1
|
Tessereau C, Xuan F, Mellor JR, Dayan P, Dombeck D. Navigating uncertainty: reward location variability induces reorganization of hippocampal spatial representations. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.06.631465. [PMID: 39829917 PMCID: PMC11741294 DOI: 10.1101/2025.01.06.631465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Navigating uncertainty is crucial for survival, with the location and availability of reward varying in different and unsignalled ways. Hippocampal place cell populations over-represent salient locations in an animal's environment, including those associated with rewards; however, how the spatial uncertainties impact the cognitive map is unclear. We report a virtual spatial navigation task designed to test the impact of different levels and types of uncertainty about reward on place cell populations. When the reward location changed on a trial-by-trial basis, inducing expected uncertainty, a greater proportion of place cells followed along, and the reward and the track end became anchors of a warped spatial metric. When the reward location then unexpectedly moved, the fraction of reward place cells that followed was greater when starting from a state of expected, compared to low, uncertainty. Overall, we show that different forms of potentially interacting uncertainty generate remapping in parallel, task-relevant, reference frames.
Collapse
Affiliation(s)
| | - Feng Xuan
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Jack, R. Mellor
- School of Physiology, Pharmacology and Neuroscience, University of Bristol, Bristol, UK
| | - Peter Dayan
- Max Planck Institute for Biological Cybernetics, Tübingen, Germany
- University of Tübingen, Tübingen, Germany
| | - Daniel Dombeck
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| |
Collapse
|
2
|
Pouget C, Morier F, Treiber N, García PF, Mazza N, Zhang R, Reeves I, Winston S, Brimble MA, Kim CK, Vetere G. Deconstruction of a memory engram reveals distinct ensembles recruited at learning. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627894. [PMID: 39713328 PMCID: PMC11661170 DOI: 10.1101/2024.12.11.627894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
How are associative memories formed? Which cells represent a memory, and when are they engaged? By visualizing and tagging cells based on their calcium influx with unparalleled temporal precision, we identified non-overlapping dorsal CA1 neuronal ensembles that are differentially active during associative fear memory acquisition. We dissected the acquisition experience into periods during which salient stimuli were presented or certain mouse behaviors occurred and found that cells associated with specific acquisition periods are sufficient alone to drive memory expression and contribute to fear engram formation. This study delineated the different identities of the cell ensembles active during learning, and revealed, for the first time, which ones form the core engram and are essential for memory formation and recall.
Collapse
Affiliation(s)
- Clément Pouget
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Flora Morier
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nadja Treiber
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Pablo Fernández García
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Nina Mazza
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| | - Run Zhang
- Biomedical Engineering Graduate Group, University of California, Davis; Davis, CA, 95618, USA
| | - Isaiah Reeves
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Stephen Winston
- Dept of Surgery, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
- Graduate School of Biomedical Sciences, St. Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Mark A. Brimble
- Dept of Host-Microbe Interactions, St Jude Children’s Research Hospital; Memphis, TN, 38105, USA
| | - Christina K. Kim
- Center for Neuroscience, University of California, Davis; Davis, CA, 95618, USA
- Dept of Neurology, School of Medicine, University of California, Davis; Sacramento, CA, 95817, USA
| | - Gisella Vetere
- Cerebral Codes and Circuits Connectivity team, Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University; Paris, France
| |
Collapse
|
3
|
Comrie AE, Monroe EJ, Kahn AE, Denovellis EL, Joshi A, Guidera JA, Krausz TA, Berke JD, Daw ND, Frank LM. Hippocampal representations of alternative possibilities are flexibly generated to meet cognitive demands. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.23.613567. [PMID: 39386651 PMCID: PMC11463554 DOI: 10.1101/2024.09.23.613567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
The cognitive ability to go beyond the present to consider alternative possibilities, including potential futures and counterfactual pasts, can support adaptive decision making. Complex and changing real-world environments, however, have many possible alternatives. Whether and how the brain can select among them to represent alternatives that meet current cognitive needs remains unknown. We therefore examined neural representations of alternative spatial locations in the rat hippocampus during navigation in a complex patch foraging environment with changing reward probabilities. We found representations of multiple alternatives along paths ahead and behind the animal, including in distant alternative patches. Critically, these representations were modulated in distinct patterns across successive trials: alternative paths were represented proportionate to their evolving relative value and predicted subsequent decisions, whereas distant alternatives were prevalent during value updating. These results demonstrate that the brain modulates the generation of alternative possibilities in patterns that meet changing cognitive needs for adaptive behavior.
Collapse
Affiliation(s)
- Alison E Comrie
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Emily J Monroe
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
| | - Ari E Kahn
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
| | | | | | - Jennifer A Guidera
- Medical Scientist Training Program, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Timothy A Krausz
- Neuroscience Graduate Program, University of California San Francisco; San Francisco, CA 94158, USA
| | - Joshua D Berke
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Department of Neurology and Department of Psychiatry and Behavioral Science, and Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Nathaniel D Daw
- Princeton Neuroscience Institute, Princeton University; Princeton, NJ 08544, USA
- Department of Psychology, Princeton University; Princeton, NJ 08544, USA
| | - Loren M Frank
- Department of Physiology and Psychiatry, University of California, San Francisco; San Francisco, CA 94158, USA
- Howard Hughes Medical Institute; Chevy Chase, MD 20815, USA
- Kavli Institute for Fundamental Neuroscience, University of California, San Francisco; San Francisco, CA 94158, USA
- Lead contact
| |
Collapse
|
4
|
Liu K, Sibille J, Dragoi G. Nested compressed co-representations of multiple sequential experiences during sleep. Nat Neurosci 2024; 27:1816-1828. [PMID: 39030341 PMCID: PMC11912804 DOI: 10.1038/s41593-024-01703-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 06/14/2024] [Indexed: 07/21/2024]
Abstract
Animals encounter and remember multiple experiences daily. During sleep, hippocampal neuronal ensembles replay past experiences and preplay future ones. Although most previous studies investigated p/replay of a single experience, it remains unclear how the hippocampus represents many experiences without major interference during sleep. By monitoring hippocampal neuronal ensembles as rats encountered 15 distinct linear track experiences, we uncovered principles for efficient multi-experience compressed p/replay representation. First, we found a serial position effect whereby the earliest and the most recent experiences had the strongest representations. Second, distinct experiences were co-represented in a multiplexed, flickering manner during nested p/replay events, which greatly enhanced the network's representational capacity. Third, spatially contiguous and disjunct track pairs were bound together into contiguous conjunctive representations during sleep. Finally, sequences spanning day-long multi-track experiences were p/replayed at hyper-compressed ratios during sleep. These coding schemes efficiently parallelize, bind and compress multiple sequential representations with reduced interference and enhanced capacity during sleep.
Collapse
Affiliation(s)
- Kefei Liu
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
- Bioscience and Biomedical Engineering Thrust, Systems Hub, Hong Kong University of Science and Technology (Guangzhou), Guangzhou, China
| | - Jeremie Sibille
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA
| | - George Dragoi
- Department of Psychiatry, Yale School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
5
|
Ren Y, Brown TI. Beyond the ears: A review exploring the interconnected brain behind the hierarchical memory of music. Psychon Bull Rev 2024; 31:507-530. [PMID: 37723336 DOI: 10.3758/s13423-023-02376-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/22/2023] [Indexed: 09/20/2023]
Abstract
Music is a ubiquitous element of daily life. Understanding how music memory is represented and expressed in the brain is key to understanding how music can influence human daily cognitive tasks. Current music-memory literature is built on data from very heterogeneous tasks for measuring memory, and the neural correlates appear to differ depending on different forms of memory function targeted. Such heterogeneity leaves many exceptions and conflicts in the data underexplained (e.g., hippocampal involvement in music memory is debated). This review provides an overview of existing neuroimaging results from music-memory related studies and concludes that although music is a special class of event in our lives, the memory systems behind it do in fact share neural mechanisms with memories from other modalities. We suggest that dividing music memory into different levels of a hierarchy (structural level and semantic level) helps understand overlap and divergence in neural networks involved. This is grounded in the fact that memorizing a piece of music recruits brain clusters that separately support functions including-but not limited to-syntax storage and retrieval, temporal processing, prediction versus reality comparison, stimulus feature integration, personal memory associations, and emotion perception. The cross-talk between frontal-parietal music structural processing centers and the subcortical emotion and context encoding areas explains why music is not only so easily memorable but can also serve as strong contextual information for encoding and retrieving nonmusic information in our lives.
Collapse
Affiliation(s)
- Yiren Ren
- Georgia Institute of Technology, College of Science, School of Psychology, Atlanta, GA, USA.
| | - Thackery I Brown
- Georgia Institute of Technology, College of Science, School of Psychology, Atlanta, GA, USA
| |
Collapse
|
6
|
Puhger K, Crestani AP, Diniz CRF, Wiltgen BJ. The hippocampus contributes to retroactive stimulus associations during trace fear conditioning. iScience 2024; 27:109035. [PMID: 38375237 PMCID: PMC10875141 DOI: 10.1016/j.isci.2024.109035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
Binding events that occur at different times are essential for memory formation. In trace fear conditioning, animals associate a tone and footshock despite no temporal overlap. The hippocampus is thought to mediate this learning by maintaining a memory of the tone until shock occurrence, however, evidence for sustained hippocampal tone representations is lacking. Here, we demonstrate a retrospective role for the hippocampus in trace fear conditioning. Bulk calcium imaging revealed sustained increases in CA1 activity after footshock that were not observed after tone termination. Optogenetic silencing of CA1 immediately after footshock impaired subsequent memory. Additionally, footshock increased the number of sharp-wave ripples compared to baseline during conditioning. Therefore, post-shock hippocampal activity likely supports learning by reactivating and linking latent tone and shock representations. These findings highlight an underappreciated function of post-trial hippocampal activity in enabling retroactive temporal associations during new learning, as opposed to persistent maintenance of stimulus representations.
Collapse
Affiliation(s)
- Kyle Puhger
- Department of Psychology, University of California, Davis, 135 Young Hall, 1 Shields Avenue, Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Ana P. Crestani
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Cassiano R.A. F. Diniz
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| | - Brian J. Wiltgen
- Department of Psychology, University of California, Davis, 135 Young Hall, 1 Shields Avenue, Davis, CA 95616, USA
- Center for Neuroscience, University of California, Davis, 1544 Newton Court, Davis, CA 95618, USA
| |
Collapse
|
7
|
Levi UI, Bintu MM, Daniella OC, Oyenike OAF, Agbonu AO, Adedamola AM, Ndidi E, Saka SF, Gela BV, Mbagwu SI, Edem EE, Olukayode OJ, James C. Neurobehavioral deficits, histoarchitectural alterations, parvalbumin neuronal damage and glial activation in the brain of male Wistar rat exposed to Landfill leachate. J Chem Neuroanat 2024; 136:102377. [PMID: 38176474 DOI: 10.1016/j.jchemneu.2023.102377] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/28/2023] [Accepted: 12/15/2023] [Indexed: 01/06/2024]
Abstract
Concerns about inappropriate disposal of waste into unsanitary municipal solid waste landfills around the world have been on the increase, and this poses a public health challenge due to leachate production. The neurotoxic effect of Gwagwalada landfill leachate (GLL) was investigated in male adult Wistar rats. Rats were exposed to a 10% concentration of GLL for 21 days. The control group received tap water for the same period of the experiment. Our results showed that neurobehavior, absolute body and brain weights and brain histomorphology as well as parvalbumin interneurons were severely altered, with consequent astrogliosis and microgliosis after 21 days of administrating GLL. Specifically, there was severe loss and shrinkage of Purkinje cells, with their nucleus, and severe diffused vacuolations of the white matter tract of GLL-exposed rat brains. There was severe cell loss in the granular layer of the cerebellum resulting in a reduced thickness of the layer. Also, there was severe loss of dendritic arborization of the Purkinje cells in GLL-exposed rat brains, and damage as well as reduced populations of parvalbumin-containing fast-spiking GABAergic interneurons in various regions of the brain. In conclusion, data from the present study demonstrated the detrimental effects of Gwagwalada landfill leachate on the brain which may be implicated in neuropsychological conditions.
