1
|
Wilson KM, Burley NT. Early-Life Silver Spoon Improves Survival and Breeding Performance of Adult Zebra Finches. Am Nat 2024; 204:73-95. [PMID: 38857346 DOI: 10.1086/730265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2024]
Abstract
AbstractDevelopmental plasticity allows organisms to increase the fit between their phenotype and their early-life environment. The extent to which such plasticity also enhances adult fitness is not well understood, however, particularly when early-life and adult environments differ substantially. Using a cross-factorial design that manipulated diet at two life stages, we examined predictions of major hypotheses-silver spoon, environmental matching, and thrifty phenotype-concerning the joint impacts of early-life and adult diets on adult morphology/display traits, survival, and reproductive allocation. Overall, results aligned with the silver spoon hypothesis, which makes several predictions based on the premise that development in poor-quality environments constrains adult performance. Males reared and bred on a low-protein diet had lower adult survivorship than other male treatment groups; females' survivorship was higher than males' and not impacted by early diet. Measures of allocation to reproduction primarily reflected breeding diet, but where natal diet impacted reproduction, results supported the silver spoon. Both sexes showed reduced expression of display traits when reared on a low-protein diet. Results accord with other studies in supporting the relevance of the silver spoon hypothesis to birds and point to significant ramifications of sex differences in early-life viability selection on the applicability/strength of silver spoon effects.
Collapse
|
2
|
Stamps JA, Luttbeg B. Sensitive Period Diversity: Insights From Evolutionary Models. THE QUARTERLY REVIEW OF BIOLOGY 2022. [DOI: 10.1086/722637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
3
|
Lezana L, Hernández-Soto R, Díez-León M, Ríos M, Baquero E, Galicia D. The effect of early experiences in Barn Owl (Tyto alba) behaviour. Acquisition-expression time of neophobia and filial imprinting. Implications for management and conservation. Behav Processes 2021; 195:104569. [PMID: 34942324 DOI: 10.1016/j.beproc.2021.104569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 12/10/2021] [Accepted: 12/19/2021] [Indexed: 11/02/2022]
Abstract
In birds, early experiences determine the later behavioural phenotype of individuals and their way of adapting to the challenges they encounter in their environment. We investigated how the degree of exposure of barn owl chicks to humans and their biological parents influenced their behavioural response to humans and different environments. Only the treatment groups raised by human beings, or those that remained for less time with their biological parents (15 days posthatching), learned to fly towards their trainer. However, the two groups of chicks that were raised the longest by their biological parents (20 and 25 days) never flew towards their trainer. In these last groups, the filial imprint was shown not to be able to be reversed. Neophobia was estimated to emerge between 17 and 19 days of age, as barn owls were able to recognize the environment in which they were habituated, showing fear of a new environment. Birds were able to recognize the person who raised them and objects with which they had been raised. The results obtained in this work can help to establish breeding protocols in this and other species of birds of prey, which improve their adaptability to the environment where they will live, whether in captivity or in the wild.
Collapse
Affiliation(s)
- L Lezana
- Department of Environmental Biology, University of Navarra, Spain; Tierra Rapaz, Calahorra, Spain.
| | - R Hernández-Soto
- Department of Environmental Biology, University of Navarra, Spain
| | - M Díez-León
- Deparment of Pathobiology and Population Sciences, Royal Veterinary College, University of London, UK
| | - M Ríos
- Tierra Rapaz, Calahorra, Spain
| | - E Baquero
- Department of Environmental Biology, University of Navarra, Spain
| | - D Galicia
- Department of Environmental Biology, University of Navarra, Spain
| |
Collapse
|
4
|
Martin JO, Burley NT. Elucidating mutual mate choice: effects of trial design on preferences of male zebra finches. Behav Ecol 2021. [DOI: 10.1093/beheco/arab097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Abstract
Understanding the dynamics of mutual mate choice requires investigation of mate preferences of both sexes using a variety of designs, but fewer studies have focused on male choice in avian models. Here we conducted two experiments on preferences of male zebra finches to study the impact of trial design on results. Experimental design varied in number of trial participants, inclusion of observer (“audience”) males, and housing design for stimulus females. Females were reared on one of two diets to enhance variation in mating quality: those reared on a protein-supplement diet (HI-diet) were predicted to be more attractive to males than (LO-diet) females that did not receive supplements. Results differed among trial types. Notably, males showed the predicted preference for HI-diet females only in the Group Choice experiment, where two male subjects simultaneously chose from a field of four females, and all six birds interacted freely. In the Dyadic Preference (DP) experiment, a single male was allowed to interact with two stimulus females that were physically isolated; in half of these trials, audience males were present. In DP trials without audience males, test males did not express a preference consensus; however, with audience males present, test males preferred LO-diet females. Results are consistent with a small but growing literature indicating that results of mate choice experiments can be highly sensitive to design considerations.
