1
|
Lu C, Gudowska A, Rutkowska J. What do zebra finches learn besides singing? Systematic mapping of the literature and presentation of an efficient associative learning test. Anim Cogn 2023; 26:1489-1503. [PMID: 37300600 PMCID: PMC10442275 DOI: 10.1007/s10071-023-01795-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 04/27/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023]
Abstract
The process of learning in birds has been extensively studied, with a focus on species such as pigeons, parrots, chickens, and crows. In recent years, the zebra finch has emerged as a model species in avian cognition, particularly in song learning. However, other cognitive domains such as spatial memory and associative learning could also be critical to fitness and survival, particularly during the intensive juvenile period. In this systematic review, we provide an overview of cognitive studies on zebra finches, with a focus on domains other than song learning. Our findings indicate that spatial, associative, and social learning are the most frequently studied domains, while motoric learning and inhibitory control have been examined less frequently over 30 years of research. All of the 60 studies included in this review were conducted on captive birds, limiting the generalizability of the findings to wild populations. Moreover, only two of the studies were conducted on juveniles, highlighting the need for more research on this critical period of learning. To address this research gap, we propose a high-throughput method for testing associative learning performance in a large number of both juvenile and adult zebra finches. Our results demonstrate that learning can occur in both age groups, thus encouraging researchers to also perform cognitive tests on juveniles. We also note the heterogeneity of methodologies, protocols, and subject exclusion criteria applied by different researchers, which makes it difficult to compare results across studies. Therefore, we call for better communication among researchers to develop standardised methodologies for studying each cognitive domain at different life stages and also in their natural conditions.
Collapse
Affiliation(s)
- ChuChu Lu
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| | - Agnieszka Gudowska
- Institute of Systematics and Evolution of Animals, Polish Academy of Sciences, Kraków, Poland
| | - Joanna Rutkowska
- Institute of Environmental Sciences, Faculty of Biology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
2
|
Executive Functions in Birds. BIRDS 2022. [DOI: 10.3390/birds3020013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Executive functions comprise of top-down cognitive processes that exert control over information processing, from acquiring information to issuing a behavioral response. These cognitive processes of inhibition, working memory, and cognitive flexibility underpin complex cognitive skills, such as episodic memory and planning, which have been repeatedly investigated in several bird species in recent decades. Until recently, avian executive functions were studied in relatively few bird species but have gained traction in comparative cognitive research following MacLean and colleagues’ large-scale study from 2014. Therefore, in this review paper, the relevant previous findings are collected and organized to facilitate further investigations of these core cognitive processes in birds. This review can assist in integrating findings from avian and mammalian cognitive research and further the current understanding of executive functions’ significance and evolution.
Collapse
|
3
|
Defensive behaviors and prosencephalic neurogenesis in pigeons (Columba livia) are affected by environmental enrichment in adulthood. Brain Struct Funct 2015; 221:2287-301. [DOI: 10.1007/s00429-015-1043-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Accepted: 04/06/2015] [Indexed: 01/04/2023]
|
4
|
Mayer U, Watanabe S, Bischof HJ. Spatial memory and the avian hippocampus: Research in zebra finches. ACTA ACUST UNITED AC 2013; 107:2-12. [DOI: 10.1016/j.jphysparis.2012.05.002] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/08/2012] [Accepted: 05/10/2012] [Indexed: 01/26/2023]
|
5
|
Distribution and characterization of doublecortin-expressing cells and fibers in the brain of the adult pigeon (Columba livia). J Chem Neuroanat 2013; 47:57-70. [DOI: 10.1016/j.jchemneu.2012.10.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Revised: 10/29/2012] [Accepted: 10/29/2012] [Indexed: 01/03/2023]
|
6
|
Kosaki Y, Watanabe S. Dissociable roles of the medial prefrontal cortex, the anterior cingulate cortex, and the hippocampus in behavioural flexibility revealed by serial reversal of three-choice discrimination in rats. Behav Brain Res 2012; 227:81-90. [DOI: 10.1016/j.bbr.2011.10.039] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2011] [Revised: 10/20/2011] [Accepted: 10/23/2011] [Indexed: 11/26/2022]
|
7
|
Watanabe S, Mayer U, Bischof HJ. Visual Wulst analyses "where" and entopallium analyses "what" in the zebra finch visual system. Behav Brain Res 2011; 222:51-6. [PMID: 21435357 DOI: 10.1016/j.bbr.2011.03.035] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2011] [Revised: 03/10/2011] [Accepted: 03/14/2011] [Indexed: 10/18/2022]
Abstract
Quite a lot of studies have tried to elucidate the differences in function of the two telencephalic targets of the avian visual system. We have tried to find out how the two systems are involved in orientation towards a food tray which is either marked by a special pattern or has to be identified by its relation to spatial cues. In this report, we compared in the zebra finch the effects of Wulst lesions on pattern discrimination with Wulst lesion effects on spatial discrimination, and we examined the effect of entopallium lesions on spatial discrimination. Birds with Wulst lesions showed deficits in spatial discrimination, but not in pattern discrimination. Entopallial lesions caused no deficits in spatial discrimination tasks. Combining the present results with a previous study revealing an impairment of pattern discrimination by such entopallial lesions [19], we are able to demonstrate a double dissociation: namely, an impairment of pattern discrimination by entopallial lesions and impairment of spatial discrimination by Wulst lesions, but no effects of the opposite pairing of task and lesion site. The entopallium is thus involved if the food source is identified by a pattern, and the Wulst if it has to be found by spatial cues.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-25-45, Minato-Ku, Tokyo, Japan.