Collapse
Affiliation(s)
- Usende Ifukibot Levi
- Department of Veterinary Anatomy, University of Abuja, Nigeria; Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA.
| | - Mofio M Bintu
- Department of Biological Sciences, University of Abuja, Abuja, Nigeria
| | | | | | - Adikpe Oluwa Agbonu
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | | | - Enefe Ndidi
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | - Sanni Fatimah Saka
- Department of Veterinary Physiology and Biochemistry, University of Abuja, Abuja, Nigeria
| | - Beselia V Gela
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA; Department of Physiology and Pharmacology, Petre Schotadze Tbilisi Medical Academy, Tbilisi, Georgia
| | - Smart I Mbagwu
- Dept of Anatomy, Faculty of Basic Medical Sciences, Nnamdi Azikiwe University, Nigeria
| | - Edem Ekpenyong Edem
- Department of Human Anatomy, College of Medicine and Health Sciences, Afe Babalola University, Nigeria
| | | | - Connor James
- Department of Neurosurgery, Pennsylvania State College of Medicine, Hershey, PA, USA
| |
Collapse
|
8
|
Dragoi G. The generative grammar of the brain: a critique of internally generated representations. Nat Rev Neurosci 2024; 25:60-75. [PMID: 38036709 PMCID: PMC11878217 DOI: 10.1038/s41583-023-00763-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 12/02/2023]
Abstract
The past decade of progress in neurobiology has uncovered important organizational principles for network preconfiguration and neuronal selection that suggest a generative grammar exists in the brain. In this Perspective, I discuss the competence of the hippocampal neural network to generically express temporally compressed sequences of neuronal firing that represent novel experiences, which is envisioned as a form of generative neural syntax supporting a neurobiological perspective on brain function. I compare this neural competence with the hippocampal network performance that represents specific experiences with higher fidelity after new learning during replay, which is envisioned as a form of neural semantic that supports a complementary neuropsychological perspective. I also demonstrate how the syntax of network competence emerges a priori during early postnatal life and is followed by the later development of network performance that enables rapid encoding and memory consolidation. Thus, I propose that this generative grammar of the brain is essential for internally generated representations, which are crucial for the cognitive processes underlying learning and memory, prospection, and inference, which ultimately underlie our reason and representation of the world.
Collapse
Affiliation(s)
- George Dragoi
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Wu Tsai Institute, Yale University, New Haven, CT, USA.
| |
Collapse
|
9
|
Thavabalasingam S, Aashat S, Palombo DJ, Verfaellie M, Lee ACH. Investigating the impact of healthy aging on memory for temporal duration and order. NEUROPSYCHOLOGY, DEVELOPMENT, AND COGNITION. SECTION B, AGING, NEUROPSYCHOLOGY AND COGNITION 2024; 31:75-96. [PMID: 36082443 DOI: 10.1080/13825585.2022.2120178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 08/27/2022] [Indexed: 06/15/2023]
Abstract
Temporal information, including information about temporal order and duration, is a fundamental component of event sequence memory. While previous research has demonstrated that aging can have a detrimental effect on memory for temporal order, there has been limited insight into the effect of aging on memory for durations, particularly within the context of sequences. In the current study, neurologically healthy young and older participants were administered two temporal match-mismatch tasks: one in which they were instructed on each trial to compare the temporal order or duration information of stimulus sequences presented first in a study phase and then, after a short delay, in a test phase (event sequence task); and a second in which participants were required to compare single durations or sequences of durations across study and test phases of each trial (pinwheel task). Consistent with the literature, the older participants were significantly poorer compared to their younger counterparts at making temporal order match-mismatch judgments in the event sequence task. In addition to this, data from both tasks suggested that the older adults were also less accurate at match-mismatch judgments based on duration information, with tentative evidence from the pinwheel task to suggest that this age-related effect was most prominent when the duration information was presented within a sequence. We suggest that age-related changes to medial temporal and frontal lobe function may contribute to changes in memory for temporal information in older adults, given the importance of these regions to event sequence memory.
Collapse
Affiliation(s)
| | - Supreet Aashat
- Department of Psychology (Scarborough), University of Toronto, Toronto, Ontario, Canada
| | - Daniela J Palombo
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mieke Verfaellie
- Memory Disorders Research Center, VA Boston Healthcare System, Boston, MA, USA
- Department of Psychiatry, Boston University School of Medicine, Boston, MA, USA
| | - Andy C H Lee
- Rotman Research Institute, Baycrest Centre, Toronto, Ontario, Canada
| |
Collapse
|
10
|
Ohki T, Kunii N, Chao ZC. Efficient, continual, and generalized learning in the brain - neural mechanism of Mental Schema 2.0. Rev Neurosci 2023; 34:839-868. [PMID: 36960579 DOI: 10.1515/revneuro-2022-0137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/26/2023] [Indexed: 03/25/2023]
Abstract
There has been tremendous progress in artificial neural networks (ANNs) over the past decade; however, the gap between ANNs and the biological brain as a learning device remains large. With the goal of closing this gap, this paper reviews learning mechanisms in the brain by focusing on three important issues in ANN research: efficiency, continuity, and generalization. We first discuss the method by which the brain utilizes a variety of self-organizing mechanisms to maximize learning efficiency, with a focus on the role of spontaneous activity of the brain in shaping synaptic connections to facilitate spatiotemporal learning and numerical processing. Then, we examined the neuronal mechanisms that enable lifelong continual learning, with a focus on memory replay during sleep and its implementation in brain-inspired ANNs. Finally, we explored the method by which the brain generalizes learned knowledge in new situations, particularly from the mathematical generalization perspective of topology. Besides a systematic comparison in learning mechanisms between the brain and ANNs, we propose "Mental Schema 2.0," a new computational property underlying the brain's unique learning ability that can be implemented in ANNs.
Collapse
Affiliation(s)
- Takefumi Ohki
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| | - Naoto Kunii
- Department of Neurosurgery, The University of Tokyo, Tokyo 113-0033, Japan
| | - Zenas C Chao
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo Institutes for Advanced Study, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
11
|
Schmitter CV, Kufer K, Steinsträter O, Sommer J, Kircher T, Straube B. Neural correlates of temporal recalibration to delayed auditory feedback of active and passive movements. Hum Brain Mapp 2023; 44:6227-6244. [PMID: 37818950 PMCID: PMC10619381 DOI: 10.1002/hbm.26508] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/13/2023] Open
Abstract
When we perform an action, its sensory outcomes usually follow shortly after. This characteristic temporal relationship aids in distinguishing self- from externally generated sensory input. To preserve this ability under dynamically changing environmental conditions, our expectation of the timing between action and outcome must be able to recalibrate, for example, when the outcome is consistently delayed. Until now, it remains unclear whether this process, known as sensorimotor temporal recalibration, can be specifically attributed to recalibration of sensorimotor (action-outcome) predictions, or whether it may be partly due to the recalibration of expectations about the intersensory (e.g., audio-tactile) timing. Therefore, we investigated the behavioral and neural correlates of temporal recalibration and differences in sensorimotor and intersensory contexts. During fMRI, subjects were exposed to delayed or undelayed tones elicited by actively or passively generated button presses. While recalibration of the expected intersensory timing (i.e., between the tactile sensation during the button movement and the tones) can be expected to occur during both active and passive movements, recalibration of sensorimotor predictions should be limited to active movement conditions. Effects of this procedure on auditory temporal perception and the modality-transfer to visual perception were tested in a delay detection task. Across both contexts, we found recalibration to be associated with activations in hippocampus and cerebellum. Context-dependent differences emerged in terms of stronger behavioral recalibration effects in sensorimotor conditions and were captured by differential activation pattern in frontal cortices, cerebellum, and sensory processing regions. These findings highlight the role of the hippocampus in encoding and retrieving newly acquired temporal stimulus associations during temporal recalibration. Furthermore, recalibration-related activations in the cerebellum may reflect the retention of multiple representations of temporal stimulus associations across both contexts. Finally, we showed that sensorimotor predictions modulate recalibration-related processes in frontal, cerebellar, and sensory regions, which potentially account for the perceptual advantage of sensorimotor versus intersensory temporal recalibration.
Collapse
Affiliation(s)
- Christina V. Schmitter
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgHesseGermany
- Center for Mind, Brain and Behavior (CMBB)University of Marburg and Justus Liebig University GiessenMarburgHesseGermany
| | - Konstantin Kufer
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgHesseGermany
- Center for Mind, Brain and Behavior (CMBB)University of Marburg and Justus Liebig University GiessenMarburgHesseGermany
| | - Olaf Steinsträter
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgHesseGermany
- Center for Mind, Brain and Behavior (CMBB)University of Marburg and Justus Liebig University GiessenMarburgHesseGermany
| | - Jens Sommer
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgHesseGermany
- Center for Mind, Brain and Behavior (CMBB)University of Marburg and Justus Liebig University GiessenMarburgHesseGermany
| | - Tilo Kircher
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgHesseGermany
- Center for Mind, Brain and Behavior (CMBB)University of Marburg and Justus Liebig University GiessenMarburgHesseGermany
| | - Benjamin Straube
- Department of Psychiatry and PsychotherapyUniversity of MarburgMarburgHesseGermany
- Center for Mind, Brain and Behavior (CMBB)University of Marburg and Justus Liebig University GiessenMarburgHesseGermany
| |
Collapse
|
12
|
Boscaglia M, Gastaldi C, Gerstner W, Quian Quiroga R. A dynamic attractor network model of memory formation, reinforcement and forgetting. PLoS Comput Biol 2023; 19:e1011727. [PMID: 38117859 PMCID: PMC10766193 DOI: 10.1371/journal.pcbi.1011727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 01/04/2024] [Accepted: 12/02/2023] [Indexed: 12/22/2023] Open
Abstract
Empirical evidence shows that memories that are frequently revisited are easy to recall, and that familiar items involve larger hippocampal representations than less familiar ones. In line with these observations, here we develop a modelling approach to provide a mechanistic understanding of how hippocampal neural assemblies evolve differently, depending on the frequency of presentation of the stimuli. For this, we added an online Hebbian learning rule, background firing activity, neural adaptation and heterosynaptic plasticity to a rate attractor network model, thus creating dynamic memory representations that can persist, increase or fade according to the frequency of presentation of the corresponding memory patterns. Specifically, we show that a dynamic interplay between Hebbian learning and background firing activity can explain the relationship between the memory assembly sizes and their frequency of stimulation. Frequently stimulated assemblies increase their size independently from each other (i.e. creating orthogonal representations that do not share neurons, thus avoiding interference). Importantly, connections between neurons of assemblies that are not further stimulated become labile so that these neurons can be recruited by other assemblies, providing a neuronal mechanism of forgetting.