Collapse
Affiliation(s)
- John O Martin
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, Irvine CA, USA
| | - Nancy Tyler Burley
- Department of Ecology and Evolutionary Biology, 321 Steinhaus Hall, University of California, Irvine, Irvine CA, USA
| |
Collapse
|
5
|
Wilson KM, Burley NT. Female differential allocation in response to extrapair offspring and social mate attractiveness. Ecol Evol 2021; 11:7278-7291. [PMID: 34188812 PMCID: PMC8216983 DOI: 10.1002/ece3.7560] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 11/16/2022] Open
Abstract
Renewed debate over what benefits females might gain from producing extra-pair offspring emphasizes the possibility that apparent differences in quality between within-pair and extra-pair offspring are confounded by greater maternal investment in extra-pair offspring. Moreover, the attractiveness of a female's social mate can also influence contributions of both partners to a reproductive attempt. Here, we explore the complexities involved in parental investment decisions in response to extra-pair offspring and mate attractiveness with a focus on the female point of view. Adult zebra finches paired and reproduced in a colony setting. A male's early-life diet quality and his extra-pair reproductive success were used as metrics of his mating attractiveness. Females paired with males that achieved extra-pair success laid heavier eggs than other females and spent less time attending their nests than their mates or other females. Extra-pair nestlings were fed more protein-rich hen's egg than within-pair nestlings. Females producing extra-pair offspring had more surviving sons than females producing only within-pair offspring. Collectively, results show that females differentially allocate resources in response to offspring extra-pair status and their social mate's attractiveness. Females may also obtain fitness benefits through the production of extra-pair offspring.
Collapse
Affiliation(s)
- Kerianne M. Wilson
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCAUSA
- Evolution, Ecology and Organismal Biology DepartmentUniversity of CaliforniaRiversideCAUSA
| | - Nancy Tyler Burley
- Department of Ecology and Evolutionary BiologyUniversity of CaliforniaIrvineCAUSA
| |
Collapse
|
6
|
Wilson KM, Tatarenkov A, Burley NT. Early life and transgenerational stressors impact secondary sexual traits and fitness. Behav Ecol 2019. [DOI: 10.1093/beheco/arz020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Kerianne M Wilson
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Andrey Tatarenkov
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| | - Nancy Tyler Burley
- Department of Ecology and Evolutionary Biology, University of California, Irvine, Irvine, CA, USA
| |
Collapse
|
7
|
Stamps JA, Krishnan V. Age-dependent changes in behavioural plasticity: insights from Bayesian models of development. Anim Behav 2017. [DOI: 10.1016/j.anbehav.2017.01.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
8
|
Bölting S, von Engelhardt N. Effects of the social environment during adolescence on the development of social behaviour, hormones and morphology in male zebra finches ( Taeniopygia guttata). Front Zool 2017; 14:5. [PMID: 28149319 PMCID: PMC5267386 DOI: 10.1186/s12983-017-0190-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/18/2017] [Indexed: 11/10/2022] Open
Abstract
Background Individual differences in behaviour are widespread in the animal kingdom and often influenced by the size or composition of the social group during early development. In many vertebrates the effects of social interactions early in life on adult behaviour are mediated by changes in maturation and physiology. Specifically, increases in androgens and glucocorticoids in response to social stimulation seem to play a prominent role in shaping behaviour during development. In addition to the prenatal and early postnatal phase, adolescence has more recently been identified as an important period during which adult behaviour and physiology are shaped by the social environment, which so far has been studied mostly in mammals. We raised zebra finches (Taeniopygia guttata) under three environmental conditions differing in social complexity during adolescence - juvenile pairs, juvenile groups, and mixed-age groups - and studied males’ behavioural, endocrine, and morphological maturation, and later their adult behaviour. Results As expected, group-housed males exhibited higher frequencies of social interactions. Group housing also enhanced song during adolescence, plumage development, and the frequency and intensity of adult courtship and aggression. Some traits, however, were affected more in juvenile groups and others in mixed-age groups. Furthermore, a testosterone peak during late adolescence was suppressed in groups with adults. In contrast, corticosterone concentrations did not differ between rearing environments. Unexpectedly, adult courtship in a test situation was lowest in pair-reared males and aggression depended upon the treatment of the opponent with highest rates shown by group-reared males towards pair-reared males. This contrasts with previous findings, possibly due to differences in photoperiod and the acoustic environment. Conclusion Our results support the idea that effects of the adolescent social environment on adult behaviour in vertebrates are mediated by changes in social interactions affecting behavioural and morphological maturation. We found no evidence that long-lasting differences in behaviour reflect testosterone or corticosterone levels during adolescence, although differences between juvenile and mixed-age groups suggest that testosterone and song behaviour during late adolescence may be associated.