| | | | | |
Collapse
|
8
|
Lovell PV, Mello CV. Brain expression and song regulation of the cholecystokinin gene in the zebra finch (Taeniopygia guttata). J Comp Neurol 2011; 519:211-37. [PMID: 21165972 PMCID: PMC3075806 DOI: 10.1002/cne.22513] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The gene encoding cholecystokinin (Cck) is abundantly expressed in the mammalian brain and has been associated with such functions as feeding termination and satiety, locomotion and self-stimulation, the modulation of anxiety-like behaviors, and learning and memory. Here we describe the brain expression and song regulation of Cck in the brain of the adult male zebra finch (Taeniopygia guttata), a songbird species. Using in situ hybridization we demonstrate that Cck is highly expressed in several discrete brain regions, most prominently the caudalmost portion of the hippocampal formation, the caudodorsal nidopallial shelf and the caudomedial nidopallium (NCM), the core or shell regions of dorsal thalamic nuclei, dopaminergic cell groups in the mesencephalon and pons, the principal nucleus of the trigeminal nerve, and the dorsal raphe. Cck was largely absent in song control system, a group of nuclei required for vocal learning and song production in songbirds, although sparse labeling was detected throughout the striatum, including song nucleus area X. We also show that levels of Cck mRNA and the number of labeled cells increase in the NCM of males and females following auditory stimulation with conspecific song. Double labeling further reveals that the majority of Cck cells, excluding those in the reticular nucleus of the thalamus, are non-GABAergic. Together, these data provide the first comprehensive characterization of Cck expression in a songbird, and suggest a possible involvement of Cck regulation in important aspects of birdsong biology, such as perceptual processing, auditory memorization, and/or vocal-motor control of song production.
Collapse
Affiliation(s)
- Peter V Lovell
- Department of Behavioral Neuroscience, Oregon Health and Science University, Portland, OR 97239, USA
| | | |
Collapse
|
9
|
|
10
|
Rosinha M, Ferrari E, Toledo C. Immunohistochemical distribution of AMPA-type label in the pigeon (C. livia) hippocampus. Neuroscience 2009; 159:438-50. [DOI: 10.1016/j.neuroscience.2009.01.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Revised: 01/05/2009] [Accepted: 01/07/2009] [Indexed: 01/22/2023]
|
11
|
Saito K, Watanabe S. Deficits in acquisition of spatial learning after dorsomedial telencephalon lesions in goldfish. Behav Brain Res 2006; 172:187-94. [PMID: 16797738 DOI: 10.1016/j.bbr.2006.04.014] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/11/2006] [Accepted: 04/13/2006] [Indexed: 10/24/2022]
Abstract
Acquisition of spatial learning is an important function of mammalian hippocampus. In order to identify the brain areas in teleost fish that are homologous to mammalian hippocampus, the present study examined the effects of lesions in the dorsal area of the caudal telencephalon of goldfish (Carassius auratus) on the acquisition of spatial learning. An open-field maze that was similar to the dry version of the Morris water maze was used. The task consisted of habituation and postoperative training to reach the position of the bait. Extramaze cues were visible in the habituation sessions in experiment 1, while they were blocked and not visible in the habituation sessions in experiment 2. Only in experiment 2, there was a significant deficit in the performance in the training sessions in the goldfish with damage to the dorsomedial area of the caudal telencephalon (DM). These data showed that blocking of the extramaze cues in the habituation sessions caused deficits in postoperative acquisition of spatial learning in the training sessions in the goldfish with DM lesions. Latent learning in the habituation sessions, however, eliminated the effects of the DM lesions on spatial learning. The present study suggests that the DM plays a critical role in acquisition of spatial learning.