Collapse
Affiliation(s)
- Marta Boscaglia
- Centre for Systems Neuroscience, University of Leicester, United Kingdom
- School of Psychology and Vision Sciences, University of Leicester, United Kingdom
| | - Chiara Gastaldi
- School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Wulfram Gerstner
- School of Computer and Communication Sciences and School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Switzerland
| | - Rodrigo Quian Quiroga
- Centre for Systems Neuroscience, University of Leicester, United Kingdom
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Ruijin hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People’s Republic of China
| |
Collapse
|
13
|
Yokose J, Yamamoto N, Ogawa SK, Kitamura T. Optogenetic activation of dopamine D1 receptors in island cells of medial entorhinal cortex inhibits temporal association learning. Mol Brain 2023; 16:78. [PMID: 37964372 PMCID: PMC10647136 DOI: 10.1186/s13041-023-01065-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 10/25/2023] [Indexed: 11/16/2023] Open
Abstract
A critical feature of episodic memory formation is to associate temporally segregated events as an episode, called temporal association learning. The medial entorhinal cortical-hippocampal (EC-HPC) networks is essential for temporal association learning. We have previously demonstrated that pyramidal cells in the medial EC (MEC) layer III project to the hippocampal CA1 pyramidal cells and are necessary for trace fear conditioning (TFC), which is an associative learning between tone and aversive shock with the temporal gap. On the other hand, Island cells in MECII, project to GABAergic neurons in hippocampal CA1, suppress the MECIII input into the CA1 pyramidal cells through the feed-forward inhibition, and inhibit TFC. However, it remains unknown about how Island cells activity is regulated during TFC. In this study, we report that dopamine D1 receptor is preferentially expressed in Island cells in the MEC. Optogenetic activation of dopamine D1 receptors in Island cells facilitate the Island cell activity and inhibited hippocampal CA1 pyramidal cell activity during TFC. The optogenetic activation caused the impairment of TFC memory recall without affecting contextual fear memory recall. These results suggest that dopamine D1 receptor in Island cells have a crucial role for the regulation of temporal association learning.
Collapse
Affiliation(s)
- Jun Yokose
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Sachie K Ogawa
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.
| |
Collapse
|
14
|
Atak S, Boye A, Peciña S, Liu ZX. High-fat-sugar diet is associated with impaired hippocampus-dependent memory in humans. Physiol Behav 2023; 268:114225. [PMID: 37150429 DOI: 10.1016/j.physbeh.2023.114225] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Revised: 04/28/2023] [Accepted: 05/04/2023] [Indexed: 05/09/2023]
Abstract
Overconsumption of high-fat and high-sugar (HFS) diet may affect the hippocampus, and consequently, memory functions. Yet, converging evidence is needed to demonstrate that the type of memory affected by HFS diet consumption is indeed hippocampus dependent. Moreover, the extent to which HFS diet can also affect executive functioning, and indirectly affect memory requires further examination. In this online study, we asked 349 young adults to report their HFS diet consumption and complete a word memory task, the Everyday Memory Questionnaire, and importantly two memory tasks that have been shown to robustly engage the hippocampus, i.e., the Pattern Separation and Associative Memory Tasks. Participants also completed two executive functioning tasks, the Trail Making Task (TMT) and the Stroop Task. These measures assess attention/cognitive flexibility and the ability to inhibit cognitive interference, respectively. After controlling for confounding variables, we found that participants who reported higher level consumption of a HFS diet performed worse on the Pattern Separation Task and that higher HFS intake was significantly associated with poorer TMT task performance and longer Stroop average reaction time (RT). TMT and Stroop RT scores indicative of reduced executive function also partially mediated the relationship between HFS diet and memory performance on the pattern separation task. Taken together, our results provide converging evidence that HFS diet may impair hippocampus-dependent memory. HFS diet may also affect executive functioning and indirectly impair memory function. The findings are consistent with human subject and animal studies and call for further investigations on the psychological and neural mechanisms underlying the dietary effects on cognitive processes.
Collapse
Affiliation(s)
- Selen Atak
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, MI, United States of America
| | - Alyssa Boye
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, MI, United States of America
| | - Susana Peciña
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, MI, United States of America
| | - Zhong-Xu Liu
- Department of Behavioral Sciences, The University of Michigan-Dearborn, Dearborn, MI, United States of America.
| |
Collapse
|
15
|
Quian Quiroga R. An integrative view of human hippocampal function: Differences with other species and capacity considerations. Hippocampus 2023; 33:616-634. [PMID: 36965048 DOI: 10.1002/hipo.23527] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 02/11/2023] [Accepted: 03/09/2023] [Indexed: 03/27/2023]
Abstract
We describe an integrative model that encodes associations between related concepts in the human hippocampal formation, constituting the skeleton of episodic memories. The model, based on partially overlapping assemblies of "concept cells," contrast markedly with the well-established notion of pattern separation, which relies on conjunctive, context dependent single neuron responses, instead of the invariant, context independent responses found in the human hippocampus. We argue that the model of partially overlapping assemblies is better suited to cope with memory capacity limitations, that the finding of different types of neurons and functions in this area is due to a flexible and temporary use of the extraordinary machinery of the hippocampus to deal with the task at hand, and that only information that is relevant and frequently revisited will consolidate into long-term hippocampal representations, using partially overlapping assemblies. Finally, we propose that concept cells are uniquely human and that they may constitute the neuronal underpinnings of cognitive abilities that are much further developed in humans compared to other species.
Collapse
Affiliation(s)
- Rodrigo Quian Quiroga
- Hospital del Mar Medical Research Institute (IMIM), Barcelona, Spain
- Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
- Centre for Systems Neuroscience, University of Leicester, Leicester, UK
- Department of neurosurgery, clinical neuroscience center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
16
|
Vila-Merkle H, González-Martínez A, Campos-Jiménez R, Martínez-Ricós J, Teruel-Martí V, Lloret A, Blasco-Serra A, Cervera-Ferri A. Sex differences in amygdalohippocampal oscillations and neuronal activation in a rodent anxiety model and in response to infralimbic deep brain stimulation. Front Behav Neurosci 2023; 17:1122163. [PMID: 36910127 PMCID: PMC9995972 DOI: 10.3389/fnbeh.2023.1122163] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 02/25/2023] Open
Abstract
Introduction Depression and anxiety are highly comorbid mental disorders with marked sex differences. Both disorders show altered activity in the amygdala, hippocampus, and prefrontal cortex. Infralimbic deep brain stimulation (DBS-IL) has anxiolytic and antidepressant effects, but the underlying mechanisms remain unclear. We aimed to contribute to understanding sex differences in the neurobiology of these disorders. Methods In male and female rats, we recorded neural oscillations along the dorsoventral axis of the hippocampus and the amygdala in response to an anxiogenic drug, FG-7142. Following this, we applied DBS-IL. Results Surprisingly, in females, the anxiogenic drug failed to induce most of the changes observed in males. We found sex differences in slow, delta, theta, and beta oscillations, and the amygdalo-hippocampal communication in response to FG-7142, with modest changes in females. Females had a more prominent basal gamma, and the drug altered this band only in males. We also analyzed c-Fos expression in both sexes in stress-related structures in response to FG-7142, DBS-IL, and combined interventions. With the anxiogenic drug, females showed reduced expression in the nucleus incertus, amygdala, septohippocampal network, and neocortical levels. In both experiments, the DBS-IL reversed FG-7142-induced effects, with a more substantial effect in males than females. Discussion Here, we show a reduced response in female rats which contrasts with the higher prevalence of anxiety in women but is consistent with other studies in rodents. Our results open compelling questions about sex differences in the neurobiology of anxiety and depression and their study in animal models.
Collapse
Affiliation(s)
- Hanna Vila-Merkle
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Alicia González-Martínez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Rut Campos-Jiménez
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Joana Martínez-Ricós
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Vicent Teruel-Martí
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| | - Ana Lloret
- Department of Physiology, Faculty of Medicine, Health Research Institute INCLIVA, CIBERFES, University of Valencia, Valencia, Spain
| | - Arantxa Blasco-Serra
- Study Group for the Anatomical Substrate of Pain and Analgesia (GESADA) Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine and Odontology, University of Valencia, Valencia, Spain
| | - Ana Cervera-Ferri
- Neuronal Circuits Laboratory, Department of Human Anatomy and Embryology, Faculty of Medicine, University of Valencia, Valencia, Spain
| |
Collapse
|
17
|
Sherman BE, DuBrow S, Winawer J, Davachi L. Mnemonic Content and Hippocampal Patterns Shape Judgments of Time. Psychol Sci 2023; 34:221-237. [PMID: 36442582 PMCID: PMC10068509 DOI: 10.1177/09567976221129533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/09/2022] [Indexed: 11/30/2022] Open
Abstract
Our experience of time can feel dilated or compressed, rather than reflecting true "clock time." Although many contextual factors influence the subjective perception of time, it is unclear how memory accessibility plays a role in constructing our experience of and memory for time. Here, we used a combination of behavioral and functional MRI measures in healthy young adults (N = 147) to ask the question of how memory is incorporated into temporal duration judgments. Behaviorally, we found that event boundaries, which have been shown to disrupt ongoing memory integration processes, result in the temporal compression of duration judgments. Additionally, using a multivoxel pattern similarity analysis of functional MRI data, we found that greater temporal pattern change in the left hippocampus within individual trials was associated with longer duration judgments. Together, these data suggest that mnemonic processes play a role in constructing representations of time.
Collapse
Affiliation(s)
| | | | - Jonathan Winawer
- Department of Psychology and Center for
Neural Science, New York University
| | - Lila Davachi
- Department of Psychology, Columbia
University
- Department of Clinical Research, Nathan
Kline Institute for Psychiatric Research
| |
Collapse
|
18
|
Lemoine L, Lunven M, Fraisse N, Youssov K, Bapst B, Morgado G, Reilmann R, Busse M, Craufurd D, Rosser A, de Gardelle V, Bachoud-Lévi AC. The striatum in time production: The model of Huntington's disease in longitudinal study. Neuropsychologia 2023; 179:108459. [PMID: 36567007 DOI: 10.1016/j.neuropsychologia.2022.108459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
The unified model of time processing suggests that the striatum is a central structure involved in all tasks that require the processing of temporal durations. Patients with Huntington's disease exhibit striatal degeneration and a deficit in time perception in interval timing tasks (i.e. for duration ranging from hundreds of milliseconds to minutes), but whether this deficit extends to time production remains unclear. In this study, we investigated whether symptomatic patients (HD, N = 101) or presymptomatic gene carriers (Pre-HD, N = 31) of Huntington's disease had a deficit in time production for durations between 4 and 10 s compared to healthy controls and whether this deficit developed over a year for patients. We found a clear deficit in temporal production for HD patients, whereas Pre-HD performed similarly to Controls. For HD patients and Pre-HD participants, task performance was correlated with grey matter volume in the amygdala and caudate, bilaterally. These results confirm that the striatum is involved in interval timing not only in perception but also in production, in accordance with the unified model of time processing. Furthermore, exploratory factor analyses on our data indicated that temporal production was associated with clinical assessments of psychomotor and executive functions. Finally, when retested twelve months later, the deficit of HD patients remained stable, although striatal degeneration was more pronounced. Thus, the simple, short and language-independent temporal production task may be a useful clinical tool to detect striatal degeneration in patients in early stages of Huntington's disease. However, its usefulness to detect presymptomatic stages or for monitoring the evolution of HD over a year seems limited.