Collapse
Affiliation(s)
- Stefanie Bölting
- Department of Animal Behaviour, Bielefeld University, 33615 Bielefeld, Germany
| | - Nikolaus von Engelhardt
- Department of Animal Behaviour, Bielefeld University, 33615 Bielefeld, Germany.,Faculty of Science and Engineering, University of Plymouth, Drake Circus, Plymouth, PL4 8AA UK
| |
Collapse
|
9
|
Social re-orientation and brain development: An expanded and updated view. Dev Cogn Neurosci 2015; 17:118-27. [PMID: 26777136 PMCID: PMC6990069 DOI: 10.1016/j.dcn.2015.12.008] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 06/12/2015] [Accepted: 12/19/2015] [Indexed: 12/30/2022] Open
Abstract
We expand our adolescent re-orientation model to include other developmental periods. We review neuroimaging literature on social information processing. We combine human and animal based approaches to social behavior.
Social development has been the focus of a great deal of neuroscience based research over the past decade. In this review, we focus on providing a framework for understanding how changes in facets of social development may correspond with changes in brain function. We argue that (1) distinct phases of social behavior emerge based on whether the organizing social force is the mother, peer play, peer integration, or romantic intimacy; (2) each phase is marked by a high degree of affect-driven motivation that elicits a distinct response in subcortical structures; (3) activity generated by these structures interacts with circuits in prefrontal cortex that guide executive functions, and occipital and temporal lobe circuits, which generate specific sensory and perceptual social representations. We propose that the direction, magnitude and duration of interaction among these affective, executive, and perceptual systems may relate to distinct sensitive periods across development that contribute to establishing long-term patterns of brain function and behavior.
Collapse
|
10
|
Ruploh T, Henning M, Bischof HJ, von Engelhardt N. Effects of social conditions during adolescence on courtship and aggressive behavior are not abolished by adult social experience. Dev Psychobiol 2014; 57:73-82. [PMID: 25545997 DOI: 10.1002/dev.21262] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2014] [Accepted: 09/24/2014] [Indexed: 01/22/2023]
Abstract
Social experience during adolescence has long-lasting consequences for adult social behavior in many species. In zebra finches, individuals reared in pairs during adolescence start to court females faster, sing more courtship motifs to females and are more aggressive compared with group-reared males. We investigated whether such differences are stable during adulthood or can be abolished by novel social experience after adolescence by giving all birds extensive experience with group life during adulthood. Courtship and aggressiveness increased in all males, but pair-reared males still had a higher motif rate and were more aggressive than group-reared males. Males no longer differed in courtship latency. In addition to the stable treatment differences, individual differences in behavior remained stable over time. Our results show that differences in behavior acquired during adolescence are preserved into adulthood, although adults still change their social behavior. Adolescence can thus be seen as a sensitive period during which social conditions have a lasting effect on adult behavior.
Collapse
Affiliation(s)
- Tim Ruploh
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, D-33501, Bielefeld, Germany
| | | | | | | |
Collapse
|
11
|
Ruploh T, Bischof HJ, von Engelhardt N. Adolescent social environment shapes sexual and aggressive behaviour of adult male zebra finches (Taeniopygia guttata). Behav Ecol Sociobiol 2012. [DOI: 10.1007/s00265-012-1436-y] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
12
|
Schulz KM, Molenda-Figueira HA, Sisk CL. Back to the future: The organizational-activational hypothesis adapted to puberty and adolescence. Horm Behav 2009; 55:597-604. [PMID: 19446076 PMCID: PMC2720102 DOI: 10.1016/j.yhbeh.2009.03.010] [Citation(s) in RCA: 417] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/15/2009] [Accepted: 03/17/2009] [Indexed: 11/16/2022]
Abstract
Phoenix, Goy, Gerall, and Young first proposed in 1959 the organizational-activational hypothesis of hormone-driven sex differences in brain and behavior. The original hypothesis posited that exposure to steroid hormones early in development masculinizes and defeminizes neural circuits, programming behavioral responses to hormones in adulthood. This hypothesis has inspired a multitude of experiments demonstrating that the perinatal period is a time of maximal sensitivity to gonadal steroid hormones. However, recent work from our laboratory and others demonstrates that steroid-dependent organization of behavior also occurs during adolescence, prompting a reassessment of the developmental time-frame within which organizational effects are possible. In addition, we present evidence that adolescence is part of a single protracted postnatal sensitive period for steroid-dependent organization of male mating behavior that begins perinatally and ends in late adolescence. These findings are consistent with the original formulation of the organizational/activational hypothesis, but extend our notions of what constitutes "early" development considerably. Finally, we present evidence that female behaviors also undergo steroid-dependent organization during adolescence, and that social experience modulates steroid-dependent adolescent brain and behavioral development. The implications for human adolescent development are also discussed, especially with respect to how animal models can help to elucidate the factors underlying the association between pubertal timing and adult psychopathology in humans.