Collapse
Affiliation(s)
- Kotaro Saito
- Department of Psychology, Keio University, Mita 3-1-7 7F, Minato-ku, Tokyo 108-0073, Japan.
| | | |
Collapse
|
12
|
Bischof HJ, Lieshoff C, Watanabe S. Spatial Memory and Hippocampal Function in a NonFoodstoring Songbird, the Zebra Finch (Taeniopygia guttata). Rev Neurosci 2006; 17:43-52. [PMID: 16703942 DOI: 10.1515/revneuro.2006.17.1-2.43] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Spatial memory and hippocampal function have as yet been investigated mainly in pigeons and food storing songbirds. We show here that the zebra finch, a songbird not specialized in food storing and caching, is also able to learn a spatial memory task and uses a spatial map for finding food in a 'dry water maze'. Hippocampal lesions prevent learning and retention of this spatial task. The immediate early gene (IEG) products Zenk and Fos are expressed within the hippocampus when the bird is learning the task. Spatial learning cannot be assigned to any hippocampal subregion; IEG expression within the hippocampus is patchy and seems almost arbitrarily located. The IEG activation pattern in spatial memory experiments is compared with those in other learning experiments with zebra finches.
Collapse
|
13
|
Watanabe S. Effects of Partial Hippocampal Lesions by IbotenicAcid on Repeated Acquisition of Spatial Discrimination in Pigeons. Rev Neurosci 2006; 17:29-41. [PMID: 16703941 DOI: 10.1515/revneuro.2006.17.1-2.29] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pigeons were trained on a spatial discrimination task using a repeated acquisition procedure. In this procedure, the pigeons were trained to discriminate between the positions of three keys. One of them was designated the correct key. When the subjects reached the criterion, the discrimination task was changed, with one of two previously incorrect keys now being made the correct key. This procedure was repeated at least 15 times. Then, lesions to the whole hippocampus, the medial hippocampus or to the lateral hippocampus were made by injections of ibotenic acid (Experiment 1). Only the subjects with damage to the whole hippocampus showed deficits in learning after the lesions. The deficits were similar to those caused by aspiration lesions /37/. Knife cuts separating the medial and lateral hippocampi were made in Experiment 2. The subjects did not show deficits in the spatial discrimination task after the sections. Although studies of the connectivity in the avian hippocampus suggested functional differences between the medial and lateral hippocampi, the present results show that pigeons can learn spatial discrimination with the medial and lateral parts of hippocampus separated.
Collapse
|
14
|
Watanabe S. Lesions in the basal ganglion and hippocampus on performance in a Wisconsin Card Sorting Test-like task in pigeons. Physiol Behav 2005; 85:324-32. [PMID: 15936047 DOI: 10.1016/j.physbeh.2005.04.020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2004] [Revised: 04/14/2005] [Accepted: 04/25/2005] [Indexed: 11/17/2022]
Abstract
Previous studies of LPO (lobus parolfactorium) and hippocampal lesions in pigeons suggest function of cognitive flexibility in LPO and memory consolidation in hippocampus [Watanabe S. Effects of hippocampal lesions on repeated acquisition of spatial discrimination in pigeons. Behav Brain Res 2001;120:59-66. ; Watanabe S. Effects of LPO lesions on repeated acquisition of spatial discrimination in pigeons. Brain Behav Evol 2002;58:333-342. ]. Here, a test similar to the Wisconsin Card Sorting Test was applied to pigeons. The test consisted of four discriminations, namely red-green color discrimination and its reversal, left-right spatial discrimination and its reversal. In each trial stimuli were presented until the correct choice occurred. Ten successive correct trials without wrong response were defined as the criterion of discrimination. When the subjects reached the criterion in one discrimination, they were trained on one of three other discrimination tasks in the next session. These four discriminations were trained repeatedly in random sequence. After the birds have been well learned the WCST-like task, their hippocampus or lobus parolfactorium (LPO), the avian basal ganglion, was damaged. A sham lesion group received anesthesia only. Both lesions impaired the WCST-like test. Lesions of the LPO increased the number of errors, while the hippocampal lesions increased the number of trials to reach the criterion only. The number of errors reflects difficulty in finding the correct stimulus or cognitive flexibility, while the number of trials reflects difficulty in stable responding or memory consolidation. The present results suggest that LPO has the function of cognitive flexibility.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, Japan.
| |
Collapse
|
15
|
Watanabe S, Bischof HJ. Effects of hippocampal lesions on acquisition and retention of spatial learning in zebra finches. Behav Brain Res 2004; 155:147-52. [PMID: 15325788 DOI: 10.1016/j.bbr.2004.04.007] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2004] [Revised: 04/10/2004] [Accepted: 04/13/2004] [Indexed: 02/04/2023]
Abstract
We tested the role of the hippocampus in spatial memory of zebra finches. The birds were trained to find the location of a food site among four identical feeders arranged on the aviary floor. Extra-maze cues were present. The birds had to perform the task from four different starting points. Successful visits and the time to find the food were recorded. Hippocampal lesions made before acquisition led to a decrease in correct choices. Hippocampal lesions following training disrupted the retention of the spatial memory. Surprisingly, birds with hippocampal damage reached the food as quickly as intact birds, but they needed more visits to find the correct feeder. Therefore, the birds with hippocampal damage used an alternative, nonspatial memory-based strategy to find the food.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, Japan.