Collapse
Affiliation(s)
- Laurie Lemoine
- Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France; Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; AP-HP, Centre de référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France
| | - Marine Lunven
- Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France; Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; AP-HP, Centre de référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France
| | - Nicolas Fraisse
- Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France; Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; AP-HP, Centre de référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France
| | - Katia Youssov
- Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France; Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; AP-HP, Centre de référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France
| | - Blanche Bapst
- Université Paris Est, Faculté de Médecine, Créteil, France; Service de Neuroradiologie, Hôpital Henri Mondor, AP-HP, Créteil, France
| | - Graça Morgado
- Inserm, Centre d'Investigation Clinique 1430, Hôpital Henri Mondor, Créteil, France
| | - Ralf Reilmann
- George-Huntington-Institute, Technology-Park, Muenster, Germany; Department of Clinical Radiology University of Muenster, Muenster, Germany; Dept. of Neurodegeneration and Hertie Institute for Clinical Brain Research, University of Tuebingen, Tuebingen, Germany
| | - Monica Busse
- Centre for Trials Research, Cardiff University, United Kingdom; NMHRI, School of Medicine, And Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom
| | - David Craufurd
- Manchester Centre for Genomic Medicine, St Mary's Hospital, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom; Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Anne Rosser
- NMHRI, School of Medicine, And Brain Repair Group, School of Biosciences, Cardiff University, Cardiff, United Kingdom; Wales Brain Research and Intracranial Neurotherapeutics (BRAIN) Unit, Wales, United Kingdom
| | | | - Anne-Catherine Bachoud-Lévi
- Département d'Etudes Cognitives, Ecole Normale Supérieure, PSL University, Paris, France; Université Paris Est, Faculté de Médecine, Créteil, France; Inserm U955, Equipe E01 Neuropsychologie Interventionnelle, Créteil, France; AP-HP, Centre de référence Maladie de Huntington, Service de Neurologie, Hôpital Henri Mondor-Albert Chenevier, Créteil, France.
| |
Collapse
|
19
|
Dimsdale-Zucker HR, Montchal ME, Reagh ZM, Wang SF, Libby LA, Ranganath C. Representations of Complex Contexts: A Role for Hippocampus. J Cogn Neurosci 2023; 35:90-110. [PMID: 36166300 PMCID: PMC9832373 DOI: 10.1162/jocn_a_01919] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The hippocampus plays a critical role in supporting episodic memory, in large part by binding together experiences and items with surrounding contextual information. At present, however, little is known about the roles of different hippocampal subfields in supporting this item-context binding. To address this question, we constructed a task in which items were affiliated with differing types of context-cognitive associations that vary at the local, item level and membership in temporally organized lists that linked items together at a global level. Participants made item recognition judgments while undergoing high-resolution fMRI. We performed voxel pattern similarity analyses to answer the question of how human hippocampal subfields represent retrieved information about cognitive states and the time at which a past event took place. As participants recollected previously presented items, activity patterns in the CA23DG subregion carried information about prior cognitive states associated with these items. We found no evidence to suggest reinstatement of information about temporal context at the level of list membership, but exploratory analyses revealed representations of temporal context at a coarse level in conjunction with representations of cognitive contexts. Results are consistent with characterizations of CA23DG as a critical site for binding together items and contexts in the service of memory retrieval.
Collapse
|
20
|
Nomoto M, Murayama E, Ohno S, Okubo-Suzuki R, Muramatsu SI, Inokuchi K. Hippocampus as a sorter and reverberatory integrator of sensory inputs. Nat Commun 2022; 13:7413. [PMID: 36539403 PMCID: PMC9768143 DOI: 10.1038/s41467-022-35119-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022] Open
Abstract
The hippocampus must be capable of sorting and integrating multiple sensory inputs separately but simultaneously. However, it remains to be elucidated how the hippocampus executes these processes simultaneously during learning. Here we found that synchrony between conditioned stimulus (CS)-, unconditioned stimulus (US)- and future retrieval-responsible cells occurs in the CA1 during the reverberatory phase that emerges after sensory inputs have ceased, but not during CS and US inputs. Mutant mice lacking N-methyl-D-aspartate receptors (NRs) in CA3 showed a cued-fear memory impairment and a decrease in synchronized reverberatory activities between CS- and US-responsive CA1 cells. Optogenetic CA3 silencing at the reverberatory phase during learning impaired cued-fear memory. Thus, the hippocampus uses reverberatory activity to link CS and US inputs, and avoid crosstalk during sensory inputs.
Collapse
Affiliation(s)
- Masanori Nomoto
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Emi Murayama
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Shuntaro Ohno
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Reiko Okubo-Suzuki
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| | - Shin-ichi Muramatsu
- grid.410804.90000000123090000Division of Neurology, Department of Medicine, Jichi Medical University, Tochigi, 329−0498 Japan ,grid.26999.3d0000 0001 2151 536XCenter for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108−8639 Japan
| | - Kaoru Inokuchi
- grid.267346.20000 0001 2171 836XResearch Centre for Idling Brain Science, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XDepartment of Biochemistry, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, 930−0194 Japan ,grid.267346.20000 0001 2171 836XCREST, JST, University of Toyama, Toyama, 930−0194 Japan
| |
Collapse
|
21
|
Li Y, Lai W, Zheng C, Babu JR, Xue C, Ai Q, Huggins KW. Neuroprotective Effect of Stearidonic Acid on Amyloid β-Induced Neurotoxicity in Rat Hippocampal Cells. Antioxidants (Basel) 2022; 11:2357. [PMID: 36552565 PMCID: PMC9774633 DOI: 10.3390/antiox11122357] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/18/2022] [Accepted: 11/24/2022] [Indexed: 11/29/2022] Open
Abstract
Dietary intake of omega-3 fatty acids found in fish has been reported to reduce the risk of Alzheimer's Disease (AD). Stearidonic acid (SDA), a plant-based omega-3 fatty acid, has been targeted as a potential surrogate for fish-based fatty acids. However, its role in neuronal degeneration is unknown. This study was designed to evaluate effects of SDA on Amyloid-β(A-β)-induced neurotoxicity in rat hippocampal cells. Results showed that SDA effectively converted to eicosapentaenoic acid (EPA) in hippocampal cells. Aβ-induced apoptosis in H19-7 cells was protected by SDA pretreatment as evidenced by its regulation on the expression of relevant pro- and anti-apoptotic genes, as well as the inhibition on caspase activation. SDA also protected H19-7 cells from Aβ-induced oxidative stress by regulating the expression of relevant pro- and anti-oxidative genes, as well as the improvement in activity of catalase. As for Aβ/LPS-induced neuronal inflammation, SDA pretreatment reduced the release of IL-1β and TNFα. Further, we found that the anti-Aβ effect of SDA involves its inhibition on the expression of amyloid precursor protein and the regulation on MAPK signaling. These results demonstrated that SDAs have neuroprotective effect in Aβ-induced H19-7 hippocampal cells. This beneficial effect of SDA was attributed to its antiapoptotic, antioxidant, and anti-inflammatory properties.
Collapse
Affiliation(s)
- Yueru Li
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Wencong Lai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Chen Zheng
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
| | - Jeganathan Ramesh Babu
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| | - Changhu Xue
- College of Food Science and Engineering, Ocean University of China, Qingdao 266005, China
| | - Qinghui Ai
- Key Laboratory of Aquaculture Nutrition and Feed, Ministry of Agriculture, Ocean University of China, 5 Yushan Road, Qingdao 266005, China
| | - Kevin W. Huggins
- Department of Nutrition, Dietetics and Hospitality Management, Auburn University, Auburn, AL 36849, USA
- Boshell Diabetes and Metabolic Diseases Research Program, Auburn University, Auburn, AL 36849, USA
| |
Collapse
|
22
|
Li R, Zhang W, Zhang J, Zhang H, Chen H, Hu Z, Yao Z, Chen H, Hu B. Sustained Activity of Hippocampal Parvalbumin-Expressing Interneurons Supports Trace Eyeblink Conditioning in Mice. J Neurosci 2022; 42:8343-8360. [PMID: 36167784 PMCID: PMC9653279 DOI: 10.1523/jneurosci.0834-22.2022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 11/21/2022] Open
Abstract
Although recent studies have revealed an involvement of hippocampal interneurons in learning the association among time-separated events, its underlying cellular mechanisms remained not fully clarified. Here, we combined multichannel recording and optogenetics to elucidate how the hippocampal parvalbumin-expressing interneurons (PV-INs) support associative learning. To address this issue, we trained the mice (both sexes) to learn hippocampus-dependent trace eyeblink conditioning (tEBC) in which they associated a light flash conditioned stimulus (CS) with a corneal air puff unconditioned stimuli (US) separated by a 250 ms time interval. We found that the hippocampal PV-INs exhibited learning-associated sustained activity at the early stage of tEBC acquisition. Moreover, the PV-IN sustained activity was positively correlated with the occurrence of conditioned eyeblink responses at the early learning stage. Suppression of the PV-IN sustained activity impaired the acquisition of tEBC, whereas the PV-IN activity suppression had no effect on the acquisition of delay eyeblink conditioning, a hippocampus-independent learning task. Learning-associated augmentation in the excitatory pyramidal cell-to-PVIN drive may contribute to the formation of PV-IN sustained activity. Suppression of the PV-IN sustained activity disrupted hippocampal gamma but not theta band oscillation during the CS-US interval period. Gamma frequency (40 Hz) activation of the PV-INs during the CS-US interval period facilitated the acquisition of tEBC. Our current findings highlight the involvement of hippocampal PV-INs in tEBC acquisition and reveal insights into the PV-IN activity kinetics which are of key importance for the hippocampal involvement in associative learning.SIGNIFICANCE STATEMENT The cellular mechanisms underlying associative learning have not been fully clarified. Previous studies focused on the involvement of hippocampal pyramidal cells in associative learning, whereas the activity and function of hippocampal interneurons were largely neglected. We herein demonstrated the hippocampal PV-INs exhibited learning-associated sustained activity, which was required for the acquisition of tEBC. Furthermore, we showed evidence that the PV-IN sustained activity might have arisen from the learning-associated augmentation in excitatory pyramidal cell-to-PVIN drive and contributed to learning-associated augmentation in gamma band oscillation during tEBC acquisition. Our findings provide more mechanistic understanding of the cellular mechanisms underlying the hippocampal involvement in associative learning.
