1
|
Sharp BM, Jiang Q, Simeone X, Scholze P. Allosteric Modulation of GABA A Receptors in Rat Basolateral Amygdala Blocks Stress-Enhanced Reacquisition of Nicotine Self-Administration. ACS Pharmacol Transl Sci 2020; 3:1158-1164. [PMID: 33344894 DOI: 10.1021/acsptsci.0c00111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Indexed: 11/28/2022]
Abstract
Stress is a major determinant of relapse to smoked tobacco. In a rat model, repeated stress during abstinence from nicotine self-administration (SA) results in enhanced reacquisition of nicotine SA, which is dependent on the basolateral amygdala (BLA). We postulate that repeated stress during abstinence causes hyperexcitability of the BLA principal output neurons (PNs) due to disinhibition of the PNs from reduced inhibitory regulation by local GABAergic interneurons. To determine if enhanced GABAergic regulation of the BLA PNs can lessen the effects of stress on nicotine intake, positive allosteric modulators (PAMs) of GABAA receptors were infused into the BLA immediately prior to reacquisition of nicotine SA. Three selective PAMs [NS 16085 (binds the benzodiazepine site on α2/α3 GABAA); DCUK-OEt (binds a novel, benzodiazepine site on α1 or α5, β2 or β3, γ2 or δ GABAA); DS2 (binds exclusively to δ GABAA] with varied GABAA subunit specificities abolished the stress-induced amplification of nicotine taking during reacquisition. These studies indicate that highly selective PAMS targeting α3 or δ subunit-containing GABAA in the BLA may be effective in ameliorating the stress-induced relapse to smoked tobacco during abstinence from cigarettes.
Collapse
Affiliation(s)
- Burt M Sharp
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Qin Jiang
- Department of Genetics, Genomics and Informatics, College of Medicine, University of Tennessee Health Science Center, Memphis, Tennessee 38163, United States
| | - Xenia Simeone
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, 1090, Austria
| | - Petra Scholze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna, Vienna, 1090, Austria
| |
Collapse
|
2
|
Marzagalli R, Leggio GM, Bucolo C, Pricoco E, Keay KA, Cardile V, Castorina S, Salomone S, Drago F, Castorina A. Genetic blockade of the dopamine D3 receptor enhances hippocampal expression of PACAP and receptors and alters their cortical distribution. Neuroscience 2016; 316:279-295. [PMID: 26718601 DOI: 10.1016/j.neuroscience.2015.12.034] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Revised: 12/17/2015] [Accepted: 12/17/2015] [Indexed: 02/08/2023]
Abstract
Dopamine D3 receptors (D3Rs) are implicated in several aspects of cognition, but their role in aversive conditioning has only been marginally uncovered. Investigations have reported that blockade of D3Rs enhances the acquisition of fear memories, a phenomenon tightly linked to the neuropeptide pituitary adenylate cyclase-activating peptide (PACAP). However, the impact of D3R ablation on the PACAPergic system in regions critical for the formation of new memories remains unexplored. To address this issue, levels of PACAP and its receptors were compared in the hippocampus and cerebral cortex (CX) of mice devoid of functional D3Rs (D3R(-/-)) and wild-types (WTs) using a series of comparative immunohistochemical and biochemical analyses. Morphometric and stereological data revealed increased hippocampal area and volume in D3R(-/-) mice, and augmented neuronal density in CA1 and CA2/3 subfields. PACAP levels were increased in the hippocampus of D3R(-/-) mice. Expression of PACAP receptors was also heightened in mutant mice. In the CX, PACAP immunoreactivity (IR), was restricted to cortical layer V in WTs, but was distributed throughout layers IV-VI in D3R(-/-) mice, along with increased mRNAs, protein concentration and staining scores. Consistently, PAC1, VPAC1 and VPAC2 IRs were variably redistributed in CX, with a general upregulation in cortical layers II-IV in knockout animals. Our interpretation of these findings is that disturbed dopamine neurotransmission due to genetic D3R blockade may enhance the PACAP/PAC1-VPAC axis, a key endogenous system for the processing of fear memories. This could explain, at least in part, the facilitated acquisition and consolidation of aversive memories in D3R(-/-) mice.
Collapse
Affiliation(s)
- R Marzagalli
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania 95123, Italy
| | - G M Leggio
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - C Bucolo
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - E Pricoco
- Department G.F. Ingrassia, Azienda Ospedaliero-Universitaria "Policlinico-Vittorio Emanuele", Section of Anatomic Pathology, University of Catania, Catania, Italy
| | - K A Keay
- Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney 2006, NSW, Australia
| | - V Cardile
- Department of Biomedical and Biotechnological Sciences, Section of Physiology, University of Catania, Catania 95123, Italy
| | - S Castorina
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania 95123, Italy
| | - S Salomone
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - F Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania 95123, Italy
| | - A Castorina
- Department of Biomedical and Biotechnological Sciences, Section of Human Anatomy and Histology, University of Catania, Catania 95123, Italy; Discipline of Anatomy and Histology, School of Medical Sciences, The University of Sydney, Sydney 2006, NSW, Australia.
