntingtin (htt). Both patients and experimental animals exhibit oxidative damage in specific areas of the brain, particularly the striatum. Nitric oxide (NO) is involved in many different physiological processes, and under pathological conditions it may promote oxidative damage through the formation of the highly reactive metabolite peroxynitrite; however, it may also play a role protecting cells from oxidative damage. We previously showed a correlation between the progression of the neurological phenotype and striatal oxidative damage in a line of transgenic mice, R6/1, which expresses a human mutated htt exon 1 with 116 CAG repeats. The purpose of the present work was to explore the participation of NO in the progressive oxidative damage that occurs in the striata of R6/1 mice. We analyzed the role of NO by measuring the activity of nitric oxide synthase (NOS) in the striata of transgenic and control mice at different ages. There was no difference in NOS activity between transgenic and wild-type mice at 11 weeks of age. In contrast, 19-week-old transgenic mice showed a significant increase in NOS activity, compared with same age controls. By 35 weeks of age, there was a decrease in NOS activity in transgenic mice when compared with wild-type controls. NOS protein expression was also determined in 11-, 19- and 35-week-old transgenic mice and wild-type littermates. Our results show increased neuronal NOS expression in 19-week-old transgenic mice, followed by a decreased level in 35-week-old mice, compared with controls, a phenomenon that parallels the changes in NOS enzyme activity. The present results suggest that NO is involved in the process leading to striatal oxidative damage and that it is associated with the onset of the progressive neurological phenotype in mice transgenic for the HD mutation.
Collapse
Affiliation(s)
- Francisca Pérez-Severiano
- Departamento de Fisiologi;a, Biofi;sica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, Avenida Instituto Politécnico Nacional # 2508, 07300, DF, México, Mexico
| | | | | | | | | |
Collapse
|
24
|
Feigin A, Zgaljardic D. Recent advances in Huntington's disease: implications for experimental therapeutics. Curr Opin Neurol 2002; 15:483-9. [PMID: 12151847 DOI: 10.1097/00019052-200208000-00013] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
PURPOSE OF REVIEW In this article we have set out to critically review recent advances in the basic and clinical understanding of Huntington's disease, with specific emphasis on those findings that are most relevant to the planning, design, and conduct of future clinical trials for this devastating disorder. RECENT FINDINGS The exact mechanisms underlying neuronal death in Huntington's disease remain unknown. Over the past 10 years, the leading models of neurodegeneration in the disease have involved mitochondrial dysfunction and subsequent excitotoxic injury, oxidative stress, and apoptosis. Recent studies have lent support to these models, but additional theories involving abnormalities of protein metabolism and transcriptional dysregulation have emerged as well. As progress is made toward clarifying the pathophysiological mechanisms leading to Huntington's disease, and new therapies are proposed, investigators have begun to develop improved outcome measures for potential use in future clinical trials aimed at slowing the progression of the disorder. SUMMARY Recent advances in the understanding of the molecular biology and pathophysiology of Huntington's disease have suggested new therapeutic strategies aimed at slowing progression or forestalling onset of this neurodegenerative disease. In preparation for future clinical trials, clinical studies have begun to provide more quantitative measures of disease onset and progression. This progress in both the basic science and clinical realms raises real hope for effective therapies in the near future.
Collapse
Affiliation(s)
- Andrew Feigin
- Movement Disorders Center and Center for Neurosciences, North Shore-Long Island Jewish Research Institute, 444 Community Drive, Manhasset, NY 11030, USA.
| | | |
Collapse
|