Collapse
Affiliation(s)
- Rongrong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Weiwei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Haibo Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hui Chen
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhian Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Zhongxiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing 400038, China
- Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing 400038, China
| |
Collapse
|
23
|
Rodríguez-Flores TC, Palomo-Briones GA, Robles F, Ramos F. Proposal for a computational model of incentive memory. COGN SYST RES 2022. [DOI: 10.1016/j.cogsys.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
24
|
Gómez A, Rodríguez-Expósito B, Ocaña FM, Salas C, Rodríguez F. Trace classical conditioning impairment after lesion of the lateral part of the goldfish telencephalic pallium suggests a long ancestry of the episodic memory function of the vertebrate hippocampus. Brain Struct Funct 2022; 227:2879-2890. [PMID: 36006500 DOI: 10.1007/s00429-022-02553-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022]
Abstract
There is an ongoing debate on the evolutionary origin of the episodic memory function of the hippocampus. A widely accepted hypothesis claims that the hippocampus first evolved as a dedicated system for spatial navigation in ancestral vertebrates, being transformed later in phylogeny to support a broader role in episodic memory with the emergence of mammals. On the contrary, an alternative hypothesis holds that the hippocampus of ancestral vertebrates originally encoded both the spatial and temporal dimensions of relational memories since its evolutionary appearance, thus suggesting that the episodic-like memory function of the hippocampus could be the primitive condition in vertebrate forebrain evolution. The present experiment was aimed at scrutinizing these opposing hypotheses by investigating whether the hippocampal pallium of teleost fish, a vertebrate group that shares with mammals a common ancestor that lived about 400 Mya, is, like the hippocampus of mammals, essential to associate time-discontiguous events. Thus, goldfish with lesions in the ventral part of the dorsolateral pallium (Dlv), a telencephalic region considered homologous to the hippocampal pallium of land vertebrates, were trained in trace versus delay eyeblink-like classical conditioning, two learning procedures that differ only in the temporal relationships between the stimuli to be associated in memory. The results showed that hippocampal pallium lesion in goldfish severely impairs trace conditioning, but spares delay conditioning. This finding challenges the idea that navigation preceded relational memory in evolutionary appearance and suggests the possibility that a relational memory function that associates the experienced events in both the spatial and temporal dimensions could be a primitive feature of the hippocampus that pre-existed in the common ancestor of vertebrates.
Collapse
Affiliation(s)
- A Gómez
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| | | | - F M Ocaña
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| | - C Salas
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain.
| | - F Rodríguez
- Laboratory of Psychobiology, Universidad de Sevilla, Seville, Spain
| |
Collapse
|
25
|
Aitken F, Kok P. Hippocampal representations switch from errors to predictions during acquisition of predictive associations. Nat Commun 2022; 13:3294. [PMID: 35676285 PMCID: PMC9178037 DOI: 10.1038/s41467-022-31040-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Accepted: 05/11/2022] [Indexed: 11/09/2022] Open
Abstract
AbstractWe constantly exploit the statistical regularities in our environment to help guide our perception. The hippocampus has been suggested to play a pivotal role in both learning environmental statistics, as well as exploiting them to generate perceptual predictions. However, it is unclear how the hippocampus balances encoding new predictive associations with the retrieval of existing ones. Here, we present the results of two high resolution human fMRI studies (N = 24 for both experiments) directly investigating this. Participants were exposed to auditory cues that predicted the identity of an upcoming visual shape (with 75% validity). Using multivoxel decoding analysis, we find that the hippocampus initially preferentially represents unexpected shapes (i.e., those that violate the cue regularities), but later switches to representing the cue-predicted shape regardless of which was actually presented. These findings demonstrate that the hippocampus is involved both acquiring and exploiting predictive associations, and is dominated by either errors or predictions depending on whether learning is ongoing or complete.
Collapse
|
26
|
Gostolupce D, Lay BPP, Maes EJP, Iordanova MD. Understanding Associative Learning Through Higher-Order Conditioning. Front Behav Neurosci 2022; 16:845616. [PMID: 35517574 PMCID: PMC9062293 DOI: 10.3389/fnbeh.2022.845616] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 03/04/2022] [Indexed: 11/13/2022] Open
Abstract
Associative learning is often considered to require the physical presence of stimuli in the environment in order for them to be linked. This, however, is not a necessary condition for learning. Indeed, associative relationships can form between events that are never directly paired. That is, associative learning can occur by integrating information across different phases of training. Higher-order conditioning provides evidence for such learning through two deceptively similar designs - sensory preconditioning and second-order conditioning. In this review, we detail the procedures and factors that influence learning in these designs, describe the associative relationships that can be acquired, and argue for the importance of this knowledge in studying brain function.
Collapse
Affiliation(s)
| | | | | | - Mihaela D. Iordanova
- Center for Studies in Behavioral Neurobiology, Department of Psychology, Concordia University, Montreal, QC, Canada
| |
Collapse
|
27
|
Liu Y, Levy S, Mau W, Geva N, Rubin A, Ziv Y, Hasselmo M, Howard M. Consistent population activity on the scale of minutes in the mouse hippocampus. Hippocampus 2022; 32:359-372. [PMID: 35225408 PMCID: PMC10085730 DOI: 10.1002/hipo.23409] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 01/05/2022] [Accepted: 01/31/2022] [Indexed: 11/09/2022]
Abstract
Neurons in the hippocampus fire in consistent sequence over the timescale of seconds during the delay period of some memory experiments. For longer timescales, the firing of hippocampal neurons also changes slowly over minutes within experimental sessions. It was thought that these slow dynamics are caused by stochastic drift or a continuous change in the representation of the episode, rather than consistent sequences unfolding over minutes. This paper studies the consistency of contextual drift in three chronic calcium imaging recordings from the hippocampus CA1 region in mice. Computational measures of consistency show reliable sequences within experimental trials at the scale of seconds as one would expect from time cells or place cells during the trial, as well as across experimental trials on the scale of minutes within a recording session. Consistent sequences in the hippocampus are observed over a wide range of time scales, from seconds to minutes. The hippocampal activity could reflect a scale-invariant spatiotemporal context as suggested by theories of memory from cognitive psychology.
Collapse
Affiliation(s)
- Yue Liu
- Department of Physics, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA
| | - Samuel Levy
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - William Mau
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Alon Rubin
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | - Michael Hasselmo
- Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| | - Marc Howard
- Department of Physics, Boston University, Boston, Massachusetts, USA.,Center for Systems Neuroscience, Boston University, Boston, Massachusetts, USA.,Center for Memory and Brain, Boston University, Boston, Massachusetts, USA.,Department of Psychological and Brain Sciences, Boston University, Boston, Massachusetts, USA
| |
Collapse
|
28
|
Houser TM. Spatialization of Time in the Entorhinal-Hippocampal System. Front Behav Neurosci 2022; 15:807197. [PMID: 35069143 PMCID: PMC8770534 DOI: 10.3389/fnbeh.2021.807197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Accepted: 12/06/2021] [Indexed: 11/19/2022] Open
Abstract
The functional role of the entorhinal-hippocampal system has been a long withstanding mystery. One key theory that has become most popular is that the entorhinal-hippocampal system represents space to facilitate navigation in one's surroundings. In this Perspective article, I introduce a novel idea that undermines the inherent uniqueness of spatial information in favor of time driving entorhinal-hippocampal activity. Specifically, by spatializing events that occur in succession (i.e., across time), the entorhinal-hippocampal system is critical for all types of cognitive representations. I back up this argument with empirical evidence that hints at a role for the entorhinal-hippocampal system in non-spatial representation, and computational models of the logarithmic compression of time in the brain.
Collapse
Affiliation(s)
- Troy M. Houser
- Department of Psychology, University of Oregon, Eugene, OR, United States
| |
Collapse
|
29
|
Treder MS, Charest I, Michelmann S, Martín-Buro MC, Roux F, Carceller-Benito F, Ugalde-Canitrot A, Rollings DT, Sawlani V, Chelvarajah R, Wimber M, Hanslmayr S, Staresina BP. The hippocampus as the switchboard between perception and memory. Proc Natl Acad Sci U S A 2021; 118:e2114171118. [PMID: 34880133 PMCID: PMC8685930 DOI: 10.1073/pnas.2114171118] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2021] [Indexed: 12/30/2022] Open
Abstract
Adaptive memory recall requires a rapid and flexible switch from external perceptual reminders to internal mnemonic representations. However, owing to the limited temporal or spatial resolution of brain imaging modalities used in isolation, the hippocampal-cortical dynamics supporting this process remain unknown. We thus employed an object-scene cued recall paradigm across two studies, including intracranial electroencephalography (iEEG) and high-density scalp EEG. First, a sustained increase in hippocampal high gamma power (55 to 110 Hz) emerged 500 ms after cue onset and distinguished successful vs. unsuccessful recall. This increase in gamma power for successful recall was followed by a decrease in hippocampal alpha power (8 to 12 Hz). Intriguingly, the hippocampal gamma power increase marked the moment at which extrahippocampal activation patterns shifted from perceptual cue toward mnemonic target representations. In parallel, source-localized EEG alpha power revealed that the recall signal progresses from hippocampus to posterior parietal cortex and then to medial prefrontal cortex. Together, these results identify the hippocampus as the switchboard between perception and memory and elucidate the ensuing hippocampal-cortical dynamics supporting the recall process.
Collapse
Affiliation(s)
- Matthias S Treder
- School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, United Kingdom
| | - Ian Charest
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- cerebrUM, Département de Psychologie, Université de Montréal, Montreal, QC H2V 259, Canada
| | - Sebastian Michelmann
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544
- Department of Psychology, Princeton University, Princeton, NJ 08540
| | - María Carmen Martín-Buro
- Laboratory of Cognitive and Computational Neuroscience, Center for Biomedical Technology 28223 Madrid, Spain
- Faculty of Health Sciences, King Juan Carlos University 28933 Madrid, Spain
| | - Frédéric Roux
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
| | | | - Arturo Ugalde-Canitrot
- Epilepsy Monitoring Unit, Neurology and Clinical Neurophysiology Service, Hospital Universitario La Paz 28046 Madrid, Spain
- School of Medicine, Universidad Francisco de Vitoria 28223 Madrid, Spain
| | - David T Rollings
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurophysiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Vijay Sawlani
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neuroradiology Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Ramesh Chelvarajah
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom
- Complex Epilepsy and Surgery Service, Neurosurgery Department, Queen Elizabeth Hospital, Birmingham B15 2GW, United Kingdom
| | - Maria Wimber
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Simon Hanslmayr
- Institute of Neuroscience and Psychology, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Bernhard P Staresina
- School of Psychology and Centre for Human Brain Health, University of Birmingham, Birmingham B15 2TT, United Kingdom;
- Department of Experimental Psychology, University of Oxford, Oxford OX2 6GG, United Kingdom
- Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, Department of Psychiatry, University of Oxford, Oxford OX3 7JX, United Kingdom
| |
Collapse
|
30
|
Marks WD, Yamamoto N, Kitamura T. Complementary roles of differential medial entorhinal cortex inputs to the hippocampus for the formation and integration of temporal and contextual memory (Systems Neuroscience). Eur J Neurosci 2021; 54:6762-6779. [PMID: 32277786 PMCID: PMC8187108 DOI: 10.1111/ejn.14737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 03/28/2020] [Accepted: 03/30/2020] [Indexed: 11/29/2022]
Abstract
In humans and rodents, the entorhinal cortical (EC)-hippocampal (HPC) circuit is crucial for the formation and recall of memory, preserving both spatial information and temporal information about the occurrence of past events. Both modeling and experimental studies have revealed circuits within this network that play crucial roles in encoding space and context. However, our understanding about the time-related aspects of memory is just beginning to be understood. In this review, we first describe updates regarding recent anatomical discoveries for the EC-HPC network, as several important neural circuits critical for memory formation have been discovered by newly developed neural tracing technologies. Second, we examine the complementary roles of multiple medial entorhinal cortical inputs, including newly discovered circuits, into the hippocampus for the temporal and spatial aspects of memory. Finally, we will discuss how temporal and contextual memory information is integrated in HPC cornu ammonis 1 cells. We provide new insights into the neural circuit mechanisms for anatomical and functional segregation and integration of the temporal and spatial aspects of memory encoding in the EC-HPC networks.
