1
|
Ruan P, Dai P, Mao Y, Tang Z, He H, Wu G, Qin L, Tan Y. The in vitro and in vivo antiviral effects of IGF1R inhibitors against respiratory syncytial virus infection. J Biomol Struct Dyn 2024:1-12. [PMID: 38299600 DOI: 10.1080/07391102.2024.2309643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/18/2024] [Indexed: 02/02/2024]
Abstract
The insulin-like growth factor 1 receptor (IGF1R) was recognized as a pivotal receptor that facilitated the cellular entry of RSV. Small molecule inhibitors designed to target IGF1R exhibited potential as potent antiviral agents. Through virtual screening, we conducted a screening process involving small molecule compounds derived from natural products, aiming to target the IGF1R protein against respiratory syncytial virus infection. The molecular dynamics simulation analysis showed that tannic acid and daptomycin interacted with the IGF1R. The experimental results in vivo and in vitro showed that tannic acid and daptomycin had anti-RSV infection potential through reducing viral loads, inflammation, airway resistance and protecting alveolar integrity. The CC50 values of tannic acid and daptomycin were 6 nM and 0.45 μM, respectively. Novel small-molecule inhibitors targeting the IGF1R, tannic acid and daptomycin, may be effective anti-RSV therapy agents. This study may in future broaden the arsenal of therapeutics for use against RSV infection and lead to more effective care against the virus.
Collapse
Affiliation(s)
- Pinglang Ruan
- Department of Dermatology, Second Xiangya Hospital, Central South University, Hunan Key Laboratory of Medical Epigenomics, Changsha, Hunan, China
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Pei Dai
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
- Second Department of Laboratory, Hunan Provincial People's Hospital (The First Affifiliated Hospital of Hunan Normal University), Changsha, Hunan, China
| | - Yu Mao
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Zhongxiang Tang
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Hanlin He
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Guojun Wu
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Ling Qin
- Department of Respiratory Medicine, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yurong Tan
- Department of Medical Microbiology, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| |
Collapse
|
2
|
Wang X, Hu B, Hu H, Zhou S, Yin M, Cheng X, Zhang Z, Liu H. Tannic Acid Suppresses HBV Replication via the Regulation of NF-κB, MAPKs, and Autophagy in HepG2.2.15 Cells. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023. [PMID: 37450882 DOI: 10.1021/acs.jafc.3c00863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2023]
Abstract
Hepatitis B virus (HBV) infection is a serious global health problem that threatens the health of human. Tannic acid (TA), a natural polyphenol in foods, fruits, and plants, exhibits a variety of bioactive functions. In our research, we decide to explore the pharmacological mechanism of TA against HBV replication. Our results showed that TA effectively reduced the content of HBV DNA and viral antigens (HBsAg and HBeAg) in HepG2.2.15 cells. Meanwhile, TA significantly decreased the mRNA expression of HBV RNA, which include total HBV RNA, HBV pregenomic RNA, and HBV precore mRNA. Besides, TA evidently downregulated the activity of HBV promoters in HepG2.2.15 cells. Furthermore, we found that TA upregulated the expression of IL-8, TNF-α, IFN-α, and IFN-α-mediated antiviral effectors in HepG2.2.15 cells. On the contrary, TA downregulated the expression of IL-10 and hepatic nuclear factor 4 (HNF4α). In addition, TA activated the NF-κB and MAPK pathways that contributed to the inhibition of HBV replication. Finally, TA treatment led to the occurrence of autophagy, which accelerated the elimination of HBV components in HepG2.2.15 cells. Taken together, our results elucidated the suppressive effect of TA on HBV replication and provided inspiration for its clinical application in HBV treatment.
Collapse
Affiliation(s)
- Xuefeng Wang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Baifei Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Shuhan Zhou
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Mingzhu Yin
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Xue Cheng
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| |
Collapse
|
3
|
Tang Y, Ou S, Ye L, Wang S. Pharmacological Activities and Pharmacokinetics of Glycycoumarin. REVISTA BRASILEIRA DE FARMACOGNOSIA : ORGAO OFICIAL DA SOCIEDADE BRASILEIRA DE FARMACOGNOSIA 2022; 33:471-483. [PMID: 36567915 PMCID: PMC9757630 DOI: 10.1007/s43450-022-00342-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 11/22/2022] [Indexed: 12/23/2022]
Abstract
Glycycoumarin is a representative coumarin compound with significant pharmacological activities isolated from Glycyrrhiza uralensis Fisch., Fabaceae. Studies have shown that glycycoumarin has many biological activities, such as anti-tumor, liver protection, antispasmodic, antibacterial, and antivirus. However, the poor solubility of glycycoumarin in water and the accompanying reactions of the phase I (hydroxylation) and II (glucuronidation) metabolism limit its druggability, which manifests as low absorption in the body after oral administration and low free drug concentration, ultimately leading to low bioavailability. Therefore, a comprehensive review of the pharmacological effects and pharmacokinetics of glycycoumarin is presented to provide a reference for further research and application as a therapeutic agent. Graphical Abstract Supplementary Information The online version contains supplementary material available at 10.1007/s43450-022-00342-x.
Collapse
Affiliation(s)
- Yumei Tang
- grid.417409.f0000 0001 0240 6969College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou China
| | - Shuiping Ou
- grid.413390.c0000 0004 1757 6938Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou China
| | - Linhu Ye
- grid.417409.f0000 0001 0240 6969College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou China
| | - Sen Wang
- grid.417409.f0000 0001 0240 6969College of Pharmacy, Zunyi Medical University, Zunyi, Guizhou China
| |
Collapse
|
4
|
Elkaeed EB, Metwaly AM, Alesawy MS, Saleh AM, Alsfouk AA, Eissa IH. Discovery of Potential SARS-CoV-2 Papain-like Protease Natural Inhibitors Employing a Multi-Phase In Silico Approach. Life (Basel) 2022; 12:1407. [PMID: 36143445 PMCID: PMC9505301 DOI: 10.3390/life12091407] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
As an extension of our research against COVID-19, a multiphase in silico approach was applied in the selection of the three most common inhibitors (Glycyrrhizoflavone (76), Arctigenin (94), and Thiangazole (298)) against papain-like protease, PLpro (PDB ID: 4OW0), among 310 metabolites of natural origin. All compounds of the exam set were reported as antivirals. The structural similarity between the examined compound set and S88, the co-crystallized ligand of PLpro, was examined through structural similarity and fingerprint studies. The two experiments pointed to Brevicollin (28), Cryptopleurine (41), Columbamine (46), Palmatine (47), Glycyrrhizoflavone (76), Licochalcone A (87), Arctigenin (94), Termilignan (98), Anolignan B (99), 4,5-dihydroxy-6″-deoxybromotopsentin (192), Dercitin (193), Tryptanthrin (200), 6-Cyano-5-methoxy-12-methylindolo [2, 3A] carbazole (211), Thiangazole (298), and Phenoxan (300). The binding ability against PLpro was screened through molecular docking, disclosing the favorable binding modes of six metabolites. ADMET studies expected molecules 28, 76, 94, 200, and 298 as the most favorable metabolites. Then, molecules 76, 94, and 298 were chosen through in silico toxicity studies. Finally, DFT studies were carried out on glycyrrhizoflavone (76) and indicated a high level of similarity in the molecular orbital analysis. The obtained data can be used in further in vitro and in vivo studies to examine and confirm the inhibitory effect of the filtered metabolites against PLpro and SARS-CoV-2.