Collapse
Affiliation(s)
- Kalynn M Schulz
- Department of Psychiatry and Developmental Psychobiology Program, University of Colorado, Denver Anschutz Medical Campus, Aurora, CO 80045, USA.
| | | | | |
Collapse
|
13
|
Krofczik S, Khojasteh U, de Ibarra NH, Menzel R. Adaptation of microglomerular complexes in the honeybee mushroom body lip to manipulations of behavioral maturation and sensory experience. Dev Neurobiol 2008; 68:1007-17. [PMID: 18446779 DOI: 10.1002/dneu.20640] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Worker honeybees proceed through a sequence of tasks, passing from hive and guard duties to foraging activities. The underlying neuronal changes accompanying and possibly mediating these behavioral transitions are not well understood. We studied changes in the microglomerular organization of the mushroom bodies, a brain region involved in sensory integration, learning, and memory, during adult maturation. We visualized the MB lips' microglomerular organization by applying double labeling of presynaptic projection neuron boutons and postsynaptic Kenyon cell spines, which form microglomerular complexes. Their number and density, as well as the bouton volume, were measured using 3D-based techniques. Our results show that the number of microglomerular complexes and the bouton volumes increased during maturation, independent of environmental conditions. In contrast, manipulations of behavior and sensory experience caused a decrease in the number of microglomerular complexes, but an increase in bouton volume. This may indicate an outgrowth of synaptic connections within the MB lips during honeybee maturation. Moreover, manipulations of behavioral and sensory experience led to adaptive changes, which indicate that the microglomerular organization of the MB lips is not static and determined by maturation, but rather that their organization is plastic, enabling the brain to retain its synaptic efficacy.
Collapse
Affiliation(s)
- Sabine Krofczik
- Institut für Biologie - Neurobiologie, Freie Universität Berlin, Königin-Luise Str. 28-30, 14195 Berlin, Germany
| | | | | | | |
Collapse
|
14
|
Abstract
Neural and behavioral development is characterized by two features. First, brain and behavior are organized by an interplay of genetic instruction and information from the environment. Second, the acquisition of external information is, in many cases, not a steady process. Instead, information is often acquired only for a limited time span, the sensitive period. During development, an animal may experience many of these sensitive periods, all of them needed for a distinct purpose. The basic features of such sensitive periods are described, and the neurophysiological basis of the neuronal rewiring that underlies the acquisition of early learning is discussed. An example is presented which may serve as a general scenario for early learning in sensitive periods.
Collapse
Affiliation(s)
- Hans-Joachim Bischof
- University of Bielefeld, Department of Behavioural Biology, POB 100131, 33501 Bielefeld, Germany.
| |
Collapse
|
15
|
Huchzermeyer C, Husemann P, Lieshoff C, Bischof HJ. ZENK expression in a restricted forebrain area correlates negatively with preference for an imprinted stimulus. Behav Brain Res 2006; 171:154-61. [PMID: 16678280 DOI: 10.1016/j.bbr.2006.03.034] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2005] [Revised: 03/20/2006] [Accepted: 03/27/2006] [Indexed: 02/05/2023]
Abstract
Sexual imprinting is an early learning process by which young birds acquire the characteristics of a potential sexual partner. The physiological basis of this learning process is an irreversible reduction of dendritic spines in two forebrain areas, the LNM (lateral nido-mesopallium) and the MNM (medial nido-mesopallium). The aim of the present study was to investigate whether these two brain areas are activated if the imprinted stimulus is presented to the adult bird after the end of the sensitive period. One group of zebra finch males was reared by their own parents. These birds, as adults, showed an exclusive preference for their own species in choice tests between a zebra finch and a Bengalese finch female. If exposed as adults to a zebra finch female, LNM and MNM showed lower activation, as measured by ZENK expression, compared to males exposed to a Bengalese finch female. A second group was reared by Bengalese finches and was exposed at day 100 to a zebra finch female for 1 week. As shown earlier, this regime leads to mixed choices, the birds are courting Bengalese and zebra finch females with a fixed ratio (preference score). If these birds were exposed to a zebra finch female as adults, the ZENK expression within LNM was much higher compared to group 1, and it showed a strong tendency to correlate negatively with the preference score: Birds with higher zebra finch preference showed lower activation compared to those with a low zebra finch and a high Bengalese finch preference. We propose that higher ZENK activation in group 2 is due to the rearing by a foster species which may result in a more complex neuronal network. The negative relation between activation and preference score may be explained by special properties of the LNM and MNM networks.