| |
Collapse
|
3
|
Basolateral amygdala and ventral hippocampus in stress-induced amplification of nicotine self-administration during reacquisition in rat. Psychopharmacology (Berl) 2015; 232:2741-9. [PMID: 25772339 DOI: 10.1007/s00213-015-3911-4] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 02/27/2015] [Indexed: 12/23/2022]
Abstract
RATIONALE Cigarette smoking remains the leading cause of preventable morbidity and mortality in the USA, although only 3-5 % of quitters are successful for 6-12 months. Stress during abstinence increases the likelihood of relapse to smoking. We recently reported that repeated stress during abstinence from operant nicotine self-administration (SA) amplifies the reacquisition of nicotine SA and affects the diurnal intake of nicotine in rats. Herein, we sought to identify brain regions critical for the expression of stress-enhanced nicotine SA during reacquisition. METHODS Rats acquired nicotine SA (FR5) with virtually unlimited drug access (23 h/day). During abstinence (8 day), 30 min of restraint stress was applied on days 1, 3, 5, and 7. Beginning day 8, nicotine SA was reacquired over 5 days, and basolateral amygdala (BLA) was inactivated bilaterally or disconnected from nucleus accumbens core (NAcc). Similarly, ventral hippocampus (vHP) was inactivated or disconnected from BLA. RESULTS Bilateral inactivation (muscimol + baclofen) of BLA or disconnection from NAcc abolished the stress-enhanced reacquisition of nicotine SA without affecting basal levels of nicotine SA. Similarly, bilateral inactivation of vHP or disconnection of vHP and BLA also abolished stress-enhanced reacquisition of nicotine SA. CONCLUSION BLA, vHP, and functional interactions between BLA-NAcc and vHP-BLA are required for expression of stress-enhanced nicotine SA during reacquisition. However, without stress, these functional interactions are not necessary for reexpression of nicotine SA during reacquisition. Therefore, BLA, vHP, and these regional interactions specifically mediate the effects of repeated stress on the reacquisition of nicotine SA behavior.
Collapse
|
4
|
Anderberg RH, Anefors C, Bergquist F, Nissbrandt H, Skibicka KP. Dopamine signaling in the amygdala, increased by food ingestion and GLP-1, regulates feeding behavior. Physiol Behav 2014; 136:135-44. [PMID: 24560840 DOI: 10.1016/j.physbeh.2014.02.026] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2013] [Revised: 02/07/2014] [Accepted: 02/08/2014] [Indexed: 12/11/2022]
Abstract
Mesolimbic dopamine plays a critical role in food-related reward processing and learning. The literature focuses primarily on the nucleus accumbens as the key dopaminergic target in which enhanced dopamine signaling is associated with reward. Here, we demonstrate a novel neurobiological mechanism by which dopamine transmission in the amygdala regulates food intake and reward. We show that food intake was associated with increased dopamine turnover in the amygdala. Next, we assess the impact of direct intra-amygdala D1 and D2 receptor activation on food intake and sucrose-driven progressive ratio operant conditioning in rats. Amygdala D2 receptor activation reduced food intake and operant behavior for sucrose, whereas D2 receptor blockade increased food intake but surprisingly reduced operant behavior. In contrast, D1 receptor stimulation or blockade did not alter feeding or operant conditioning for food. The glucagon-like peptide 1 (GLP-1) system, a target for type 2 diabetes treatment, in addition to regulating glucose homeostasis, also reduces food intake. We found that central GLP-1R receptor activation is associated with elevated dopamine turnover in the amygdala, and that part of the anorexic effect of GLP-1 is mediated by D2 receptor signaling in the amygdala. Our findings indicate that amygdala dopamine signaling is activated by both food intake and the anorexic brain-gut peptide GLP-1 and that amygdala D2 receptor activation is necessary and sufficient to change feeding behavior. Collectively these studies indicate a novel mechanism by which the dopamine system affects feeding-oriented behavior at the level of the amygdala.
Collapse
Affiliation(s)
- Rozita H Anderberg
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Christine Anefors
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Filip Bergquist
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Hans Nissbrandt
- Department of Pharmacology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Karolina P Skibicka
- Department of Physiology, Institute of Neuroscience and Physiology, The Sahlgrenska Academy, University of Gothenburg, Sweden.