Collapse
Affiliation(s)
- William D. Marks
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Naoki Yamamoto
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| | - Takashi Kitamura
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, 75390, USA
| |
Collapse
|
31
|
Rueckemann JW, Sosa M, Giocomo LM, Buffalo EA. The grid code for ordered experience. Nat Rev Neurosci 2021; 22:637-649. [PMID: 34453151 PMCID: PMC9371942 DOI: 10.1038/s41583-021-00499-9] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Entorhinal cortical grid cells fire in a periodic pattern that tiles space, which is suggestive of a spatial coordinate system. However, irregularities in the grid pattern as well as responses of grid cells in contexts other than spatial navigation have presented a challenge to existing models of entorhinal function. In this Perspective, we propose that hippocampal input provides a key informative drive to the grid network in both spatial and non-spatial circumstances, particularly around salient events. We build on previous models in which neural activity propagates through the entorhinal-hippocampal network in time. This temporal contiguity in network activity points to temporal order as a necessary characteristic of representations generated by the hippocampal formation. We advocate that interactions in the entorhinal-hippocampal loop build a topological representation that is rooted in the temporal order of experience. In this way, the structure of grid cell firing supports a learned topology rather than a rigid coordinate frame that is bound to measurements of the physical world.
Collapse
Affiliation(s)
- Jon W Rueckemann
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA
- Washington National Primate Research Center, Seattle, WA, USA
| | - Marielena Sosa
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA
| | - Lisa M Giocomo
- Department of Neurobiology, Stanford University School of Medicine, Stanford, CA, USA.
| | - Elizabeth A Buffalo
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA, USA.
- Washington National Primate Research Center, Seattle, WA, USA.
| |
Collapse
|
32
|
Yokose J, Marks WD, Yamamoto N, Ogawa SK, Kitamura T. Entorhinal cortical Island cells regulate temporal association learning with long trace period. ACTA ACUST UNITED AC 2021; 28:319-328. [PMID: 34400533 PMCID: PMC8372565 DOI: 10.1101/lm.052589.120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 07/08/2021] [Indexed: 11/24/2022]
Abstract
Temporal association learning (TAL) allows for the linkage of distinct, nonsynchronous events across a period of time. This function is driven by neural interactions in the entorhinal cortical-hippocampal network, especially the neural input from the pyramidal cells in layer III of medial entorhinal cortex (MECIII) to hippocampal CA1 is crucial for TAL. Successful TAL depends on the strength of event stimuli and the duration of the temporal gap between events. Whereas it has been demonstrated that the neural input from pyramidal cells in layer II of MEC, referred to as Island cells, to inhibitory neurons in dorsal hippocampal CA1 controls TAL when the strength of event stimuli is weak, it remains unknown whether Island cells regulate TAL with long trace periods as well. To understand the role of Island cells in regulating the duration of the learnable trace period in TAL, we used Pavlovian trace fear conditioning (TFC) with a 60-sec long trace period (long trace fear conditioning [L-TFC]) coupled with optogenetic and chemogenetic neural activity manipulations as well as cell type-specific neural ablation. We found that ablation of Island cells in MECII partially increases L-TFC performance. Chemogenetic manipulation of Island cells causes differential effectiveness in Island cell activity and leads to a circuit imbalance that disrupts L-TFC. However, optogenetic terminal inhibition of Island cell input to dorsal hippocampal CA1 during the temporal association period allows for long trace intervals to be learned in TFC. These results demonstrate that Island cells have a critical role in regulating the duration of time bridgeable between associated events in TAL.
Collapse
Affiliation(s)
| | | | | | | | - Takashi Kitamura
- Department of Psychiatry.,Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
33
|
Reddy L, Self MW, Zoefel B, Poncet M, Possel JK, Peters JC, Baayen JC, Idema S, VanRullen R, Roelfsema PR. Theta-phase dependent neuronal coding during sequence learning in human single neurons. Nat Commun 2021; 12:4839. [PMID: 34376673 PMCID: PMC8355141 DOI: 10.1038/s41467-021-25150-0] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Accepted: 07/26/2021] [Indexed: 12/03/2022] Open
Abstract
The ability to maintain a sequence of items in memory is a fundamental cognitive function. In the rodent hippocampus, the representation of sequentially organized spatial locations is reflected by the phase of action potentials relative to the theta oscillation (phase precession). We investigated whether the timing of neuronal activity relative to the theta brain oscillation also reflects sequence order in the medial temporal lobe of humans. We used a task in which human participants learned a fixed sequence of pictures and recorded single neuron and local field potential activity with implanted electrodes. We report that spikes for three consecutive items in the sequence (the preferred stimulus for each cell, as well as the stimuli immediately preceding and following it) were phase-locked at distinct phases of the theta oscillation. Consistent with phase precession, spikes were fired at progressively earlier phases as the sequence advanced. These findings generalize previous findings in the rodent hippocampus to the human temporal lobe and suggest that encoding stimulus information at distinct oscillatory phases may play a role in maintaining sequential order in memory.
Collapse
Affiliation(s)
- Leila Reddy
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France.
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France.
- Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France.
| | - Matthew W Self
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
| | - Benedikt Zoefel
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France
| | - Marlène Poncet
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France
| | - Jessy K Possel
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
| | - Judith C Peters
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, The Netherlands
| | - Johannes C Baayen
- Amsterdam University Medical Centers, location VUmc, Departments of Neurophysiology and Neurosurgery, Amsterdam, The Netherlands
| | - Sander Idema
- Amsterdam University Medical Centers, location VUmc, Departments of Neurophysiology and Neurosurgery, Amsterdam, The Netherlands
| | - Rufin VanRullen
- Université de Toulouse, Centre de Recherche Cerveau et Cognition, Université Paul Sabatier, Toulouse, France
- CNRS, UMR 5549, Faculté de Médecine de Purpan, Toulouse, France
- Artificial and Natural Intelligence Toulouse Institute (ANITI), Toulouse, France
| | - Pieter R Roelfsema
- Department of Vision and Cognition, Netherlands Institute for Neuroscience (KNAW), Amsterdam, The Netherlands
- Department of Integrative Neurophysiology, Centre for Neurogenomics and Cognitive Research, Vrije Universiteit, Amsterdam, The Netherlands
- Psychiatry Department, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|
34
|
Carlesimo GA, Taglieri S, Zabberoni S, Scalici F, Peppe A, Caltagirone C, Costa A. Subjective organization in the episodic memory of individuals with Parkinson's disease associated with mild cognitive impairment. J Neuropsychol 2021; 16:161-182. [PMID: 34089629 DOI: 10.1111/jnp.12256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Word clustering (i.e., the ability to reproduce the same word pairs in consecutive recall trials of an unrelated word list) has been extensively investigated as a proxy of subjective organization (SO) of memorandum. In healthy subjects and in groups of brain-damaged patients, the rate of SO generally predicts accuracy of word list recall. This study aimed at evaluating SO in the performance of patients with Parkinson's disease (PD) on a word list recall task in order to investigate the basic mechanisms of episodic memory impairment that are frequently observed in these patients. For this purpose, 56 PD patients, who were stratified according to the presence and quality of mild cognitive impairment (MCI), and a group of healthy controls (HCs) were administered a word list task and an extensive battery of neuropsychological tests. Results showed that recall accuracy on the word list task progressively decreased passing from HC to PD patients without cognitive impairment, to patients with single-domain dysexecutive MCI and to patients with multiple-domain dysexecutive and amnesic MCI. Conversely, only the latter PD group showed a lower SO score than that achieved by the other groups. In the overall PD group, correlational and regression analyses demonstrated that SO scores and a composite score of executive functions were not reciprocally related, but both provided an independent and significant contribution to the prediction of word list recall accuracy. These data are discussed in terms of the contribution of executive functions and hippocampal storage processes to the onset of memory impairment in PD.
Collapse
Affiliation(s)
- Giovanni Augusto Carlesimo
- Department of Systems Medicine, Tor Vergata University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Sara Taglieri
- IRCCS Santa Lucia Foundation, Rome, Italy.,Niccolò Cusano University, Rome, Italy
| | | | | | | | - Carlo Caltagirone
- Department of Systems Medicine, Tor Vergata University, Rome, Italy.,IRCCS Santa Lucia Foundation, Rome, Italy
| | - Alberto Costa
- IRCCS Santa Lucia Foundation, Rome, Italy.,Niccolò Cusano University, Rome, Italy
| |
Collapse
|
35
|
Zhang WW, Li RR, Zhang J, Yan J, Zhang QH, Hu ZA, Hu B, Yao ZX, Chen H. Hippocampal Interneurons are Required for Trace Eyeblink Conditioning in Mice. Neurosci Bull 2021; 37:1147-1159. [PMID: 33991316 PMCID: PMC8353031 DOI: 10.1007/s12264-021-00700-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 12/22/2020] [Indexed: 12/29/2022] Open
Abstract
While the hippocampus has been implicated in supporting the association among time-separated events, the underlying cellular mechanisms have not been fully clarified. Here, we combined in vivo multi-channel recording and optogenetics to investigate the activity of hippocampal interneurons in freely-moving mice performing a trace eyeblink conditioning (tEBC) task. We found that the hippocampal interneurons exhibited conditioned stimulus (CS)-evoked sustained activity, which predicted the performance of conditioned eyeblink responses (CRs) in the early acquisition of the tEBC. Consistent with this, greater proportions of hippocampal pyramidal cells showed CS-evoked decreased activity in the early acquisition of the tEBC. Moreover, optogenetic suppression of the sustained activity in hippocampal interneurons severely impaired acquisition of the tEBC. In contrast, suppression of the sustained activity of hippocampal interneurons had no effect on the performance of well-learned CRs. Our findings highlight the role of hippocampal interneurons in the tEBC, and point to a potential cellular mechanism subserving associative learning.