Collapse
|
16
|
Nordeen KW, Nordeen EJ. Synaptic and Molecular Mechanisms Regulating Plasticity during Early Learning. Ann N Y Acad Sci 2004; 1016:416-37. [PMID: 15313788 DOI: 10.1196/annals.1298.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Many behaviors are learned most easily during a discrete developmental period, and it is generally agreed that these "sensitive periods" for learning reflect the developmental regulation of molecular or synaptic properties that underlie experience-dependent changes in neural organization and function. Avian song learning provides one example of such temporally restricted learning, and several features of this behavior and its underlying neural circuitry make it a powerful model for studying how early experience sculpts neural and behavioral organization. Here we describe evidence that within the basal ganglia-thalamocortical loop implicated in vocal learning, song acquisition engages N-methyl-d-aspartate receptors (NMDARs), as well as signal transduction cascades strongly implicated in other instances of learning. Furthermore, NMDAR phenotype changes in parallel with developmental and seasonal periods for vocal plasticity. We also review recent studies in the avian song system that challenge the popular notion that sensitive periods for learning reflect developmental changes in the NMDAR that alter thresholds for synaptic plasticity.
Collapse
Affiliation(s)
- Kathy W Nordeen
- Department of Brain & Cognitive Science, University of Rochester, Rochester, NY 14627-0268, USA.
| | | |
Collapse
|
17
|
Lieshoff C, Grosse-Ophoff J, Bischof HJ. Sexual imprinting leads to lateralized and non-lateralized expression of the immediate early gene zenk in the zebra finch brain. Behav Brain Res 2004; 148:145-55. [PMID: 14684255 DOI: 10.1016/s0166-4328(03)00189-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Sexual imprinting is an early learning process by which young birds acquire the features of a potential sexual partner. The physiological basis of this learning process is an irreversible reduction of spine densities in two forebrain areas, the lateral neo- and hyperstriatum (LNH) and the medial neo- and hyperstriatum (MNH). The aim of the present study was to investigate whether the immediate early gene zenk, which has been shown frequently to play a role in plastic processes in the song system of zebra finches, may also be involved in the structural changes observed in these areas. The first exposure to a female after an isolation period enhances zenk expression in a variety of brain areas including LNH, MNH, and optic tectum. In contrast to earlier results, it was only the neostriatal part of LNH which showed an enhancement on first courtship, while exposure to a nestbox enhanced the label within the entire LNH area. Unexpectedly, the IEG expression was clearly lateralized in some layers of the optic tectum. Because lateralization occurred independent of the experimental condition, our study adds to recent results which also support the idea of a lateralized organization of the avian visual system.
Collapse
Affiliation(s)
- Carsten Lieshoff
- Lehrstuhl Verhaltensforschung, Universität Bielefeld, Postfach 100131, Bielefeld D-33501, Germany
| | | | | |
Collapse
|
18
|
Rocha AF, Massad E, Coutinho FAB. Can the human brain do quantum computing? Med Hypotheses 2004; 63:895-9. [PMID: 15488665 DOI: 10.1016/j.mehy.2004.03.044] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2003] [Accepted: 03/17/2004] [Indexed: 11/18/2022]
Abstract
The electrical membrane properties have been the key issues in the understanding of the cerebral physiology for more than almost two centuries. But, molecular neurobiology has now discovered that biochemical transactions play an important role in neuronal computations. Quantum computing (QC) is becoming a reality both from the theoretical point of view as well as from practical applications. Quantum mechanics is the most accurate description at atomic level and it lies behind all chemistry that provides the basis for biology ... maybe the magic of entanglement is also crucial for life. The purpose of the present paper is to discuss the dendrite spine as a quantum computing device, taking into account what is known about the physiology of the glutamate receptors and the cascade of biochemical transactions triggered by the glutamate binding to these receptors.
Collapse
Affiliation(s)
- A F Rocha
- School of Medicine, University of São Paulo, Lim 01 - HC FMUSP, Av. Dr. Arnaldo 455, SP 01246-903, Brazil.
| | | | | |
Collapse
|