| |
Collapse
|
5
|
Diaz MR, Jotty K, Locke JL, Jones SR, Valenzuela CF. Moderate Alcohol Exposure during the Rat Equivalent to the Third Trimester of Human Pregnancy Alters Regulation of GABAA Receptor-Mediated Synaptic Transmission by Dopamine in the Basolateral Amygdala. Front Pediatr 2014; 2:46. [PMID: 24904907 PMCID: PMC4035091 DOI: 10.3389/fped.2014.00046] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Accepted: 05/10/2014] [Indexed: 01/22/2023] Open
Abstract
Fetal ethanol (EtOH) exposure leads to a range of neurobehavioral alterations, including deficits in emotional processing. The basolateral amygdala (BLA) plays a critical role in modulating emotional processing, in part, via dopamine (DA) regulation of GABA transmission. This BLA modulatory system is acquired during the first 2 weeks of postnatal life in rodents (equivalent to the third trimester of human pregnancy) and we hypothesized that it could be altered by EtOH exposure during this period. We found that exposure of rats to moderate levels of EtOH vapor during the third trimester-equivalent [postnatal days (P) 2-12] alters DA modulation of GABAergic transmission in BLA pyramidal neurons during periadolescence. Specifically, D1R-mediated potentiation of spontaneous inhibitory postsynaptic currents (IPSCs) was significantly attenuated in EtOH-exposed animals. However, this was associated with a compensatory decrease in D3R-mediated suppression of miniature IPSCs. Western blot analysis revealed that these effects were not a result of altered D1R or D3R levels. BLA samples from EtOH-exposed animals also had significantly lower levels of the DA precursor (L-3,4-dihydroxyphenylalanine) but DA levels were not affected. This is likely a consequence of reduced catabolism of DA, as indicated by reduced levels of 3,4-dihydroxyphenylacetic acid and homovanillic acid in the BLA samples. Anxiety-like behavior was not altered in EtOH-exposed animals. This is the first study to demonstrate that the modulatory actions of DA in the BLA are altered by developmental EtOH exposure. Although compensatory adaptations were engaged in our moderate EtOH exposure paradigm, it is possible that these are not able to restore homeostasis and correct anxiety-like behaviors under conditions of heavier EtOH exposure. Therefore, future studies should investigate the potential role of alterations in the modulatory actions of DA in the pathophysiology of fetal alcohol spectrum disorders.
Collapse
Affiliation(s)
- Marvin Rafael Diaz
- Department of Neurosciences, University of New Mexico Health Sciences Center , Albuquerque, NM , USA
| | - Karick Jotty
- Department of Neurosciences, University of New Mexico Health Sciences Center , Albuquerque, NM , USA
| | - Jason L Locke
- Department of Physiology and Pharmacology, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | - Sara R Jones
- Department of Physiology and Pharmacology, Wake Forest School of Medicine , Winston-Salem, NC , USA
| | | |
Collapse
|
6
|
Quick SL, Olausson P, Addy NA, Taylor JR. Repeated nicotine exposure during adolescence alters reward-related learning in male and female rats. Behav Brain Res 2013; 261:171-6. [PMID: 24333376 DOI: 10.1016/j.bbr.2013.12.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2012] [Revised: 11/08/2013] [Accepted: 12/02/2013] [Indexed: 11/26/2022]
Abstract
RATIONALE Repeated nicotine exposure causes neuroadaptations in limbic cortico-striatal circuits involved in learning and motivation. Such alterations are relevant to addiction because they are suggested to mediate the ability of smoking-associated stimuli to control behavior and to enhance nicotine-seeking and -taking behaviors. Female smokers report higher cue reactivity relative to their male counter parts, yet little is known about putative gender-specific effects of adolescent nicotine exposure on reward-related learning. Prior repeated nicotine exposure in adult male rats enhances Pavlovian approach behavior and conditioned reinforcement. OBJECTIVE Given that smoking is typically initiated during adolescence, here we assessed the extent to which adolescent nicotine exposure impacts Pavlovian approach and conditioned reinforcement in male and female rats. METHODS Rats were injected with nicotine on postnatal days 31-45 prior to training on Pavlovian approach behavior starting on day 51. They were trained to associate a conditioned stimulus (CS), illumination of a magazine light, and tone, with an unconditioned stimulus (US), the delivery of water, for 10-daily sessions, and then were tested on the acquisition of responding with conditioned reinforcement. RESULTS Adolescent nicotine exposure selectively increased approach to the magazine during the CS in males but decreased approach to the magazine during the CS in female rats. Vehicle-exposed female rats, however, showed greater magazine approach during the CS than did male control rats. Prior nicotine exposure also enhanced conditioned reinforcement in both male and female rats. CONCLUSIONS Repeated exposure to nicotine during adolescence had opposite effects on Pavlovian approach behavior in male and female rats but enhanced acquisition of a new response with conditioned reinforcement. Novel information on how nicotine exposure influences reward-related learning during adolescence may increase our understanding of neurobiological mechanisms involved in the initiation of smoking behavior.