Collapse
Affiliation(s)
- Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh 13713, Saudi Arabia
| | - Ahmed M. Metwaly
- Pharmacognosy and Medicinal Plants Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
- Biopharmaceutical Products Research Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Alexandria 21934, Egypt
| | - Mohamed S. Alesawy
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Abdulrahman M. Saleh
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| | - Aisha A. Alsfouk
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Ibrahim H. Eissa
- Pharmaceutical Medicinal Chemistry & Drug Design Department, Faculty of Pharmacy (Boys), Al-Azhar University, Cairo 11884, Egypt
| |
Collapse
|
5
|
Chen X, Wang Z, Wang J, Yao Y, Wang Q, Huang J, Xiang X, Zhou Y, Xue Y, Li Y, Gao X, Wang L, Chu M, Wang Y. Role of tannic acid against SARS-cov-2 cell entry by targeting the interface region between S-protein-RBD and human ACE2. Front Pharmacol 2022; 13:940628. [PMID: 36003511 PMCID: PMC9393390 DOI: 10.3389/fphar.2022.940628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/12/2022] [Indexed: 11/27/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) was caused by a new coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). SARS-CoV-2 utilizes human angiotensin converting enzyme 2 (hACE2) as the cellular receptor of its spike glycoprotein (SP) to gain entry into cells. Consequently, we focused on the potential of repurposing clinically available drugs to block the binding of SARS-CoV-2 to hACE2 by utilizing a novel artificial-intelligence drug screening approach. Based on the structure of S-RBD and hACE2, the pharmacophore of SARS-CoV-2-receptor-binding-domain (S-RBD) -hACE2 interface was generated and used to screen a library of FDA-approved drugs. A total of 20 drugs were retrieved as S-RBD-hACE2 inhibitors, of which 16 drugs were identified to bind to S-RBD or hACE2. Notably, tannic acid was validated to interfere with the binding of S-RBD to hACE2, thereby inhibited pseudotyped SARS-CoV-2 entry. Experiments involving competitive inhibition revealed that tannic acid competes with S-RBD and hACE2, whereas molecular docking proved that tannic acid interacts with the essential residues of S-RBD and hACE2. Based on the known antiviral activity and our findings, tannic acid might serve as a promising candidate for preventing and treating SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Xi Chen
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ziyuan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Jing Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Yifan Yao
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Qian Wang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jiahao Huang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | | | - Yifan Zhou
- Peking University Science Park, Taizhou, China
| | - Yintong Xue
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Yan Li
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Xiang Gao
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Lijun Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
| | - Ming Chu
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- *Correspondence: Ming Chu, ; Yuedan Wang,
| | - Yuedan Wang
- Department of Immunology, School of Basic Medical Sciences, Peking University. NHC Key Laboratory of Medical Immunology, Peking University, Beijing, China
- *Correspondence: Ming Chu, ; Yuedan Wang,
| |
Collapse
|
6
|
Jasim HA, Nahar L, Jasim MA, Moore SA, Ritchie KJ, Sarker SD. Chalcones: Synthetic Chemistry Follows Where Nature Leads. Biomolecules 2021; 11:1203. [PMID: 34439870 PMCID: PMC8392591 DOI: 10.3390/biom11081203] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 12/19/2022] Open
Abstract
Chalcones belong to the flavonoid class of phenolic compounds. They form one of the largest groups of bioactive natural products. The potential anticancer, anti-inflammatory, antimicrobial, antioxidant, and antiparasitic properties of naturally occurring chalcones, and their unique chemical structural features inspired the synthesis of numerous chalcone derivatives. In fact, structural features of chalcones are easy to construct from simple aromatic compounds, and it is convenient to perform structural modifications to generate functionalized chalcone derivatives. Many of these synthetic analogs were shown to possess similar bioactivities as their natural counterparts, but often with an enhanced potency and reduced toxicity. This review article aims to demonstrate how bioinspired synthesis of chalcone derivatives can potentially introduce a new chemical space for exploitation for new drug discovery, justifying the title of this article. However, the focus remains on critical appraisal of synthesized chalcones and their derivatives for their bioactivities, linking to their interactions at the biomolecular level where appropriate, and revealing their possible mechanisms of action.
Collapse
Affiliation(s)
- Hiba A. Jasim
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
- Department of Biology, College of Education for Pure Sciences, University of Anbar, Al-Anbar 10081, Iraq
| | - Lutfun Nahar
- Laboratory of Growth Regulators, Institute of Experimental Botany ASCR & Palacký University, Šlechtitelů 27, 78371 Olomouc, Czech Republic
| | - Mohammad A. Jasim
- Department of Biology, College of Education for Women, University of Anbar, Al-Anbar 10081, Iraq;
| | - Sharon A. Moore
- Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK;
| | - Kenneth J. Ritchie
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| | - Satyajit D. Sarker
- Centre for Natural Products Discovery (CNPD), School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK; (H.A.J.); (S.D.S.)
| |
Collapse
|
7
|
Xu Z, Chen Q, Zhang Y, Liang C. Coumarin-based derivatives with potential anti-HIV activity. Fitoterapia 2021; 150:104863. [PMID: 33582266 DOI: 10.1016/j.fitote.2021.104863] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/11/2021] [Accepted: 01/31/2021] [Indexed: 02/06/2023]
Abstract
Acquired immunodeficiency syndrome (AIDS), as a result of human immunodeficiency virus (HIV) infection which leads to severe suppression of immune functions, is an enormous world-wide health threat. The anti-HIV agents are critical for the HIV/AIDS therapy, but the generation of viral mutants and the severe side effects of the anti-HIV agents pose serious hurdles in the treatment of HIV infection, and creat an urgent need to develop novel anti-HIV agents. The plant-derived compounds possess structural and mechanistic diversity, and among them, coumarin-based derivatives have the potential to inhibit different stages in the HIV replication cycle, inclusive of virus-host cell attachment, cell membrane fusion, integration, assembly besides the conventional target like inhibition of the reverse transcriptase, protease, and integrase. Moreover, (+)-calanolide A, a coumarin-based natural product, is a potential anti-HIV agent. Thus, coumarin-based derivatives are useful scaffolds for the development of anti-HIV agents. This review article describes the recent progress in the discovery, structural modification, and structure-activity relationship studies of potent anti-HIV coumarin-based derivatives including natural coumarin compounds, synthetic hybrids, dimers, and other synthetic derivatives covering articles published between 2000 and 2020.
Collapse
Affiliation(s)
- Zhi Xu
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China.
| | - Qingtai Chen
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China
| | - Yan Zhang
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China
| | - Changli Liang
- Huanghuai University Industry Innovation & Research and Development Institute of Zhumadian, Zhumadian, People's Republic of China.
| |
Collapse
|
8
|
Elkhalifa D, Al-Hashimi I, Al Moustafa AE, Khalil A. A comprehensive review on the antiviral activities of chalcones. J Drug Target 2020; 29:403-419. [PMID: 33232192 DOI: 10.1080/1061186x.2020.1853759] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Some viral outbreaks have plagued the world since antiquity, including the most recent COVID-19 pandemic. The continuous spread and emergence of new viral diseases have urged the discovery of novel treatment options that can overcome the limitations of currently marketed antiviral drugs. Chalcones are natural open chain flavonoids that are found in various plants and can be synthesised in labs. Several studies have shown that these small organic molecules exert a number of pharmacological activities, including antiviral, anti-inflammatory, antimicrobial and anticancer. The purpose of this review is to provide a summary of the antiviral activities of chalcones and their derivatives on a set of human viral infections and their potential for targeting the most recent COVID-19 disease. Accordingly, we herein review chalcones activities on the following human viruses: Middle East respiratory syndrome coronavirus, severe acute respiratory syndrome coronavirus, human immunodeficiency, influenza, human rhinovirus, herpes simplex, dengue, human cytomegalovirus, hepatitis B and C, Rift Valley fever and Venezuelan equine encephalitis. We hope that this review will pave the way for the design and development of potentially potent and broad-spectrum chalcone based antiviral drugs.
Collapse
Affiliation(s)
- Dana Elkhalifa
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Department of Pharmacy, Aspetar Orthopedic and Sports Medicine Hospital, Doha, Qatar
| | | | - Ala-Eddin Al Moustafa
- College of Medicine, QU Health, Qatar University, Doha, Qatar.,Biomedical Research Centre, Qatar University, Doha, Qatar.,Oncology Department, McGill University, Montreal, Quebec, Canada.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| | - Ashraf Khalil
- College of Pharmacy, QU Health, Qatar University, Doha, Qatar.,Biomedical and Pharmaceutical Research Unit, QU Health, Qatar University, Doha, Qatar
| |
Collapse
|
9
|
Marinov R, Markova N, Krumova S, Yotovska K, Zaharieva MM, Genova-Kalou P. Antiviral properties of chalcones and their synthetic derivatives: a mini review. PHARMACIA 2020. [DOI: 10.3897/pharmacia.67.e53842] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Chalcones (natural or synthetic derivatives) are aromatic ketones possessing a central backbone that form a core for variety important compounds with different substitutions. Recent scientific advances show that chalcones exhibit different bio-medical activities, including antiviral, which is related to the variety substitutions. This review provides general information on the origin, sources, virucidal and direct antiviral properties of chalcones in vitro, as well as a brief overview of the possible application and molecular modes of action of these compounds. The antiviral effect of chalcones probably results from the disruption of the different stage of viral replication cycle, inhibition of viral or cell enzymes, induction of apoptosis and others. Structural requirements for antiviral activities vary according to the mechanisms of action. Based on the published information, it could be considered that synthetic chalcones are very perspective antiviral candidates and deserve further studies for elucidating of their pharmacological potential.