| | | |
Collapse
|
16
|
do Amaral-Toma M, Ferrari EADM. Effects of hippocampal lesions in a food location task in pigeons. Behav Brain Res 2004; 148:21-34. [PMID: 14684244 DOI: 10.1016/s0166-4328(03)00175-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
This study investigated the role of the hippocampus in pigeons learning of a food-related choice task. The effects of lesions induced by ibotenic acid were analyzed in two experiments. Experiment 1 investigated the effects of hippocampal damage on postoperative memory retrieval and in reversal learning. Experiment 2 investigated the effects of hippocampal lesions on the acquisition and reversal of learning. In both experiments probe tests were used to assess the behavioral strategies underlying the choice. In Experiment 1 hippocampal lesions impaired the preoperative learned performance in terms of choice latency but not choice accuracy. Experiment 2 data showed that, in postoperative learning sessions, latency as well as choice accuracy were impaired by hippocampal damage. The probe tests, in which a curtain was placed around the chamber, revealed behavioral patterns of a non-mapping strategy. This was true in both experiments and groups (experimental and controls). Immediately after training, during the probe tests of both experiments, in which food cups were omitted, the three groups spent more time in the target quadrant. However, immediately after the reversal condition, neither hippocampal damaged nor control pigeons showed a preference for the target quadrant. This may be interpreted as evidence for a hippocampal role in stimulus location learning involving non-mapping strategies.
Collapse
Affiliation(s)
- Marizia do Amaral-Toma
- Laboratório de Sistemas Neurais e Comportamento, Departamento de Fisiologia e Biofísica, IB, Universidade Estadual de Campinas, Cx P 6109, Campinas 13083-970, SP, Brazil.
| | | |
Collapse
|
17
|
Nakajima S, Izawa EI, Matsushima T. Hippocampal lesion delays the acquisition of egocentric spatial memory in chicks. Neuroreport 2003; 14:1475-80. [PMID: 12960767 DOI: 10.1097/00001756-200308060-00014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Effects of bilateral chemical lesion of the hippocampus was examined in 1- to 2-week-old domestic chicks. Chicks were trained and tested in an egocentric spatial task, in which subject chicks should memorize location of a rewarding object in reference to the subject's viewpoint. Two beads were simultaneously presented on a wall, and chicks pecked at one of them based on relative location (left-right or above-below) to gain a reward. Comparison of training curves revealed that the lesion significantly delayed, but did not impair, the acquisition. Recall of the spatial cue, as well as conditioning with color cues, was not impaired. Hippocampus could thus be involved in memory formation of spatial relationships between nearby objects.
Collapse
Affiliation(s)
- Shinya Nakajima
- Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | | | | |
Collapse
|
18
|
Watanabe S. Effects of Wulst and ectostriatum lesions on repeated acquisition of spatial discrimination in pigeons. BRAIN RESEARCH. COGNITIVE BRAIN RESEARCH 2003; 17:286-92. [PMID: 12880900 DOI: 10.1016/s0926-6410(03)00129-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The avian telencephalon has two visual areas, (1) a 'Wulst' that consists of hyperstriatum accessorium, hyperstriatum intercalatus superior and hyperstriatum dorsale, and (2) the ectostriatum. Deficits in visual discrimination have been observed after ectostratal lesions but not after Wulst lesions. In the present experiments, the cognitive functions of the Wulst in pigeons were examined. Pigeons were trained on repeated acquisition of a three key discrimination. Every time the subjects reached the criterion of discrimination, they were trained on different discriminations in which one of two previously incorrect keys became the correct key. The Wulst lesions disrupted the acquisition of discrimination, while the ectostriatal lesions did not.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, Japan.
| |
Collapse
|
19
|
Abstract
Pigeons were trained on a conditional spatial discrimination with a three-key operant chamber. The position of the correct key was left when all the keys were red, center when all the keys were green, and right when all the keys were white. Pigeons with hippocampal damages could learn the task, as well as intact birds and those that received hippocampal lesions after acquisition of the task. These results suggest that the pigeon hippocampus does not play a role in conditional spatial discrimination.
Collapse
Affiliation(s)
- Shigeru Watanabe
- Department of Psychology, Keio University, Mita 2-15-45, Minato-Ku, Tokyo, Japan.
| |
Collapse
|