Collapse
Affiliation(s)
- Stacey L Quick
- Department of Psychiatry Laboratory of Molecular Psychiatry, Yale University Ribicoff Research Facilities CMHC, 34 Park St New Haven, CT 06519, United States
| | - Peter Olausson
- Department of Psychiatry Laboratory of Molecular Psychiatry, Yale University Ribicoff Research Facilities CMHC, 34 Park St New Haven, CT 06519, United States
| | - Nii A Addy
- Department of Psychiatry Laboratory of Molecular Psychiatry, Yale University Ribicoff Research Facilities CMHC, 34 Park St New Haven, CT 06519, United States
| | - Jane R Taylor
- Department of Psychiatry Laboratory of Molecular Psychiatry, Yale University Ribicoff Research Facilities CMHC, 34 Park St New Haven, CT 06519, United States.
| |
Collapse
|
7
|
Effects of sensitization on the detection of an instrumental contingency. Pharmacol Biochem Behav 2011; 100:48-58. [PMID: 21820464 DOI: 10.1016/j.pbb.2011.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 07/04/2011] [Accepted: 07/15/2011] [Indexed: 11/22/2022]
Abstract
While prior exposure to drugs of abuse permanently changes many behaviors, the underlying psychological mechanisms are relatively obscure. Here, the effects of sensitization on the detection of an action-outcome relationship were assessed, using a particularly stringent contingency degradation procedure. Rats were trained to leverpress until the probability of reinforcement for a response on one lever, or alternative reinforcement for a response on a second lever was reduced to 0.05 per second. Sensitization was then carried out (1mg/kg d-amphetamine/day for 7 days). Then, one reinforcer was also made available for a lack of response on either lever (p=0.05/s), maintaining its contiguity with the original response but eliminating its contingent relationship. Sensitized animals were more active, particularly early in the contingency degradation phase, but reduced responding directed at the degraded action-outcome contingency at a similar rate as controls. However, controls also reduced responding directed at the nondegraded contingency until very late in training, while sensitized animals maintained nondegraded responding at baseline levels. It was suggested that the relatively specific response shown by sensitized animals may reflect either improved action-outcome utilization or discrimination of relevant task features.
Collapse
|
8
|
Diaz MR, Chappell AM, Christian DT, Anderson NJ, McCool BA. Dopamine D3-like receptors modulate anxiety-like behavior and regulate GABAergic transmission in the rat lateral/basolateral amygdala. Neuropsychopharmacology 2011; 36:1090-103. [PMID: 21270771 PMCID: PMC3074203 DOI: 10.1038/npp.2010.246] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Central among the brain regions that regulate fear/anxiety behaviors is the lateral/basolateral amygdala (BLA). BLA output is tightly controlled by the relative activity of two populations of inhibitory GABAergic interneurons, local feedback cells distributed throughout the nucleus, and feedforward cells found along the lateral paracapsular border of this subdivision. Recent studies suggest that dopamine (DA) can modulate the BLA GABAergic system, thus linking fear/anxiety states with mesolimbic reward/attentional processes. However, the precise dopaminergic mechanisms regulating the activity of the two BLA GABAergic neuron populations have not been fully explored. We therefore examined the effects of DA D3-like receptors on BLA-dependent anxiety-like behavior and neurophysiology. After confirming the presence of D3-like receptors within the BLA, we found that microinjection of a D3-selective antagonist into the BLA decreased anxiety-like behavior expressed in both the light/dark transition test and the elevated plus maze. Consistent with this, we found that in vitro D3-like receptor activation selectively inhibits synaptic transmission at both BLA feedback and feedforward GABAergic interneuron populations, with no effect on glutamatergic transmission. This inhibition of GABAergic transmission is a result of a D3-like receptor-mediated, dynamin-dependent process that presumably reflects endocytosis of postsynaptic GABA(A) receptors found on principal BLA neurons. Because environmental cues alter both DA release and relative activity states of the BLA, our data strongly suggest that DA, potentially acting through D3-like receptors, may suppress the relative contribution by inhibitory processes in the BLA and modify the expression of BLA-related behaviors.
Collapse
Affiliation(s)
- Marvin R Diaz
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Ann M Chappell
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Daniel T Christian
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Nancy J Anderson
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Brian A McCool
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, USA,Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Medical Center Boulevard, Winston-Salem, NC 27157, USA. Tel: +1 336 716 8534; Fax: +1 336 716 8501; E-mail:
| |
Collapse
|
9
|
Phillips GD, Salussolia E, Hitchcott PK. Role of the mesoamygdaloid dopamine projection in emotional learning. Psychopharmacology (Berl) 2010; 210:303-16. [PMID: 20401751 DOI: 10.1007/s00213-010-1813-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2009] [Accepted: 02/22/2010] [Indexed: 11/26/2022]
Abstract
RATIONALE Amygdala dopamine is crucially involved in the acquisition of Pavlovian associations, as measured via conditioned approach to the location of the unconditioned stimulus (US). However, learning begins before skeletomotor output, so this study assessed whether amygdala dopamine is also involved in earlier 'emotional' learning. OBJECTIVES A variant of the conditioned reinforcement (CR) procedure was validated where training was restricted to curtail the development of selective conditioned approach to the US location, and effects of amygdala dopamine manipulations before training or later CR testing assessed. METHODS Experiment 1a presented a light paired (CS+ group) or unpaired (CS- group) with a US. There were 1, 2 or 10 sessions, 4 trials per session. Then, the US was removed, and two novel levers presented. One lever (CR+) presented the light, and lever pressing was recorded. Experiment 1b also included a tone stimulus. Experiment 2 applied intra-amygdala R(+) 7-OH-DPAT (10 nmol/1.0 microl/side) before two training sessions (Experiment 2a) or a CR session (Experiment 2b). RESULTS For Experiments 1a and 1b, the CS+ group preferred the CR+ lever across all sessions. Conditioned alcove approach during 1 or 2 training sessions or associated CR tests was low and nonspecific. In Experiment 2a, R(+) 7-OH-DPAT before training greatly diminished lever pressing during a subsequent CR test, preferentially on the CR+ lever. For Experiment 2b, R(+) 7-OH-DPAT infusions before the CR test also reduced lever pressing. CONCLUSIONS Manipulations of amygdala dopamine impact the earliest stage of learning in which emotional reactions may be most prevalent.