Collapse
|
10
|
Miyazaki A, Eerdunbayaer, Shiokawa T, Tada H, Lian Y, Taniguchi S, Hatano T. High-performance liquid chromatographic profile and 1H quantitative nuclear magnetic resonance analyses for quality control of a Xinjiang licorice extract. Biosci Biotechnol Biochem 2020; 84:2128-2138. [DOI: 10.1080/09168451.2020.1785272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Abstract
Various pharmacological properties of Xinjiang licorice flavonoids have been reported recently. We have investigated constituents corresponding to distinct peaks on the high-performance liquid chromatography (HPLC) profile of a flavonoid-rich extract from licorice, and identified 13 flavonoids, including licochalcone A (1), licochalcone B (3), glabrone (4), and echinatin (5), by isolating them and then performing high-resolution electrospray ionization mass spectrometry and 1H nuclear magnetic resonance (NMR) spectral analyses. We then applied the 1H quantitative NMR (qNMR) method for analysis of major flavonoids, 1 and 3–5 in the extract. The 1H qNMR results were supported by 13C NMR analysis. The results demonstrated the utility of the combination of HPLC profiling and qNMR analyses for quality control of Xinjiang licorice. Additionally, we observed a moderate inhibitory effect of the most abundant constituent, licochalcone A (1), on acetylcholine esterase activity, suggesting utility as a seed for drug development.
Collapse
Affiliation(s)
- Atsumi Miyazaki
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Eerdunbayaer
- College of Food Science and Engineering, Inner Mongolia Agricultural University, Hohhot, P. R. China
| | - Tsugumi Shiokawa
- Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Hiroko Tada
- Advanced Science Research Center, Okayama University, Okayama, Japan
| | - Yunhe Lian
- Research Center, Chenguang Biotech Group Co., Ltd, Handan, P. R. China
| | - Shoko Taniguchi
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Tsutomu Hatano
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| |
Collapse
|
11
|
Kaczmarek B. Tannic Acid with Antiviral and Antibacterial Activity as A Promising Component of Biomaterials-A Minireview. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E3224. [PMID: 32698426 PMCID: PMC7412100 DOI: 10.3390/ma13143224] [Citation(s) in RCA: 219] [Impact Index Per Article: 43.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 07/14/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
Abstract
As a phenolic acid, tannic acid can be classified into a polyphenolic group. It has been widely studied in the biomedical field of science because it presents unique antiviral as well as antibacterial properties. Tannic acid has been reported to present the activity against Influeneza A virus, Papilloma viruses, noroviruses, Herpes simplex virus type 1 and 2, and human immunodeficiency virus (HIV) as well as activity against both Gram-positive and Gram-negative bacteria as Staphylococcus aureus, Escherichia coli, Streptococcus pyogenes, Enterococcus faecalis, Pseudomonas aeruginosa, Yersinia enterocolitica, Listeria innocua. Nowadays, compounds of natural origin constitute fundaments of material science, and the trend is called "from nature to nature". Although biopolymers have found a broad range of applications in biomedical sciences, they do not present anti-microbial activity, and their physicochemical properties are rather poor. Biopolymers, however, may be modified with organic and inorganic additives which enhance their properties. Tannic acid, like phenolic acid, is classified into a polyphenolic group and can be isolated from natural sources, e.g., a pure compound or a component of a plant extract. Numerous studies have been carried out over the application of tannic acid as an additive to biopolymer materials due to its unique properties. On the one hand, it shows antimicrobial and antiviral activity, while on the other hand, it reveals promising biological properties, i.e., enhances the cell proliferation, tissue regeneration and wound healing processes. Tannic acid is added to different biopolymers, collagen and polysaccharides as chitosan, agarose and starch. Its activity has been proven by the determination of physicochemical properties, as well as the performance of in vitro and in vivo studies. This systematics review is a summary of current studies on tannic acid properties. It presents tannic acid as an excellent natural compound which can be used to eliminate pathogenic factors as well as a revision of current studies on tannic acid composed with biopolymers and active properties of the resulting complexes.
Collapse
Affiliation(s)
- Beata Kaczmarek
- Department of Biomaterials and Cosmetics Chemistry, Faculty of Chemistry, Nicolaus Copernicus University in Toruń, Gagarin 7, 87-100 Toruń, Poland
| |
Collapse
|
12
|
Yoo HJ, Youn SW. Zn(II)-Catalyzed One-Pot Synthesis of Coumarins from Ynamides and Salicylaldehydes. Org Lett 2019; 21:3422-3426. [DOI: 10.1021/acs.orglett.9b01181] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Huen Ji Yoo
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| | - So Won Youn
- Center for New Directions in Organic Synthesis, Department of Chemistry and Research Institute for Natural Sciences, Hanyang University, Seoul 04763, Korea
| |
Collapse
|
13
|
Huang Q, Liu X, Zhao G, Hu T, Wang Y. Potential and challenges of tannins as an alternative to in-feed antibiotics for farm animal production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2018; 4:137-150. [PMID: 30140753 PMCID: PMC6104569 DOI: 10.1016/j.aninu.2017.09.004] [Citation(s) in RCA: 235] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/16/2017] [Revised: 09/13/2017] [Accepted: 09/18/2017] [Indexed: 11/24/2022]
Abstract
Naturally occurring plant compounds including tannins, saponins and essential oils are extensively assessed as natural alternatives to in-feed antibiotics. Tannins are a group of polyphenolic compounds that are widely present in plant region and possess various biological activities including antimicrobial, anti-parasitic, anti-viral, antioxidant, anti-inflammatory, immunomodulation, etc. Therefore, tannins are the major research subject in developing natural alternative to in-feed antibiotics. Strong protein affinity is the well-recognized property of plant tannins, which has successfully been applied to ruminant nutrition to decrease protein degradation in the rumen, and thereby improve protein utilization and animal production efficiency. Incorporations of tannin-containing forage in ruminant diets to control animal pasture bloat, intestinal parasite and pathogenic bacteria load are another 3 important applications of tannins in ruminant animals. Tannins have traditionally been regarded as "anti-nutritional factor" for monogastric animals and poultry, but recent researches have revealed some of them, when applied in appropriate manner, improved intestinal microbial ecosystem, enhanced gut health and hence increased productive performance. The applicability of plant tannins as an alternative to in-feed antibiotics depends on many factors that contribute to the great variability in their observed efficacies.
Collapse
Affiliation(s)
- Qianqian Huang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Xiuli Liu
- Veterinary Research Institute, Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences, Hohhot 010031, China
| | - Guoqi Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Tianming Hu
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yuxi Wang
- Lethbridge Research and Development Centre, Agriculture and Agri-Food Canada, Lethbridge AB T1J 4B1, Canada
| |
Collapse
|
14
|
Feriotto G, Marchetti N, Costa V, Beninati S, Tagliati F, Mischiati C. Chemical Composition of Essential Oils from Thymus vulgaris
, Cymbopogon citratus
, and Rosmarinus officinalis
, and Their Effects on the HIV-1 Tat Protein Function. Chem Biodivers 2018; 15. [DOI: 10.1002/cbdv.201700436] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 12/13/2017] [Indexed: 12/30/2022]
Affiliation(s)
- Giordana Feriotto
- Department of Chemistry and Pharmaceutical Sciences; University of Ferrara; via Luigi Borsari 46 44121 Ferrara Italy
| | - Nicola Marchetti
- Department of Chemistry and Pharmaceutical Sciences; University of Ferrara; via Luigi Borsari 46 44121 Ferrara Italy
| | - Valentina Costa
- Department of Chemistry and Pharmaceutical Sciences; University of Ferrara; via Luigi Borsari 46 44121 Ferrara Italy
| | - Simone Beninati
- Department of Biology; University “Tor Vergata”; Via della Ricerca Scientifica I-228 Rome Italy
| | - Federico Tagliati
- Department of Biomedical Sciences and Surgical Specialties; University of Ferrara; via Luigi Borsari 46 44121 Ferrara Italy
| | - Carlo Mischiati
- Department of Biomedical Sciences and Surgical Specialties; University of Ferrara; via Luigi Borsari 46 44121 Ferrara Italy
| |
Collapse
|
15
|
V M, N S, R P S, S SM, R R, M GB. Chitosan mediated enhancement of hydrolysable tannin in Phyllanthus debilis Klein ex Willd via plant cell suspension culture. Int J Biol Macromol 2017; 104:1656-1663. [PMID: 28359898 DOI: 10.1016/j.ijbiomac.2017.03.138] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 03/05/2017] [Accepted: 03/25/2017] [Indexed: 11/17/2022]
Abstract
Phyllanthus debilis Klein ex Willd. is wild medicinal plant used in the traditional system of medicine. This plant has been actively used for hepatoprotection and to cure many diseases including jaundice and so on; which leads to complete extinction of this particular species. Therefore, the chitosan mediated cost effective cell suspension method has been developed for the production of hydrolysable tannin. The hydrolysable tannins are the main therapeutically active constituents with antioxidant, anticancer, and antimicrobial properties. An in vitro cell suspension culture was optimized by adding chitosan for production of hydrolysable tannin. According to the growth kinetics, a maximum biomass of 4.46±0.06g fresh cell weight and 1.33±0.04g dry cell weight were obtained from the optimal suspension medium consisted of MS medium+0.5mgL-1 BAP+1.5mgL-1 NAA. Chitosan was treated at the stationary phase which leads to the highest accumulation of hydrolysable tannin compared to the untreated control. Hydrolysable tannin was observed and compared using HPLC at the Rt of 4.91 in both chitosan treated and untreated cells. This is the first ever report where use of chitosan has been done to enhance the production of the hydrolysable tannin in P. debilis using cell suspension culture technique.