Collapse
Affiliation(s)
- Wei-Wei Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Rong-Rong Li
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Zhang
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Jie Yan
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Qian-Hui Zhang
- Department of Foreign Language, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Zhi-An Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China
| | - Bo Hu
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China. .,Brain and Intelligence Research Key Laboratory of Chongqing Education Commission, Army Medical University, Chongqing, 400038, China.
| | - Zhong-Xiang Yao
- Department of Physiology, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| | - Hao Chen
- Experimental Center of Basic Medicine, College of Basic Medical Sciences, Army Medical University, Chongqing, 400038, China.
| |
Collapse
|
36
|
Meng A, Kaiser M, de Graaf TA, Dücker F, Sack AT, De Weerd P, van de Ven V. Transcranial alternating current stimulation at theta frequency to left parietal cortex impairs associative, but not perceptual, memory encoding. Neurobiol Learn Mem 2021; 182:107444. [PMID: 33895350 DOI: 10.1016/j.nlm.2021.107444] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 03/16/2021] [Accepted: 04/20/2021] [Indexed: 11/26/2022]
Abstract
Neural oscillations in the theta range (4-8 Hz) are thought to underlie associative memory function in the hippocampal-cortical network. While there is ample evidence supporting a role of theta oscillations in animal and human memory, most evidence is correlational. Non-invasive brain stimulation (NIBS) can be employed to modulate cortical oscillatory activity to influence brain activity, and possibly modulate deeper brain regions, such as hippocampus, through strong and reliable cortico-hippocampal functional connections. We applied focal transcranial alternating current stimulation (tACS) at 6 Hz over left parietal cortex to modulate brain activity in the putative cortico-hippocampal network to influence associative memory encoding. After encoding and brain stimulation, participants completed an associative memory and a perceptual recognition task. Results showed that theta tACS significantly decreased associative memory performance but did not affect perceptual memory performance. These results show that parietal theta tACS modulates associative processing separately from perceptual processing, and further substantiate the hypothesis that theta oscillations are implicated in the cortico-hippocampal network and associative encoding.
Collapse
Affiliation(s)
- Alyssa Meng
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Max Kaiser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Tom A de Graaf
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Felix Dücker
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Alexander T Sack
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Peter De Weerd
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands
| | - Vincent van de Ven
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands; Maastricht Brain Imaging Center (MBIC), Maastricht University, PO Box 616, 6200 MD Maastricht, the Netherlands.
| |
Collapse
|
37
|
Geyer T, Seitz W, Zinchenko A, Müller HJ, Conci M. Why Are Acquired Search-Guiding Context Memories Resistant to Updating? Front Psychol 2021; 12:650245. [PMID: 33732200 PMCID: PMC7956950 DOI: 10.3389/fpsyg.2021.650245] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 02/09/2021] [Indexed: 01/22/2023] Open
Abstract
Looking for goal-relevant objects in our various environments is one of the most ubiquitous tasks the human visual system has to accomplish (Wolfe, 1998). Visual search is guided by a number of separable selective-attention mechanisms that can be categorized as bottom-up driven - guidance by salient physical properties of the current stimuli - or top-down controlled - guidance by observers' "online" knowledge of search-critical object properties (e.g., Liesefeld and Müller, 2019). In addition, observers' expectations based on past experience also play also a significant role in goal-directed visual selection. Because sensory environments are typically stable, it is beneficial for the visual system to extract and learn the environmental regularities that are predictive of (the location of) the target stimulus. This perspective article is concerned with one of these predictive mechanisms: statistical context learning of consistent spatial patterns of target and distractor items in visual search. We review recent studies on context learning and its adaptability to incorporate consistent changes, with the aim to provide new directions to the study of processes involved in the acquisition of search-guiding context memories and their adaptation to consistent contextual changes - from a three-pronged, psychological, computational, and neurobiological perspective.
Collapse
Affiliation(s)
- Thomas Geyer
- Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Center for Neurosciences – Brain & Mind, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Werner Seitz
- Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Graduate School of Systemic Neurosciences, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Artyom Zinchenko
- Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Hermann J. Müller
- Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
- Munich Center for Neurosciences – Brain & Mind, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Conci
- Department Psychologie, Ludwig-Maximilians-Universität München, Munich, Germany
| |
Collapse
|
38
|
Arski ON, Young JM, Smith ML, Ibrahim GM. The Oscillatory Basis of Working Memory Function and Dysfunction in Epilepsy. Front Hum Neurosci 2021; 14:612024. [PMID: 33584224 PMCID: PMC7874181 DOI: 10.3389/fnhum.2020.612024] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 12/10/2020] [Indexed: 11/16/2022] Open
Abstract
Working memory (WM) deficits are pervasive co-morbidities of epilepsy. Although the pathophysiological mechanisms underpinning these impairments remain elusive, it is thought that WM depends on oscillatory interactions within and between nodes of large-scale functional networks. These include the hippocampus and default mode network as well as the prefrontal cortex and frontoparietal central executive network. Here, we review the functional roles of neural oscillations in subserving WM and the putative mechanisms by which epilepsy disrupts normative activity, leading to aberrant oscillatory signatures. We highlight the particular role of interictal epileptic activity, including interictal epileptiform discharges and high frequency oscillations (HFOs) in WM deficits. We also discuss the translational opportunities presented by greater understanding of the oscillatory basis of WM function and dysfunction in epilepsy, including potential targets for neuromodulation.
Collapse
Affiliation(s)
- Olivia N. Arski
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
| | - Julia M. Young
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
| | - Mary-Lou Smith
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Department of Psychology, Hospital for Sick Children, Toronto, ON, Canada
- Department of Psychology, University of Toronto Mississauga, Mississauga, ON, Canada
| | - George M. Ibrahim
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Program in Neuroscience and Mental Health, Hospital for Sick Children Research Institute, Toronto, ON, Canada
- Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, ON, Canada
- Division of Neurosurgery, Department of Surgery, Hospital for Sick Children, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
39
|
Quian Quiroga R. No Pattern Separation in the Human Hippocampus. Trends Cogn Sci 2020; 24:994-1007. [DOI: 10.1016/j.tics.2020.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/28/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
|
40
|
The Function of the Hippocampus in Bridging Functional and Temporal Discontiguity. Neural Plast 2020; 2020:1049721. [PMID: 33204246 PMCID: PMC7666620 DOI: 10.1155/2020/1049721] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 09/04/2020] [Accepted: 10/18/2020] [Indexed: 11/18/2022] Open
Abstract
Theoretical assessment of the function of the hippocampus has suggested that given certain physiological constraints at both the neuronal and cortical level, the hippocampus is best suited to associate discontiguous items that occur in different temporal or spatial positions. Conceptually, "discontiguous" refers to events that are to be associated with one another but do not temporally or spatially overlap. However, given that humans can actively maintain information "online" by rehearsing it, even when the information is no longer being presented to the sensory system, the right way to experimentally define "discontiguity" is still a question. Does it refer to a "gap" in the presentation of information (temporal discontiguity) or to an "interruption" of the active maintenance of working memory (WM) information (functional discontiguity)? To assess this, participants were imaged by functional magnetic resonance imaging (fMRI) when making judgments on whether two words were semantically related or not. In contrast with recognition memory that can be carried out through perceptual familiarity heuristics, judgments on semantic relatedness can only be accomplished through associative processing. To assess this experimentally, two words are either (1) presented at the same time (Event AB) or (2) one after the other with an unfilled, cross-viewing delay (Event A_B) (the uninterrupted discontiguity) or (3) presented one after the other, between which participants are required to perform a calculation task (Event A#B) (the interrupted discontiguity). Results of event-related fMRI analysis revealed that relative to Event AB, Event A_B was not associated with more hippocampal activity, whereas Event A#B was. The direct contrast of Event A#B relative to Event A_B also revealed significant hippocampal and parahippocampal activity. This result implied that functional discontiguity (the interruption of online maintenance of the inputted information) could be more apt at engaging the function of the hippocampus.
Collapse
|
41
|
Time as the fourth dimension in the hippocampus. Prog Neurobiol 2020; 199:101920. [PMID: 33053416 DOI: 10.1016/j.pneurobio.2020.101920] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 08/18/2020] [Accepted: 10/07/2020] [Indexed: 12/17/2022]
Abstract
Experiences of animal and human beings are structured by the continuity of space and time coupled with the uni-directionality of time. In addition to its pivotal position in spatial processing and navigation, the hippocampal system also plays a central, multiform role in several types of temporal processing. These include timing and sequence learning, at scales ranging from meso-scales of seconds to macro-scales of minutes, hours, days and beyond, encompassing the classical functions of short term memory, working memory, long term memory, and episodic memories (comprised of information about when, what, and where). This review article highlights the principal findings and behavioral contexts of experiments in rats showing: 1) timing: tracking time during delays by hippocampal 'time cells' and during free behavior by hippocampal-afferent lateral entorhinal cortex ramping cells; 2) 'online' sequence processing: activity coding sequences of events during active behavior; 3) 'off-line' sequence replay: during quiescence or sleep, orderly reactivation of neuronal assemblies coding awake sequences. Studies in humans show neurophysiological correlates of episodic memory comparable to awake replay. Neural mechanisms are discussed, including ion channel properties, plateau and ramping potentials, oscillations of excitation and inhibition of population activity, bursts of high amplitude discharges (sharp wave ripples), as well as short and long term synaptic modifications among and within cell assemblies. Specifically conceived neural network models will suggest processes supporting the emergence of scalar properties (Weber's law), and include different classes of feedforward and recurrent network models, with intrinsic hippocampal coding for 'transitions' (sequencing of events or places).
Collapse
|
42
|
Zhang Z, Liu L, Li Y, Tan T, Niki K, Luo J. The function of medial temporal lobe and posterior middle temporal gyrus in forming creative associations. Hippocampus 2020; 30:1257-1267. [DOI: 10.1002/hipo.23253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 06/27/2020] [Accepted: 07/16/2020] [Indexed: 02/03/2023]
Affiliation(s)
- Ze Zhang
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Lulu Liu
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Graduate School of Chinese Academy of Agricultural Sciences Beijing China
| | - Yue Li
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Tengteng Tan
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
| | - Kazuhisa Niki
- Human Informatics Research Institute, Advanced Industrial Science and Technology Tsukuba Japan
- Keio University Graduate School of Human Relations Keio University Tokyo Japan
| | - Jing Luo
- Beijing Key Laboratory of Learning and Cognition, School of Psychology, Capital Normal University Beijing China
- Department of Psychology Shaoxing University Shaoxing China
| |
Collapse
|
43
|
Abstract
Contemporary brain research seeks to understand how cognition is reducible to neural activity. Crucially, much of this effort is guided by a scientific paradigm that views neural activity as essentially driven by external stimuli. In contrast, recent perspectives argue that this paradigm is by itself inadequate and that understanding patterns of activity intrinsic to the brain is needed to explain cognition. Yet, despite this critique, the stimulus-driven paradigm still dominates-possibly because a convincing alternative has not been clear. Here, we review a series of findings suggesting such an alternative. These findings indicate that neural activity in the hippocampus occurs in one of three brain states that have radically different anatomical, physiological, representational, and behavioral correlates, together implying different functional roles in cognition. This three-state framework also indicates that neural representations in the hippocampus follow a surprising pattern of organization at the timescale of ∼1 s or longer. Lastly, beyond the hippocampus, recent breakthroughs indicate three parallel states in the cortex, suggesting shared principles and brain-wide organization of intrinsic neural activity.