Collapse
Affiliation(s)
- Gavin D Phillips
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| | | | | |
Collapse
|
10
|
Phillips GD, Hitchcott PK. Blockade of the acquisition, but not expression, of associative learning by pre-session intra-amygdala R(+) 7-OH-DPAT. Psychopharmacology (Berl) 2009; 203:161-73. [PMID: 18949458 DOI: 10.1007/s00213-008-1382-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2008] [Accepted: 10/13/2008] [Indexed: 12/17/2022]
Abstract
RATIONALE Two issues were addressed regarding the effects of amygdala dopamine manipulations on associative learning: first, an apparent contradiction between the effects of post- vs. pre-session dopaminergic manipulations and second, the ability of dopaminergic infusions to affect association formation vs. its expression following extended training. OBJECTIVES The ability of pre-session infusions of a dopamine receptor agonist (R(+) 7-OH-DPAT) to inhibit acquisition of a conditioned approach response was examined and compared with the same manipulation following overtraining. Further experiments extended these findings. MATERIALS AND METHODS Experiment 1 infused pre-session intra-amygdala R(+) 7-OH-DPAT (0, 0.1, 1 nmol) during conditioned approach acquisition. Experiment 2 applied pre-session intra-amygdala R(+) 7-OH-DPAT (0, 0.01, 0.1, 1 nmol) during expression of the same response, once well learned. Experiment 3 required the inhibition of a conditioned approach response following unconditioned stimulus (US) removal. Experiment 4 examined the ability of animals with prior drug experience to acquire a conditioned response to a novel stimulus. RESULTS Experiments 1-3 showed that pre-session amygdala R(+) 7-OH-DPAT impaired acquisition of either excitatory or inhibitory conditioned responding, but was ineffective following overtraining. Drug-induced impairments in acquisition of a specific conditioned stimulus (CS)-US relationship continued well beyond the cessation of drug treatment, but were found not to transfer to an alternate CS in Experiment 4. CONCLUSIONS Pre-session dopamine receptor activation within the amygdala may impair the acquisition, but not expression, of CS-US associations. Enhanced learning reported earlier following post-session dopamine receptor activation may occur indirectly through reduced interference with the consolidation of recent learning.
Collapse
Affiliation(s)
- Gavin D Phillips
- Department of Psychology, University of York, Heslington, York, YO10 5DD, UK.
| | | |
Collapse
|
11
|
Blaiss CA, Janak PH. Post-training, but not post-reactivation, administration of amphetamine and anisomycin modulates Pavlovian conditioned approach. Neurobiol Learn Mem 2007; 87:644-58. [PMID: 17258476 PMCID: PMC1896137 DOI: 10.1016/j.nlm.2006.12.007] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2006] [Revised: 11/18/2006] [Accepted: 12/11/2006] [Indexed: 10/23/2022]
Abstract
The psychostimulant, amphetamine (AMPH), and the protein synthesis inhibitor, anisomycin (ANI), have been shown to modulate the consolidation and reconsolidation of several types of learning. To determine whether Pavlovian conditioned approach (PCA) is modulated in a similar manner, we examined the effects of post-training and post-reactivation administration of both AMPH and ANI on memory for PCA. Male Long-Evans rats received PCA training sessions during which presentations of a CS+ were followed by sucrose delivery. AMPH (1 mg/kg, s.c.) injected immediately but not 6h after the first training session enhanced PCA behavior. ANI (150 mg/kg, s.c.) injected immediately but not 3h after the first training session impaired PCA behavior. This impairment was not due to the development of a conditioned taste aversion. To examine whether PCA can also be modulated by post-reactivation administration of AMPH and ANI, rats were given an injection of AMPH, ANI, or vehicle immediately after a memory reactivation session. Upon testing, the behavior of both the AMPH- and the ANI-treated rats was unaffected. This result remained consistent when the experiment was repeated with changes to various behavioral parameters (i.e., amount of training, length of memory reactivation). These findings indicate that AMPH and ANI act during the post-training but not the post-reactivation period to enhance and impair, respectively, the learning of PCA. This suggests that the consolidation of PCA can be modulated in a manner comparable to other types of learned associations, but once learned, the memory appears to be relatively robust and stable.