Collapse
Affiliation(s)
- Malayaman V
- Department of Botany, Jamal Mohamed College, Tiruchirappallai, Tamil Nadu 620020, India.
| | - Sisubalan N
- Department of Botany, Jamal Mohamed College, Tiruchirappallai, Tamil Nadu 620020, India.
| | - Senthilkumar R P
- Department of Biotechnology, Kongunadu Arts and Science College, Coimbatore, Tamil Nadu 641 029, India.
| | - Sheik Mohamed S
- Department of Botany, Jamal Mohamed College, Tiruchirappallai, Tamil Nadu 620020, India.
| | - Ranjithkumar R
- Kirnd Institute of Research and Development Pvt. Ltd, Tiruchirappalli, Tamil Nadu 620020, India.
| | - Ghouse Basha M
- Department of Botany, Jamal Mohamed College, Tiruchirappallai, Tamil Nadu 620020, India.
| |
Collapse
|
16
|
Ethnopharmacology, Chemistry and Biological Properties of Four Malian Medicinal Plants. PLANTS 2017; 6:plants6010011. [PMID: 28230801 PMCID: PMC5371770 DOI: 10.3390/plants6010011] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/10/2017] [Accepted: 02/14/2017] [Indexed: 12/26/2022]
Abstract
The ethnopharmacology, chemistry and pharmacology of four Malian medicinal plants, Biophytum umbraculum, Burkea africana, Lannea velutina and Terminalia macroptera are reviewed. These plants are used by traditional healers against numerous ailments: malaria, gastrointestinal diseases, wounds, sexually transmitted diseases, insect bites and snake bites, etc. The scientific evidence for these uses is, however, limited. From the chemical and pharmacological evidence presented here, it seems possible that the use in traditional medicine of these plants may have a rational basis, although more clinical studies are needed.
Collapse
|
17
|
Hassan MZ, Osman H, Ali MA, Ahsan MJ. Therapeutic potential of coumarins as antiviral agents. Eur J Med Chem 2016; 123:236-255. [PMID: 27484512 PMCID: PMC7115672 DOI: 10.1016/j.ejmech.2016.07.056] [Citation(s) in RCA: 219] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/21/2016] [Accepted: 07/23/2016] [Indexed: 12/24/2022]
Abstract
Coumarins have received a considerable attention in the last three decades as a lead structures for the discovery of orally bioavailable non-peptidic antiviral agents. A lot of structurally diverse coumarins analogues were found to display remarkable array of affinity with the different molecular targets for antiviral agents and slight modifications around the central motif result in pronounced changes in its antiviral spectrum. This manuscript thoroughly reviews the design, discovery and structure-activity relationship studies of the coumarin analogues as antiviral agents focusing mainly on lead optimization and its development into clinical candidates.
Collapse
Affiliation(s)
- Mohd Zaheen Hassan
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia; Department of Pharmaceutical Chemistry, Alwar Pharmacy College, M.I.A., Alwar, Rajasthan 301030, India.
| | - Hasnah Osman
- School of Chemical Sciences, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia.
| | - Mohamed Ashraf Ali
- Institute for Research in Molecular Medicine, Universiti Sains Malaysia, Minden, 11800 Penang, Malaysia
| | | |
Collapse
|
18
|
Kurapati KRV, Atluri VS, Samikkannu T, Garcia G, Nair MPN. Natural Products as Anti-HIV Agents and Role in HIV-Associated Neurocognitive Disorders (HAND): A Brief Overview. Front Microbiol 2016; 6:1444. [PMID: 26793166 PMCID: PMC4709506 DOI: 10.3389/fmicb.2015.01444] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2015] [Accepted: 12/03/2015] [Indexed: 02/03/2023] Open
Abstract
As the threat of Human Immunodeficiency Virus (HIV)/Acquired Immunodeficiency Syndrome (AIDS) persists to rise, effective drug treatments are required to treat the infected people. Even though combination antiretroviral therapy (cART) provides stable viral suppression, it is not devoid of undesirable side effects, especially in persons undergoing long-term treatment. The present therapy finds its limitations in the emergence of multidrug resistance and accordingly finding new drugs and novel targets is the need of the hour to treat the infected persons and further to attack HIV reservoirs in the body like brain, lymph nodes to achieve the ultimate goal of complete eradication of HIV and AIDS. Natural products such as plant-originated compounds and plant extracts have enormous potential to become drug leads with anti-HIV and neuroprotective activity. Accordingly, many research groups are exploring the biodiversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action and for HIV-associated neurocognitive disorders (HAND). The basic challenge that still persists is to develop viral replication-targeted therapy using novel anti-HIV compounds with new mode of action, accepted toxicity and less resistance profile. Against this backdrop, the World Health Organization (WHO) suggested the need to evaluate ethno-medicines for the management of HIV/AIDS. Consequently, there is need to evaluate traditional medicine, particularly medicinal plants and other natural products that may yield effective and affordable therapeutic agents. Although there are a good number of reports on traditional uses of plants to treat various diseases, knowledge of herbal remedies used to manage HIV/AIDS and HAND are scanty, vague and not well documented. In this review, plant substances showing a promising action that is anti-HIV and HAND will be explored along with what they interact. Since some plant substances are also known to modulate several cellular factors which are also involved in the replication of HIV and hence their role as potential candidates will be discussed. HIV/AIDS being an exceptional epidemic, demands an exceptional approach and that forms very much focus for the current review.
Collapse
Affiliation(s)
| | | | | | | | - Madhavan P. N. Nair
- Department of Immunology, Institute of NeuroImmune Pharmacology, Herbert Wertheim College of Medicine, Florida International University, MiamiFL, USA
| |
Collapse
|
19
|
Hariprasad KS, Prasad KV, Raju BC. La(OTf)3 catalyzed reaction of salicylaldehyde phenylhydrazones with β-ketoesters and activated alkynes: facile approach for the preparation of chromenopyrazolones. RSC Adv 2016. [DOI: 10.1039/c6ra21717f] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A facile approach has been developed for the preparation of chromenopyrazolones (5a–o, 7a–k) by the reaction of salicylaldehyde phenylhydrazones (3a–o) with β-ketoesters (4a, 4f–g) and activated alkynes (6a–e) in the presence of La(OTf)3 with good yields.
Collapse
Affiliation(s)
- Kurma Siva Hariprasad
- Natural Products Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- AcSIR-Indian Institute of Chemical Technology
| | - Kasagani Veera Prasad
- Natural Products Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
| | - Bhimapaka China Raju
- Natural Products Chemistry Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500 007
- India
- AcSIR-Indian Institute of Chemical Technology
| |
Collapse
|
20
|
Chingwaru W, Vidmar J, Kapewangolo PT. The Potential of Sub-Saharan African Plants in the Management of Human Immunodeficiency Virus Infections: A Review. Phytother Res 2015; 29:1452-87. [PMID: 26337608 DOI: 10.1002/ptr.5433] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Revised: 07/09/2015] [Accepted: 07/22/2015] [Indexed: 12/28/2022]
Abstract
Acquired immunodeficiency syndrome, caused by human immunodeficiency virus (HIV), is a leading cause of mortality and morbidity in Sub-Saharan Africa, particularly in Southern Africa. Phytomedicines are an integral part of African health care. The Southern African flora is composed of at least 23 400 taxa. Despite this richness, only a handful of botanical products have been assessed for activities against HIV. This study aimed to summarize the potential of Sub-Saharan African plants, based on their composition and the established bioactivities, as sources of agents to manage HIV symptoms and as retroviral therapy. At least 109 plant species from 42 families and 94 genera that are found in Southern Africa were shown to have potential or actual activities against HIV. Only 12 of these plant species from 6 families and 10 genera were shown to harbour anti-HIV properties. Phytochemicals that include β-sitosterols, terpenoids, glycosides, saponins, flavonoids, triterpenoids, tannins and alkaloids, which harbour anti-HIV properties, were found to have a near cosmopolitan presence across the plant families in the region. Bioactivities of multiple phytochemicals are comparable to those for standard allopathic antiretroviral drugs. Research to determine the anti-HIV activities of the identified and other plants, including clinical trials, is long overdue.