Collapse
Affiliation(s)
- Kenneth Kay
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| | - Loren M Frank
- Howard Hughes Medical Institute, Kavli Institute for Fundamental Neuroscience, Department of Physiology, University of California San Francisco, San Francisco, California
| |
Collapse
|
44
|
Tripathi S, Verma A, Jha SK. Training on an Appetitive Trace-Conditioning Task Increases Adult Hippocampal Neurogenesis and the Expression of Arc, Erk and CREB Proteins in the Dorsal Hippocampus. Front Cell Neurosci 2020; 14:89. [PMID: 32362814 PMCID: PMC7181388 DOI: 10.3389/fncel.2020.00089] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 03/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adult hippocampal neurogenesis (AHN) plays an essential role in hippocampal-dependent memory consolidation. Increased neurogenesis enhances learning, whereas its ablation causes memory impairment. In contrast, few reports suggest that neurogenesis reduces after learning. Although the interest in exploring the role of adult neurogenesis in learning has been growing, the evidence is still limited. The role of the trace- and delay-appetitive-conditioning on AHN and its underlying mechanism are not known. The consolidation of trace-conditioned memory requires the hippocampus, but delay-conditioning does not. Moreover, the dorsal hippocampus (DH) and ventral hippocampus (VH) may have a differential role in these two conditioning paradigms. Here, we have investigated the changes in: (A) hippocampal cell proliferation and their progression towards neuronal lineage; and (B) expression of Arc, Erk1, Erk2, and CREB proteins in the DH and VH after trace- and delay-conditioning in the rat. The number of newly generated cells significantly increased in the trace-conditioned but did not change in the delay-conditioned animals compared to the control group. Similarly, the expression of Arc protein significantly increased in the DH but not in the VH after trace-conditioning. Nonetheless, it remains unaltered in the delay-conditioned group. The expression of pErk1, pErk2, and pCREB also increased in the DH after trace-conditioning. Whereas, the expression of only pErk1 pErk2 and pCREB proteins increased in the VH after delay-conditioning. Our results suggest that appetitive trace-conditioning enhances AHN. The increased DH neuronal activation and pErk1, pErk2, and pCREB in the DH may be playing an essential role in learning-induced cell-proliferation after appetitive trace-conditioning.
Collapse
Affiliation(s)
- Shweta Tripathi
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Anita Verma
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| | - Sushil K Jha
- School of Life Science, Jawaharlal Nehru University, New Delhi, India
| |
Collapse
|
45
|
Rey HG, Gori B, Chaure FJ, Collavini S, Blenkmann AO, Seoane P, Seoane E, Kochen S, Quian Quiroga R. Single Neuron Coding of Identity in the Human Hippocampal Formation. Curr Biol 2020; 30:1152-1159.e3. [PMID: 32142694 PMCID: PMC7103760 DOI: 10.1016/j.cub.2020.01.035] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 12/14/2019] [Accepted: 01/10/2020] [Indexed: 11/12/2022]
Abstract
Experimental findings show the ubiquitous presence of graded responses and tuning curves in the neocortex, particularly in visual areas [1-15]. Among these, inferotemporal-cortex (IT) neurons respond to complex visual stimuli, but differences in the neurons' responses can be used to distinguish the stimuli eliciting the responses [8, 9, 16-18]. The IT projects directly to the medial temporal lobe (MTL) [19], where neurons respond selectively to different pictures of specific persons and even to their written and spoken names [20-22]. However, it is not clear whether this is done through a graded coding, as in the neocortex, or a truly invariant code, in which the response-eliciting stimuli cannot be distinguished from each other. To address this issue, we recorded single neurons during the repeated presentation of different stimuli (pictures and written and spoken names) corresponding to the same persons. Using statistical tests and a decoding approach, we found that only in a minority of cases can the different pictures of a given person be distinguished from the neurons' responses and that in a larger proportion of cases, the responses to the pictures were different to the ones to the written and spoken names. We argue that MTL neurons tend to lack a representation of sensory features (particularly within a sensory modality), which can be advantageous for the memory function attributed to this area [23-25], and that a full representation of memories is given by a combination of mostly invariant coding in the MTL with a representation of sensory features in the neocortex.
Collapse
Affiliation(s)
- Hernan G Rey
- Centre for Systems Neuroscience, University of Leicester, 15 Lancaster Rd, Leicester LE1 7HA, UK
| | - Belen Gori
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce "Nestor Kirchner", Universidad National Arturo Jauretche (UNAJ), Av. Calchaquí 5401, Buenos Aires 1888, Argentina
| | - Fernando J Chaure
- Centre for Systems Neuroscience, University of Leicester, 15 Lancaster Rd, Leicester LE1 7HA, UK; Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce "Nestor Kirchner", Universidad National Arturo Jauretche (UNAJ), Av. Calchaquí 5401, Buenos Aires 1888, Argentina; Institute of Biomedical Engineering, University of Buenos Aires, Paseo Colon 850, Buenos Aires 1063, Argentina
| | - Santiago Collavini
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce "Nestor Kirchner", Universidad National Arturo Jauretche (UNAJ), Av. Calchaquí 5401, Buenos Aires 1888, Argentina; Institute of Electronics, Control and Signal Processing (LEICI), University of La Plata, Calle 116 s/n, La Plata B1900, Argentina
| | - Alejandro O Blenkmann
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce "Nestor Kirchner", Universidad National Arturo Jauretche (UNAJ), Av. Calchaquí 5401, Buenos Aires 1888, Argentina
| | - Pablo Seoane
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce "Nestor Kirchner", Universidad National Arturo Jauretche (UNAJ), Av. Calchaquí 5401, Buenos Aires 1888, Argentina
| | - Eduardo Seoane
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce "Nestor Kirchner", Universidad National Arturo Jauretche (UNAJ), Av. Calchaquí 5401, Buenos Aires 1888, Argentina
| | - Silvia Kochen
- Neurosciences and Complex Systems Unit (EnyS), CONICET, Hospital El Cruce "Nestor Kirchner", Universidad National Arturo Jauretche (UNAJ), Av. Calchaquí 5401, Buenos Aires 1888, Argentina
| | - Rodrigo Quian Quiroga
- Centre for Systems Neuroscience, University of Leicester, 15 Lancaster Rd, Leicester LE1 7HA, UK.
| |
Collapse
|
46
|
Ukraintseva Y, Liaukovich K, Shilov M. Time as a dimension of consciousness. Subjective passage of time during wakefulness, REM, and NREM sleep. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:13-21. [DOI: 10.17116/jnevro202012009213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
47
|
Görler R, Wiskott L, Cheng S. Improving sensory representations using episodic memory. Hippocampus 2019; 30:638-656. [DOI: 10.1002/hipo.23186] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2019] [Revised: 11/28/2019] [Accepted: 12/04/2019] [Indexed: 11/06/2022]
Affiliation(s)
- Richard Görler
- Institute for Neural ComputationRuhr University Bochum Bochum Germany
- International Graduate School of NeuroscienceRuhr University Bochum Bochum Germany
| | - Laurenz Wiskott
- Institute for Neural ComputationRuhr University Bochum Bochum Germany
| | - Sen Cheng
- Institute for Neural ComputationRuhr University Bochum Bochum Germany
| |
Collapse
|
48
|
Lee ACH, Thavabalasingam S, Alushaj D, Çavdaroğlu B, Ito R. The hippocampus contributes to temporal duration memory in the context of event sequences: A cross-species perspective. Neuropsychologia 2019; 137:107300. [PMID: 31836410 DOI: 10.1016/j.neuropsychologia.2019.107300] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 01/04/2023]
Abstract
Although a large body of research has implicated the hippocampus in the processing of memory for temporal duration, there is an exigent degree of inconsistency across studies that obfuscates the precise contributions of this structure. To shed light on this issue, the present review article surveys both historical and recent cross-species evidence emanating from a wide variety of experimental paradigms, identifying areas of convergence and divergence. We suggest that while factors such as time-scale (e.g. the length of durations involved) and the nature of memory processing (e.g. prospective vs. retrospective memory) are very helpful in the interpretation of existing data, an additional important consideration is the context in which the duration information is experienced and processed, with the hippocampus being preferentially involved in memory for durations that are embedded within a sequence of events. We consider the mechanisms that may underpin temporal duration memory and how the same mechanisms may contribute to memory for other aspects of event sequences such as temporal order.
Collapse
Affiliation(s)
- Andy C H Lee
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Rotman Research Institute, Baycrest Centre, Toronto, M6A 2E1, Canada.
| | | | - Denada Alushaj
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Bilgehan Çavdaroğlu
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada
| | - Rutsuko Ito
- Department of Psychology (Scarborough), University of Toronto, Toronto, M1C 1A4, Canada; Department of Cell and Systems Biology, University of Toronto, M5S 3G5, Canada
| |
Collapse
|
49
|
Zerbes G, Schwabe L. Across time and space: spatial-temporal binding under stress. ACTA ACUST UNITED AC 2019; 26:473-484. [PMID: 31732708 PMCID: PMC6859825 DOI: 10.1101/lm.050237.119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/27/2019] [Indexed: 12/11/2022]
Abstract
Successful episodic memory requires binding of event details across spatial and temporal gaps. The neural processes underlying mnemonic binding, however, are not fully understood. Moreover, although acute stress is known to modulate memory, if and how stress changes mnemonic integration across time and space is unknown. To elucidate these issues, we exposed participants to a stressor or a control manipulation shortly before they completed, while electroencephalography was recorded, an encoding task that systematically varied the demands for spatial and temporal integration. Associative memory was tested 24 h later. While early event-related potentials, including the P300 and Late Positive Component, distinguished different levels of spatiotemporal discontinuity, only later Slow Waves were linked to subsequent remembering. Furthermore, theta oscillations were specifically associated with successful mnemonic binding. Although acute stress per se left mnemonic integration largely unaffected, autonomic activity facilitated object memory and glucocorticoids enhanced detail memory, indicative for mnemonic integration. At the neural level, stress amplified the effects of spatiotemporal discontinuity on early information processing. Together, our results indicate that temporal and spatial gaps recruit early neural processes, providing attentional resources. The actual binding success, however, appears to depend on later processes as well as theta power and may be shaped by major stress response systems.
Collapse
Affiliation(s)
- Gundula Zerbes
- Department of Cognitive Psychology, University of Hamburg, Hamburg 20146, Germany
| | - Lars Schwabe
- Department of Cognitive Psychology, University of Hamburg, Hamburg 20146, Germany
| |
Collapse
|
50
|
The hippocampus as a visual area organized by space and time: A spatiotemporal similarity hypothesis. Vision Res 2019; 165:123-130. [PMID: 31734633 DOI: 10.1016/j.visres.2019.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 10/21/2019] [Accepted: 10/23/2019] [Indexed: 02/06/2023]
Abstract
The hippocampus is the canonical memory system in the brain and is not typically considered part of the visual system. Yet, it sits atop the ventral visual stream and has been implicated in certain aspects of vision. Here I review the place of the hippocampal memory system in vision science. After a brief primer on the local circuity, external connectivity, and computational functions of the hippocampus, I explore what can be learned from each field about the other. I first present four areas of vision science (scene perception, imagery, eye movements, attention) that challenge our current understanding of the hippocampus in terms of its role in episodic memory. In the reverse direction, I leverage this understanding to inform vision science in other ways, presenting a working hypothesis about a unique form of visual representation. This spatiotemporal similarity hypothesis states that the hippocampus represents objects according to whether they co-occur in space and/or time, and not whether they look alike, as elsewhere in the visual system. This tuning may reflect hippocampal mechanisms of pattern separation, relational binding, and statistical learning, allowing the hippocampus to generate visual expectations to facilitate search and recognition.
Collapse
|