Collapse
Affiliation(s)
- Cory A Blaiss
- Neuroscience Graduate Program, Ernest Gallo Clinic and Research Center, Department of Neurology, University of California, San Francisco, Emeryville, CA 94608, USA.
| | | |
Collapse
|
12
|
Boeckler F, Gmeiner P. The structural evolution of dopamine D3 receptor ligands: structure-activity relationships and selected neuropharmacological aspects. Pharmacol Ther 2006; 112:281-333. [PMID: 16905195 DOI: 10.1016/j.pharmthera.2006.04.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2006] [Accepted: 04/13/2006] [Indexed: 01/13/2023]
Abstract
"Evolution consists largely of molecular tinkering."-Following the famous concept of the molecular geneticist and medicine Nobel laureate François Jacob, in this review we describe the structural evolution of dopamine D3 receptor ligands from the natural agonist dopamine (DA) to highly potent and subtype selective new agents by bioisosteric tinkering with well-established and privileged or novel and fancy chemical functionalities and scaffolds. Some of the more than 200 ligands presented herein have already achieved therapeutic or scientific value up to now, some will most likely achieve it in the future. Hence, great importance is not only attached to the relationship between structure and activity of the ligands, but also to their utility as pharmacological tools in animal models or as therapeutics in patients with neurological diseases or other disorders.
Collapse
Affiliation(s)
- Frank Boeckler
- Department of Medicinal Chemistry, Emil Fischer Center, Friedrich-Alexander University Erlangen-Nürnberg, Schuhstrasse 19, 91052 Erlangen, Germany.
| | | |
Collapse
|
13
|
Blaiss CA, Janak PH. Post-training and post-reactivation administration of amphetamine enhances morphine conditioned place preference. Behav Brain Res 2006; 171:329-37. [PMID: 16698095 PMCID: PMC1592232 DOI: 10.1016/j.bbr.2006.04.018] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2005] [Revised: 04/04/2006] [Accepted: 04/11/2006] [Indexed: 11/23/2022]
Abstract
Amphetamine has been shown to enhance consolidation in a variety of memory paradigms. However, it is not known if amphetamine can modulate the consolidation of the types of context-reward associations involved in drug addiction, such as those formed in the conditioned place preference (CPP) task. Also, some types of memory exhibit a second period of lability following memory reactivation, and it is not known whether amphetamine administered during this period can modulate CPP. Our study investigated whether amphetamine can enhance morphine CPP when administered during the consolidation period or the post-reactivation period. Subjects were trained in the CPP task and injected with amphetamine or vehicle immediately or 6 h after each training session. The day after the completion of training, they were tested. Amphetamine injected immediately but not 6 h after training enhanced morphine CPP. In separate experiments, subjects were first trained in the CPP task. The day following the completion of training, subjects were given a memory reactivation session and injected with amphetamine or vehicle immediately or 6 h after reactivation. Subjects were tested the next day. Amphetamine injected immediately but not 6 h after memory reactivation enhanced morphine CPP. However, amphetamine injected without memory reactivation had no effect on the expression of morphine CPP. Our results suggest that amphetamine enhances the consolidation of morphine CPP and that morphine CPP exhibits a temporally limited period of post-reactivation lability during which the memory can be modulated.
Collapse
Affiliation(s)
- Cory A Blaiss
- Neuroscience Graduate Program, Ernest Gallo Clinic & Research Center, Department of Neurology, University of California, San Francisco, Emeryville, 94608, USA.
| | | |
Collapse
|
14
|
Schoenbaum G, Roesch MR, Stalnaker TA. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci 2006; 29:116-24. [PMID: 16406092 PMCID: PMC2430629 DOI: 10.1016/j.tins.2005.12.006] [Citation(s) in RCA: 315] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2005] [Revised: 10/21/2005] [Accepted: 12/19/2005] [Indexed: 10/25/2022]
Abstract
The orbitofrontal cortex, as a part of prefrontal cortex, is implicated in executive function. However, within this broad region, the orbitofrontal cortex is distinguished by its unique pattern of connections with crucial subcortical associative learning nodes, such as basolateral amygdala and nucleus accumbens. By virtue of these connections, the orbitofrontal cortex is uniquely positioned to use associative information to project into the future, and to use the value of perceived or expected outcomes to guide decisions. This review will discuss recent evidence that supports this proposal and will examine evidence that loss of this signal, as the result of drug-induced changes in these brain circuits, might account for the maladaptive decision-making that characterizes drug addiction.