Collapse
Affiliation(s)
- Walter Chingwaru
- Department of Biological Sciences, Faculty of Science, Bindura University of Science Education, P. Bag 1020, Bindura, Zimbabwe.,Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia
| | - Jerneja Vidmar
- Institute Ceres/Zavod Ceres, Lahovna 16, 3000, Celje, Slovenia.,Department of Plastic and Reconstructive Surgery, University Medical Centre Maribor, Ljubljanska 5, 2000, Maribor, Slovenia
| | - Petrina T Kapewangolo
- Department of Chemistry and Biochemistry, University of Namibia, P/Bag 13301, 340 Mandume Ndemufayo Avenue, Pionierspark, Windhoek, Namibia
| |
Collapse
|
21
|
Sairam M, Saidachary G, Raju BC. Condensation of salicylaldehydes with ethyl 4,4,4-trichloro-3-oxobutanoate: a facile approach for the synthesis of substituted 2H-chromene-3-carboxylates. Tetrahedron Lett 2015. [DOI: 10.1016/j.tetlet.2015.01.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
|
22
|
Winston-McPherson GN, Tang W. Gold versus Rhodium: Divergent Reactivity Enabled by the Catalyst. ChemCatChem 2015. [DOI: 10.1002/cctc.201402915] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
23
|
Zeng H, Li CJ. A Complete Switch of the Directional Selectivity in the Annulation of 2-Hydroxybenzaldehydes with Alkynes. Angew Chem Int Ed Engl 2014. [DOI: 10.1002/ange.201407589] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
24
|
Zeng H, Li CJ. A complete switch of the directional selectivity in the annulation of 2-hydroxybenzaldehydes with alkynes. Angew Chem Int Ed Engl 2014; 53:13862-5. [PMID: 25314683 DOI: 10.1002/anie.201407589] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 09/04/2014] [Indexed: 11/10/2022]
Abstract
Controlling reaction selectivity is an eternal pursuit for chemists working in chemical synthesis. As part of this endeavor, our group has been exploring the possibility of constructing different natural product skeletons from the same simple starting materials by using different catalytic systems. In our previous work, an isoflavanone skeleton was obtained from the annulation of a salicylaldehyde and an alkyne when a gold catalyst was employed. In this paper, it is shown that a coumarin skeleton can be efficiently obtained through an annulation reaction with the same starting materials, that is, terminal alkynes and salicylaldehydes, by simply switching to a rhodium catalyst. A plausible reaction mechanism is proposed for this new annulation based on isotopic substitution experiments.
Collapse
Affiliation(s)
- Huiying Zeng
- Department of Chemistry and FQRNT Centre for Green Chemistry and Catalysis, McGill University, 801 Sherbrooke St. W., Montreal, Quebec H3A 0B8 (Canada); The Key Laboratory of Coordination Chemistry of Jiangxi Province and College of Chemistry and Chemical Engineering, Jinggangshan University (China)
| | | |
Collapse
|
25
|
Gupta S, Shivahare R, Korthikunta V, Singh R, Gupta S, Tadigoppula N. Synthesis and biological evaluation of chalcones as potential antileishmanial agents. Eur J Med Chem 2014; 81:359-66. [DOI: 10.1016/j.ejmech.2014.05.034] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2013] [Revised: 05/09/2014] [Accepted: 05/11/2014] [Indexed: 12/12/2022]
|
26
|
Shivahare R, Korthikunta V, Chandasana H, Suthar MK, Agnihotri P, Vishwakarma P, Chaitanya TK, Kancharla P, Khaliq T, Gupta S, Bhatta RS, Pratap JV, Saxena JK, Gupta S, Tadigoppula N. Synthesis, Structure–Activity Relationships, and Biological Studies of Chromenochalcones as Potential Antileishmanial Agents. J Med Chem 2014; 57:3342-57. [DOI: 10.1021/jm401893j] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Rahul Shivahare
- Division
of Parasitology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Venkateswarlu Korthikunta
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Hardik Chandasana
- Division
of Pharmacokinetics and Metabolism, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Manish K. Suthar
- Division
of Biochemistry, CSIR−Central Drug Research Institute, Lucknow-226 031, Uttar Pradesh, India
| | - Pragati Agnihotri
- Division
of Molecular and Structural Biology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Preeti Vishwakarma
- Division
of Parasitology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Telaprolu K. Chaitanya
- Division
of Pharmacokinetics and Metabolism, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Papireddy Kancharla
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Tanvir Khaliq
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Shweta Gupta
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Rabi Sankar Bhatta
- Division
of Pharmacokinetics and Metabolism, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - J. Venkatesh Pratap
- Division
of Molecular and Structural Biology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Jitendra K. Saxena
- Division
of Biochemistry, CSIR−Central Drug Research Institute, Lucknow-226 031, Uttar Pradesh, India
| | - Suman Gupta
- Division
of Parasitology, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| | - Narender Tadigoppula
- Division
of Medicinal and Process Chemistry, CSIR−Central Drug Research Institute, Lucknow 226 031, Uttar Pradesh, India
| |
Collapse
|
27
|
Heravi MM, Khaghaninejad S, Mostofi M. Pechmann Reaction in the Synthesis of Coumarin Derivatives. ADVANCES IN HETEROCYCLIC CHEMISTRY 2014. [DOI: 10.1016/b978-0-12-800171-4.00001-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
|
28
|
Chand K, Shirazi AN, Yadav P, Tiwari RK, Kumari M, Parang K, Sharma SK. Synthesis and antiproliferative and c-Src kinase inhibitory activities of cinnamoyl- and pyranochromen-2-one derivatives. CAN J CHEM 2013; 91:741-754. [DOI: 10.1139/cjc-2013-0053] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
A series of 6- and 8-cinnamoylchromen-2-one and dihydropyranochromen-2-one derivatives were synthesized and their antiproliferative activities were evaluated against three human cancer cell lines, i.e., ovarian adenocarcinoma (SK-OV-3), leukemia (CCRF-CEM), and breast carcinoma (MCF-7). In general, 8-cinnamoylchromen-2-one derivatives were found to have higher antiproliferative activity against the cancer cells when compared with 6-cinnamoyl analogues. Among all of the hybrid chromen-2-one − chalcone/flavanone compounds, a 7-hydroxy-8-cinnamoylchromen-2-one derivative 35 was found to be consistently active against all the cancer cell lines and inhibited the cell proliferation of SK-OV-3, CCRF-CEM, and MCF-7 by 63%, 50%, and 43%, respectively, at a concentration of 50 μmol/L after 72 h of incubation. This compound also exhibited the highest Src kinase inhibition (IC50= 14.5 μmol/L). Structure−activity relationship studies provided insights for designing the next generation of chromen-2-one − chalcone hybrid prototypes and the development of new leads as anticancer agents and (or) Src kinase inhibitors.
Collapse
Affiliation(s)
- Karam Chand
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Amir Nasrolahi Shirazi
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Preeti Yadav
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Rakesh K. Tiwari
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Meena Kumari
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Keykavous Parang
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, The University of Rhode Island, 7 Greenhouse Road, Kingston, RI 02881, USA
| | - Sunil K. Sharma
- Department of Chemistry, University of Delhi, Delhi 110007, India
| |
Collapse
|
29
|
Sufian AS, Ramasamy K, Ahmat N, Zakaria ZA, Yusof MIM. Isolation and identification of antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. JOURNAL OF ETHNOPHARMACOLOGY 2013; 146:198-204. [PMID: 23276785 DOI: 10.1016/j.jep.2012.12.032] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2012] [Revised: 11/22/2012] [Accepted: 12/01/2012] [Indexed: 06/01/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Muntingia calabura (Elaeocarpaceae) is one of the most common roadside trees in Malaysia. Its leaves, barks, flowers and roots have been used as a folk remedy for the treatment of fever, incipient cold, liver disease, as well as an antiseptic agent in Southeast Asia. The aim of this study is to isolate and identify the antibacterial and cytotoxic compounds from the leaves of Muntingia calabura L. MATERIALS AND METHODS Antibacterial and cytotoxic activities were determined by micro-broth dilution and MTT assays, respectively. Seven fractions (F1-F7), three flavones and a chalcone were isolated from the active EtOAc extract using bioassay-guided screening. The structures of four compounds were elucidated by spectroscopic methods and compared with published data. The compounds were further tested for their antibacterial and cytotoxic activities. RESULTS Three flavones and a chalcone [5,7-dihydroxy-3,8-dimethoxyflavone (1), 2',4'-dihydroxychalcone (2), 5-hydroxy-3,7-dimethoxyflavone (3) and 3,5,7-trihydroxy-8-methoxyflavone (4)] were isolated from the active fraction F5 of EtOAc extract. Compounds 1 and 3 were isolated for the first time from Muntingia calabura L. Antibacterial activity indicates that compound 2 exhibited the most significant activity with MIC value of 50 μg/mL and 100 μg/mL against MSSA and MRSA, respectively. Cytotoxic activity indicates that compounds 2 and 3 exhibited very strong activity against HL60 with IC50 values of 3.43 μg/mL and 3.34 μg/mL, respectively. CONCLUSION The antibacterial activity of the leaves of Muntingia calabura L. is ascribable to the active compound 2 while the cytotoxic activity is ascribable to the active compounds 2 and 3.
Collapse
Affiliation(s)
- Adila S Sufian
- Faculty of Pharmacy, Universiti Teknologi MARA, Puncak Alam Campus, 42300 Kuala Selangor, Malaysia
| | | | | | | | | |
Collapse
|
30
|
Strategies to Block HIV Transcription: Focus on Small Molecule Tat Inhibitors. BIOLOGY 2012; 1:668-97. [PMID: 24832514 PMCID: PMC4009808 DOI: 10.3390/biology1030668] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2012] [Revised: 11/06/2012] [Accepted: 11/07/2012] [Indexed: 01/29/2023]
Abstract
After entry into the target cell, the human immunodeficiency virus type I (HIV) integrates into the host genome and becomes a proviral eukaryotic transcriptional unit. Transcriptional regulation of provirus gene expression is critical for HIV replication. Basal transcription from the integrated HIV promoter is very low in the absence of the HIV transactivator of transcription (Tat) protein and is solely dependent on cellular transcription factors. The 5' terminal region (+1 to +59) of all HIV mRNAs forms an identical stem-bulge-loop structure called the Transactivation Responsive (TAR) element. Once Tat is made, it binds to TAR and drastically activates transcription from the HIV LTR promoter. Mutations in either the Tat protein or TAR sequence usually affect HIV replication, indicating a strong requirement for their conservation. The necessity of the Tat-mediated transactivation cascade for robust HIV replication renders Tat one of the most desirable targets for transcriptional therapy against HIV replication. Screening based on inhibition of the Tat-TAR interaction has identified a number of potential compounds, but none of them are currently used as therapeutics, partly because these agents are not easily delivered for an efficient therapy, emphasizing the need for small molecule compounds. Here we will give an overview of the different strategies used to inhibit HIV transcription and review the current repertoire of small molecular weight compounds that target HIV transcription.
Collapse
|
31
|
3-Phenylcoumarins as inhibitors of HIV-1 replication. Molecules 2012; 17:9245-57. [PMID: 22858844 PMCID: PMC6268528 DOI: 10.3390/molecules17089245] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 07/25/2012] [Accepted: 07/26/2012] [Indexed: 01/11/2023] Open
Abstract
We have synthesized fourteen 3-phenylcoumarin derivatives and evaluated their anti-HIV activity. Antiviral activity was assessed on MT-2 cells infected with viral clones carrying the luciferase gene as reporter. Inhibition of HIV transcription and Tat function were tested on cells stably transfected with the HIV-LTR and Tat protein. Six compounds displayed NF-κB inhibition, four resulted Tat antagonists and three of them showed both activities. Three compounds inhibited HIV replication with IC₅₀ values < 25 µM. The antiviral effect of the 4-hydroxycoumarin derivative 19 correlates with its specific inhibition of Tat functions, while compound 8, 3-(2-chlorophenyl)coumarin, seems to act through a mechanism unrelated to the molecular targets considered in this research.
Collapse
|
32
|
Sokmen BB, Aydin G, Gumus A, Karadeniz S, Ugras HI, Yanardag R, Cakır U. Synthesis, antielastase, antioxidant and radical scavenging activities of 4-(aza substituted) methylene substituted dihydroxy coumarines. J Enzyme Inhib Med Chem 2012; 28:870-5. [DOI: 10.3109/14756366.2012.692086] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Affiliation(s)
- Bahar Bilgin Sokmen
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University,
Giresun, Turkey
| | - Gulsah Aydin
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University,
Giresun, Turkey
| | - Arzu Gumus
- Department of Chemistry, Faculty of Arts and Sciences, Balıkesir University,
Balıkesir, Turkey
| | - Seref Karadeniz
- Department of Chemistry, Faculty of Arts and Sciences, Balıkesir University,
Balıkesir, Turkey
| | - Halil Ibrahim Ugras
- Department of Chemistry, Faculty of Arts and Sciences, Giresun University,
Giresun, Turkey
| | - Refiye Yanardag
- Department of Chemistry Faculty of Engineering, Istanbul University,
Istanbul, Turkey
| | - Umit Cakır
- Department of Chemistry, Faculty of Arts and Sciences, Balıkesir University,
Balıkesir, Turkey
| |
Collapse
|
33
|
Synthesis of new substituted chromen[4,3-c]pyrazol-4-ones and their antioxidant activities. Molecules 2011; 16:10292-302. [PMID: 22158652 PMCID: PMC6264664 DOI: 10.3390/molecules161210292] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Revised: 11/28/2011] [Accepted: 11/29/2011] [Indexed: 11/17/2022] Open
Abstract
A series of new coumarin derivatives 4 containing a 4-arylbut-3-en-2-one moiety were synthesized by condensation of 3-acetylcoumarin 1 with aryl aldehydes 2 in chloroform in the presence of piperidine. The interactions of 3-formyl-4-chlorocoumarin (3) with nitrogen-containg nucleophiles leading to the corresponding substituted chromen-[4,3-c]pyrazol-4-ones 5 are described. The structures of the obtained compounds were established on the basis of 1D NMR, 2D NMR and IR and further the compounds were evaluated for possible antioxidant activities. The coumarinic chalcone 4a has been found to be the most active (IC₅₀ = 2.07 μM) in this study.
Collapse
|
34
|
Bello ML, Chiaradia LD, Dias LRS, Pacheco LK, Stumpf TR, Mascarello A, Steindel M, Yunes RA, Castro HC, Nunes RJ, Rodrigues CR. Trimethoxy-chalcone derivatives inhibit growth of Leishmania braziliensis: synthesis, biological evaluation, molecular modeling and structure-activity relationship (SAR). Bioorg Med Chem 2011; 19:5046-52. [PMID: 21757358 DOI: 10.1016/j.bmc.2011.06.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2011] [Revised: 06/03/2011] [Accepted: 06/08/2011] [Indexed: 01/08/2023]
Abstract
In this work we described the synthesis, the antileishmanial activity and the molecular modeling and structure-activity relationship (SAR) evaluations of a series of chalcone derivatives. Among these compounds, the methoxychalcones 2h, 2i, 2j, 2k and 2l showed significant antileishmanial activity (IC(50)<10 μM). Interestingly 2i (IC(50)=2.7 μM), 2j (IC(50)=3.9 μM) and 2k (IC(50)=4.6 μM) derivatives presented better antileishmanial activity than the control drug pentamidine (IC(50)=6.0 μM). Our SAR study showed the importance of methoxy di-ortho substitution at phenyl ring A and the relationship between the frontier orbital HOMO coefficients distribution of these molecules and their activity. The most active compounds 2h, 2i, 2j, 2k, and 2l fulfilled the Lipinski rule-of-five which theoretically is important for good drug absorption and permeation through biological membranes. The potential profile of 2j (IC(50)=3.9 μM and CC(50)=216 μM) pointed this chalcone derivative as a hit compound to be further explored in antileishmanial drug design.
Collapse
Affiliation(s)
- Murilo Lamim Bello
- Laboratório de Modelagem Molecular e QSAR (ModMolQSAR-3D), Faculdade de Farmácia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Blenn C, Wyrsch P, Althaus FR. The ups and downs of tannins as inhibitors of poly(ADP-ribose)glycohydrolase. Molecules 2011; 16:1854-77. [PMID: 21343889 PMCID: PMC6259645 DOI: 10.3390/molecules16021854] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2011] [Accepted: 02/17/2011] [Indexed: 01/21/2023] Open
Abstract
DNA damage to cells activates nuclear poly(ADP-ribose)polymerases (PARPs) and the poly(ADP-ribose) (PAR) synthesized is rapidly cleaved into ADP-ribose (ADPR) by PAR glycohydrolase (PARG) action. Naturally appearing tannin-like molecules have been implicated in specific inhibition of the PARG enzyme. This review deals with the in vitro and in vivo effects of tannins on PAR metabolism and their downstream actions in DNA damage signaling.