Collapse
Affiliation(s)
- Geoffrey Schoenbaum
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2 S251, Baltimore, MD 21201, USA.
| | | | | |
Collapse
|
15
|
Tindell AJ, Berridge KC, Zhang J, Peciña S, Aldridge JW. Ventral pallidal neurons code incentive motivation: amplification by mesolimbic sensitization and amphetamine. Eur J Neurosci 2005; 22:2617-34. [PMID: 16307604 DOI: 10.1111/j.1460-9568.2005.04411.x] [Citation(s) in RCA: 132] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Neurons in ventral pallidum fire to reward and its predictive cues. We tested mesolimbic activation effects on neural reward coding. Rats learned that a Pavlovian conditioned stimulus (CS+1 tone) predicted a second conditioned stimulus (CS+2 feeder click) followed by an unconditioned stimulus (UCS sucrose reward). Some rats were sensitized to amphetamine after training. Electrophysiological activity of ventral pallidal neurons to stimuli was later recorded under the influence of vehicle or acute amphetamine injection. Both sensitization and acute amphetamine increased ventral pallidum firing at CS+2 (population code and rate code). There were no changes at CS+1 and minimal changes to UCS. With a new 'Profile Analysis', we show that mesolimbic activation by sensitization/amphetamine incrementally shifted neuronal firing profiles away from prediction signal coding (maximal at CS+1) and toward incentive coding (maximal at CS+2), without changing hedonic impact coding (maximal at UCS). This pattern suggests mesolimbic activation specifically amplifies a motivational transform of CS+ predictive information into incentive salience coded by ventral pallidal neurons. Our results support incentive-sensitization predictions and suggest why cues temporally proximal to drug presentation may precipitate cue-triggered relapse in human addicts.
Collapse
Affiliation(s)
- Amy J Tindell
- Department of Psychology, University of Michigan, Ann Arbor, MI 48109-0607, USA
| | | | | | | | | |
Collapse
|
16
|
Heidbreder CA, Gardner EL, Xi ZX, Thanos PK, Mugnaini M, Hagan JJ, Ashby CR. The role of central dopamine D3 receptors in drug addiction: a review of pharmacological evidence. ACTA ACUST UNITED AC 2005; 49:77-105. [PMID: 15960988 PMCID: PMC3732040 DOI: 10.1016/j.brainresrev.2004.12.033] [Citation(s) in RCA: 212] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2004] [Revised: 10/21/2004] [Accepted: 12/06/2004] [Indexed: 10/25/2022]
Abstract
The cDNA for the dopamine D3 receptor was isolated and characterized in 1990. Subsequent studies have indicated that D3 receptors, as well as D3 receptor mRNA, are primarily localized in limbic regions in mammals. This finding led to the postulate that D3 receptors may be involved in drug dependence and addiction. However, this hypothesis has been difficult to test due to the lack of compounds with high selectivity for central D3 receptors. The interpretation of results from studies using mixed D2/D3 agonists and/or antagonists is problematic because these agents have low selectivity for D3 over D2 receptors and it is likely that their actions are primarily related to D2 receptor antagonism and possibly interaction with other neurotransmitter receptors. Currently, with the synthesis and characterization of new highly selective D3 receptor antagonists such as SB-277011-A this difficulty has been surmounted. The purpose of the present article is to review, for the first time, the effects of various putative D3 receptor selective compounds in animal models of drug dependence and addiction. The results obtained with highly selective D3 receptor antagonists such as SB-277011-A, SB-414796, and NGB-2904 indicate that central D3 receptors may play an important role in drug-induced reward, drug-taking, and cue-, drug-, and stress-induced reinstatement of drug-seeking behavior. Provided these results can be extrapolated to human drug addicts, they suggest that selective DA D3 receptor antagonists may prove effective as potential pharmacotherapeutic agents to manage drug dependence and addiction.
Collapse
Affiliation(s)
- Christian A. Heidbreder
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy
| | - Eliot L. Gardner
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224-6823, USA
| | - Zheng-Xiong Xi
- Intramural Research Program, National Institute on Drug Abuse, National Institutes of Health, Department of Health and Human Services, Baltimore, Maryland 21224-6823, USA
| | - Panayotis K. Thanos
- Medical Department, Brookhaven National Laboratory, Upton, NY 11973-5000, USA
| | - Manolo Mugnaini
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy
| | - Jim J. Hagan
- Centre of Excellence for Drug Discovery in Psychiatry, GlaxoSmithKline Pharmaceuticals, 37135 Verona, Italy
| | - Charles R. Ashby
- Pharmaceutical Sciences Department, Saint John’s University, 8000 Utopia Parkway, Jamaica, NY 11439-0001, USA
- Corresponding author. Fax: +1 718 990 1877. (C.R. Ashby)
| |
Collapse
|
17
|
Aujla H, Beninger RJ. The dopamine D3 receptor-preferring partial agonist BP 897 dose-dependently attenuates the expression of amphetamine-conditioned place preference in rats. Behav Pharmacol 2005; 16:181-6. [PMID: 15864073 DOI: 10.1097/00008877-200505000-00007] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Previously we reported that systemic administration of the dopamine D3 receptor-preferring partial agonist BP 897 blocked the expression, but not the acquisition, of amphetamine-conditioned activity. This suggested the hypothesis that BP 897 would block the expression, but not the acquisition, of amphetamine-conditioned place preference (CPP). Thus, during preconditioning rats had access to two chambers connected by a tunnel for three 15-min sessions. During eight conditioning days with the tunnel blocked, one chamber was paired with drug administration for four 30-min sessions, alternating with pairing of the other chamber with saline administration. In a drug-free test session, time on the drug-paired side was compared to time spent there in preconditioning; a significant increase was defined as a place preference. Systemic amphetamine (2.0 mg/kg) or amphetamine+BP 897 (1.0, 2.0 mg/kg) during conditioning produced a significant place preference, while administration of BP 897 (1.0 or 2.0 but not 0.5 mg/kg) during the test blocked the amphetamine-CPP. There was no evidence that BP 897 produced a conditioned aversion. Results supported the hypothesis that BP 897 would block expression, but not acquisition, of amphetamine-CPP.