Collapse
Affiliation(s)
- Christian Blenn
- Institute of Pharmacology and Toxicology, University of Zurich-Vetsuisse, Winterthurerstrasse 260, 8057 Zurich, Switzerland.
| | | | | |
Collapse
|
36
|
Uchiumi F, Enokida K, Shiraishi T, Masumi A, Tanuma SI. Characterization of the promoter region of the human IGHMBP2 (Smubp-2) gene and its response to TPA in HL-60 cells. Gene 2010; 463:8-17. [PMID: 20441787 DOI: 10.1016/j.gene.2010.04.014] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2010] [Revised: 04/13/2010] [Accepted: 04/28/2010] [Indexed: 11/28/2022]
Abstract
Immunoglobulin mu-binding protein 2 (IGHMBP2/Smubp-2) is a helicase motif-containing DNA-binding protein that has been suggested to regulate various nuclear functions. Recent studies indicated that mutations in the IGHMBP2 gene are responsible for spinal muscular atrophy with respiratory distress type I (SMARD1). However, the mechanism of regulation of IGHMBP2 gene expression remains unclear. In the present study, a 2.0-kb fragment of the 5'-flanking (promoter) region of the human IGHMBP2 gene was isolated from the HL-60 genome by PCR and ligated into a luciferase (Luc) expression vector, pGL3, to generate the pSmu-Luc plasmid. Deletion analyses revealed that a 108-bp region is essential for basal promoter activity with a response to TPA in HL-60 cells. TF-SEARCH analysis showed that overlapping ets (GGAA) motifs are located upstream of the transcription start sites. Chromatin immunoprecipitation (ChIP) assay, electropheretic mobility shift assay (EMSA) and competition analyses indicated that PU.1 (Spi-1) recognizes and binds to the duplicated ets motifs in this 108-bp region. Moreover, co-transfection of the PU.1 expression plasmid and pSmu-Luc into HL-60 cells revealed that PU.1 modulates TPA-induced IGHMBP2 promoter activity. Taken together, these observations suggest that the duplicated GGAA motifs are essential for the IGHMBP2 promoter activity and its positive response to TPA in HL-60 cells.
Collapse
Affiliation(s)
- Fumiaki Uchiumi
- Department of Gene Regulation, Faculty of Pharmaceutical Sciences, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 270-8510 Japan.
| | | | | | | | | |
Collapse
|
37
|
Uchiumi F, Watanabe T, Tanuma SI. Characterization of various promoter regions of the human DNA helicase-encoding genes and identification of duplicated ets (GGAA) motifs as an essential transcription regulatory element. Exp Cell Res 2010; 316:1523-34. [DOI: 10.1016/j.yexcr.2010.03.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 03/01/2010] [Accepted: 03/10/2010] [Indexed: 01/05/2023]
|
38
|
A rapid access to new coumarinyl chalcone and substituted chromeno[4,3-c]pyrazol-4(1H)-ones and their antibacterial and DPPH radical scavenging activities. Med Chem Res 2010. [DOI: 10.1007/s00044-010-9326-1] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
39
|
Raju BC, Tiwari AK, Kumar JA, Ali AZ, Agawane SB, Saidachary G, Madhusudana K. alpha-Glucosidase inhibitory antihyperglycemic activity of substituted chromenone derivatives. Bioorg Med Chem 2009; 18:358-65. [PMID: 19932027 DOI: 10.1016/j.bmc.2009.10.047] [Citation(s) in RCA: 84] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Revised: 10/23/2009] [Accepted: 10/24/2009] [Indexed: 10/20/2022]
Abstract
Series of 3,4- and 3,6-disubstituted chromenones including new chromenone derivatives were synthesized applying various synthetic strategies including Pechmann condensation, Knoevenagel condensation, Reimer-Tiemann reaction and Suzuki coupling in very good yields. Synthesized compounds (4a-z) were screened for in vitro alpha-glucosidase inhibitory and 1,1-diphenyl-2-picrylhydrazyl (DPPH) free radical scavenging activities. Majority of compounds displayed varying degrees of alpha-glucosidase inhibitory and DPPH scavenging activity. Compound 4x emerged as the most potent alpha-glucosidase inhibitor in present series of compounds owing to the presence of 3-acetyl-6-(6-methoxy-3-pyridyl) group on chromenone; however, it could not display DPPH scavenging activity and was found to be mixed non-competitive type inhibitor of rat intestinal alpha-glucosidase. When tested in vivo for antihyperglycemic activity in starch loaded Wistar rats, it displayed significant antihyperglycemic property. This is the first report assigning rat intestinal alpha-glucosidase inhibitory property for this class of new chromenones and presents new family of compounds possessing alpha-glucosidase inhibitory activities and antihyperglycemic property. Compound 4x may serve as an interesting new compound for the development of therapeutics targeted against diet-induced hyperglycemia in diabetes.
Collapse
Affiliation(s)
- B China Raju
- Organic Chemistry Division-I, Indian Institute of Chemical Technology, Hyderabad 500 607, India.
| | | | | | | | | | | | | |
Collapse
|
40
|
Souza AMT, Castro HC, Brito MA, Andrighetti-Fröhner CR, Magalhães U, Oliveira KN, Gaspar-Silva D, Pacheco LK, Joussef AC, Steindel M, Simões CMO, Santos DO, Albuquerque MG, Rodrigues CR, Nunes RJ. Leishmania amazonensis Growth Inhibitors: Biological and Theoretical Features of Sulfonamide 4-Methoxychalcone Derivatives. Curr Microbiol 2009; 59:374-9. [DOI: 10.1007/s00284-009-9447-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2009] [Revised: 06/08/2009] [Accepted: 06/16/2009] [Indexed: 11/27/2022]
|
41
|
Synthesis, biological evaluation and SAR of sulfonamide 4-methoxychalcone derivatives with potential antileishmanial activity. Eur J Med Chem 2009; 44:755-63. [DOI: 10.1016/j.ejmech.2008.04.016] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2008] [Revised: 04/06/2008] [Accepted: 04/15/2008] [Indexed: 11/21/2022]
|
42
|
Aguilera-Carbo A, Augur C, Prado-Barragan LA, Favela-Torres E, Aguilar CN. Microbial production of ellagic acid and biodegradation of ellagitannins. Appl Microbiol Biotechnol 2008; 78:189-99. [DOI: 10.1007/s00253-007-1276-2] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Accepted: 11/05/2007] [Indexed: 10/22/2022]
|
43
|
Zampini IC, Villarini M, Moretti M, Dominici L, Isla MI. Evaluation of genotoxic and antigenotoxic effects of hydroalcoholic extracts of Zuccagnia punctata Cav. JOURNAL OF ETHNOPHARMACOLOGY 2008; 115:330-335. [PMID: 18023546 DOI: 10.1016/j.jep.2007.10.007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 09/29/2007] [Accepted: 10/06/2007] [Indexed: 05/25/2023]
Abstract
Zuccagnia punctata Cav. (Fabaceae), a widely used plant species in Argentine folk medicine, has been shown to have a broad spectrum of antibacterial, antifungal, antioxidant and cytoprotective activities. In this study, the hydroalcoholic extract of Zuccagnia punctata and 2',4'-dihydroxychalcone isolated from it were investigated for genotoxicity/antigenotoxicity in the in vitro comet assay test on human hepatoma HepG2 cells. No acute toxicity of the extract could be determined. HepG2 cells were treated with three different concentrations (2.5, 5.0 and 10.0 microg/mL) or 2',4'-dihydroxychalcone (0.01, 0.10 and 1.00 microg/mL). To explore the potential mechanisms of action, two approaches were followed: co-treatment with 4-nitroquinoline-N-oxyde (4-NQO), a direct genotoxic compound, and a pre-treatment protocol with benzo[a]pyrene (B[a]P), an indirect genotoxic compound. The natural products neither affected cell viability nor induced DNA damage in the concentration range tested. Zuccagnia punctata tinctures were able to diminish the DNA damage induced in HepG2 cells by 4-NQO and B[a]P in 31% and 10%, respectively at 10 microg/mL. Pre-treatment of HepG2 cells with 2',4'-dihydroxychalcone was highly effective in decreasing B[a]P-induced DNA damage at a statistically significant level, with an almost clear dose-response relationship. The inhibition values were 28.2-43.9% for the tested concentrations of 0.01-1 microg/mL, respectively. The results clearly indicate that the phytoextract from Zuccagnia punctata, under the experimental conditions tested, is not genotoxic and that 2',4'-dihydroxychalcone contributes to a high degree to the antigenotoxic effects of Zuccagnia punctata tincture.
Collapse
Affiliation(s)
- Iris Catiana Zampini
- Cátedra de Fitoquímica, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 471, 4000 San Miguel de Tucumán, Argentina
| | | | | | | | | |
Collapse
|
44
|
Trivedi JC, Bariwal JB, Upadhyay KD, Naliapara YT, Joshi SK, Pannecouque CC, De Clercq E, Shah AK. Improved and rapid synthesis of new coumarinyl chalcone derivatives and their antiviral activity. Tetrahedron Lett 2007. [DOI: 10.1016/j.tetlet.2007.09.175] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
45
|
Ariga K, Vinu A, Miyahara M, Hill JP, Mori T. One-Pot Separation of Tea Components through Selective Adsorption on Pore-Engineered Nanocarbon, Carbon Nanocage. J Am Chem Soc 2007; 129:11022-3. [PMID: 17713913 DOI: 10.1021/ja074870t] [Citation(s) in RCA: 129] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Katsuhiko Ariga
- National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba 305-0044, Japan.
| | | | | | | | | |
Collapse
|
46
|
A review of anti-infective and anti-inflammatory chalcones. Eur J Med Chem 2007; 42:125-37. [PMID: 17112640 DOI: 10.1016/j.ejmech.2006.09.019] [Citation(s) in RCA: 713] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2006] [Revised: 09/25/2006] [Accepted: 09/28/2006] [Indexed: 11/23/2022]
|
47
|
Hassan Khan MT, Ather A. Potentials of phenolic molecules of natural origin and their derivatives as anti-HIV agents. BIOTECHNOLOGY ANNUAL REVIEW 2007; 13:223-64. [PMID: 17875479 DOI: 10.1016/s1387-2656(07)13009-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Identification of phenolic compounds and their derivatives interfering the several steps of the viral life cycle of the human immunodeficiency virus type 1 (HIV-1) is focused for the development of novel molecules for the treatment of AIDS. Several phenolic compounds isolated and characterized from natural sources have been studied in detail and found to exhibit inhibitory effects against different steps of the HIV-1 life cycle, including virus-cell fusion and virus absorption, reverse transcription, integration (IN) and proteolytic cleavage. In the review, we are summarizing some strong evidences demonstrating several phenolic molecules and their derivatives from natural sources display promising anti-HIV-1 activities. The anti-HIV compounds have been organized in this review according to their mechanism of action in the life cycle of HIV. We also mentioned some findings using in silico approaches, like virtual screening, docking, neural network, etc., and even the chemogenomics and/or functional genomics approaches could be useful for the quick identifying promising new lead anti-HIV molecules without having any other unwanted pharmacological effects. Plants having large amount of phenolic compounds, can be considered as strong sources of molecules for the treatment of HIV-1. Despite the continuous advances made in antiretroviral combination therapy, AIDS has become the leading cause of death in Africa and the fourth worldwide. Today, many research groups are exploring the bio- and chemo-diversity of the plant kingdom to find new and better anti-HIV drugs with novel mechanisms of action.
Collapse
Affiliation(s)
- Mahmud Tareq Hassan Khan
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, University of Science and Technology Chittagong, Chittagong, Bangladesh.
| | | |
Collapse
|
48
|
Hatziieremia S, Gray AI, Ferro VA, Paul A, Plevin R. The effects of cardamonin on lipopolysaccharide-induced inflammatory protein production and MAP kinase and NFkappaB signalling pathways in monocytes/macrophages. Br J Pharmacol 2006; 149:188-98. [PMID: 16894344 PMCID: PMC2013802 DOI: 10.1038/sj.bjp.0706856] [Citation(s) in RCA: 102] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
BACKGROUND AND PURPOSE In this study we examined the effect of the natural product cardamonin, upon lipopolysaccharide (LPS)-induced inflammatory gene expression in order to attempt to pinpoint the mechanism of action. EXPERIMENTAL APPROACHES Cardamonin was isolated from the Greek plant A. absinthium L. Its effects were assessed on LPS-induced nitrite release and iNOS and COX-2 protein expression in two macrophage cell lines. Western blotting was used to investigate its effects on phosphorylation of the mitogen activated protein (MAP) kinases, ERK, JNK and p38 MAP kinase, and activation of the NFkappaB pathway, at the level of IkappaBalpha degradation and phosphorylation of NFkappaB. Also its effects on NFkappaB and GAS/GAF-DNA binding were assessed by EMSA. KEY RESULTS Cardamonin concentration-dependently inhibited both NO release and iNOS expression but had no effect on COX-2 expression. It did not affect phosphorylation of the MAP kinases, degradation of IkappaBalpha or phosphorylation of NFkappaB. However, it inhibited NFkappaB DNA-binding in both LPS-stimulated cells and nuclear extracts of the cells (in vitro). It also inhibited IFNgamma-stimulated iNOS induction and GAS/GAF-DNA binding. CONCLUSIONS AND IMPLICATIONS These results show that the inhibitory effect of cardamonin on LPS-induced iNOS induction is not mediated via effects on the initial activation of the NFkappaB or MAP kinase pathways but is due to a direct effect on transcription factor binding to DNA. However, although some selectivity in cardamonin's action is implicated by its inability to affect COX-2 expression, its exact mechanism(s) of action has yet to be identified.
Collapse
Affiliation(s)
- S Hatziieremia
- Department of Pharmaceutical Sciences, Strathclyde Institute for Biomedical Science, University of Strathclyde Glasgow, UK
| | - A I Gray
- Department of Pharmaceutical Sciences, Strathclyde Institute for Biomedical Science, University of Strathclyde Glasgow, UK
| | - V A Ferro
- Department of Immunology, University of Strathclyde, Strathclyde Institute for Biomedical Science Glasgow, UK
| | - A Paul
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Science Glasgow, UK
| | - R Plevin
- Department of Physiology and Pharmacology, University of Strathclyde, Strathclyde Institute for Biomedical Science Glasgow, UK
- Author for correspondence:
| |
Collapse
|
49
|
Zampini IC, Vattuone MA, Isla MI. Antibacterial activity of Zuccagnia punctata Cav. ethanolic extracts. JOURNAL OF ETHNOPHARMACOLOGY 2005; 102:450-6. [PMID: 16137849 DOI: 10.1016/j.jep.2005.07.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2004] [Revised: 07/13/2005] [Accepted: 07/19/2005] [Indexed: 05/04/2023]
Abstract
The present study was conducted to investigate antibacterial activity of Zuccagnia punctata ethanolic extract against 47 strains of antibiotic-resistant Gram-negative bacteria and to identify bioactive compounds. Inhibition of bacterial growth was investigated using agar diffusion, agar macrodilution, broth microdilution and bioautographic methods. Zuccagnia punctata extract was active against all assayed bacteria (Escherichia coli, Klebsiella pneumoniae, Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia) with minimal inhibitory concentration (MIC) values ranging from 25 to 200 microg/mL. Minimal bactericidal concentration (MBC) values were identical or two-fold higher than the corresponding MIC values. Contact bioautography, indicated that Zuccagnia punctata extracts possess one major antibacterial component against Pseudomonas aeruginosa and at least three components against. Klebsiella pneumoniae and Escherichia coli. Activity-guided fractionation of 1he ethanol extract on a silica gel column yielded a compound (2',4'-dihydroxychalcone), which exhibited strong antibacterial activity with MIC values between 0.10 and 1.00 microg/mL for Proteus mirabilis, Enterobacter cloacae, Serratia marcescens, Morganella morganii, Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia. These values are lower than imipenem (0.25-16 microg/mL). Zuccagnia punctata might provide promising therapeutic agents against infections with multi-resistant Gram-negative bacteria.
Collapse
Affiliation(s)
- Iris C Zampini
- Cátedra de Fitoquimíca, Instituto de Estudios Vegetales Dr. Antonio R. Sampietro, Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, San Miguel de Tucumán, Argentina
| | | | | |
Collapse
|
50
|
Bedoya LM, Beltrán M, Sancho R, Olmedo DA, Sánchez-Palomino S, del Olmo E, López-Pérez JL, Muñoz E, San Feliciano A, Alcamí J. 4-Phenylcoumarins as HIV transcription inhibitors. Bioorg Med Chem Lett 2005; 15:4447-50. [PMID: 16137881 DOI: 10.1016/j.bmcl.2005.07.041] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2005] [Revised: 07/07/2005] [Accepted: 07/14/2005] [Indexed: 11/28/2022]
Abstract
We have evaluated the anti-HIV activity of eleven natural 4-phenylcoumarins isolated from Marila pluricostata and three of their derivatives. Antiviral activity was assessed on MT-2 cells infected with viral clones carrying the luciferase gene as reporter. Inhibitions of HIV transcription and Tat function were tested on cells stably transfected with the HIV-LTR and Tat protein. Most of the coumarins tested displayed NF-kappaB inhibition. Two coumarins were also Tat antagonists and the presence of both activities correlated with a stronger inhibition of HIV replication. Our results show that antiviral effect of 4-phenylcoumarins can be related to the inhibition of NF-kappaB and Tat, and suggest that these types of compounds can be useful in the treatment of HIV infection as viral transcription inhibitors.
Collapse
Affiliation(s)
- Luis M Bedoya
- Unidad de Inmunopatalogía, Centro Nacional de Microbiología, Instituto de Salud Carlos III, 28220-Majadahonda, Madrid, Spain
| | | | | | | | | | | | | | | | | | | |
Collapse
|