Collapse
Affiliation(s)
- H Aujla
- Department of Psychology, Queen's University, Kingston K7L 3N6, Canada
| | | |
Collapse
|
18
|
Aujla H, Beninger RJ. Intra-BLA or Intra-NAc Infusions of the Dopamine D₃ Receptor Partial Agonist, BP 897, Block Intra-NAc Amphetamine Conditioned Activity. Behav Neurosci 2004; 118:1324-30. [PMID: 15598141 DOI: 10.1037/0735-7044.118.6.1324] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent studies have shown that both systemic and intra-nucleus accumbens (NAc) or intra-amygdala administration of dopamine D3 receptor ligands modulate reward-related learning. A previous study (H. Aujla, H. Sokoloff, & R. J. Beninger. 2002) showed that systemic administration of the partial dopamine D3 receptor agonist BP 897 selectively blocked the expression, but not the acquisition, of amphetamine-conditioned activity. This suggested the hypothesis that intra-NAc or intra-basolateral amygdala (BLA) BP 897 would attenuate the expression, but not the acquisition, of amphetamine-conditioned activity. Rats were habituated to activity-monitoring chambers for 5 days, for 1 hr each day. Conditioning occurred on the next 3 days, followed by a single 1-hr test session. Intra-NAc or intra-BLA infusions of BP 897 during test, but not during conditioning, attenuated intra-NAc amphetamine conditioned activity. Results indicate that the ability of BP 897 to attenuate the expression of conditioned activity is mediated in part by the NAc and BLA.
Collapse
Affiliation(s)
- Harinder Aujla
- Department of Psychology, Queen's University, Kingston, Ontario, Canada.
| | | |
Collapse
|
19
|
Schoenbaum G, Setlow B. Cocaine makes actions insensitive to outcomes but not extinction: implications for altered orbitofrontal-amygdalar function. ACTA ACUST UNITED AC 2004; 15:1162-9. [PMID: 15563719 DOI: 10.1093/cercor/bhh216] [Citation(s) in RCA: 127] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Addiction is characterized by persistent drug-seeking despite adverse consequences or outcomes. Such persistent behavior may result from drug-induced brain changes that increase the control of behavior by associations between antecedent cues and responses. However, it is equally plausible that brain changes cause a decrease in the control of behavior by the value of likely outcomes. To test whether drug exposure can cause persistent behavior, and to distinguish between these two accounts of such behavior, we tested cocaine-experienced rats in a Pavlovian 'reinforcer devaluation' task, which provides independent assessments of the control of behavior by antecedent cues and outcome representations. We found that cocaine exposure caused persistent responding in this setting a month after the last drug treatment, and that this deficit resulted from an inability to use representations of outcome value to guide behavior rather than from changes in stimulus-response learning or response inhibition.
Collapse
Affiliation(s)
- Geoffrey Schoenbaum
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, HSF-2 S251, Baltimore, MD 21201, USA.
| | | |
Collapse
|
20
|
Persistent cue-evoked activity of accumbens neurons after prolonged abstinence from self-administered cocaine. J Neurosci 2003. [PMID: 12917356 DOI: 10.1523/jneurosci.23-19-07239.2003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Persistent neural processing of information regarding drug-predictive environmental stimuli may be involved in motivating drug abusers to engage in drug seeking after abstinence. The addictive effects of various drugs depend on the mesocorticolimbic dopamine system innervating the nucleus accumbens. We used single-unit recording in rats to test whether accumbens neurons exhibit responses to a discriminative stimulus (SD) tone previously paired with cocaine availability during cocaine self-administration. Presentation of the tone after 3-4 weeks of abstinence resulted in a cue-induced relapse of drug seeking under extinction conditions. Accumbens neurons did not exhibit tone-evoked activity before cocaine self-administration training but exhibited significant SD tone-evoked activity during extinction. Under extinction conditions, shell neurons exhibited significantly greater activity evoked by the SD tone than that evoked by a neutral tone (i.e., never paired with reinforcement). In contrast, core neurons responded indiscriminately to presentations of the SD tone or the neutral tone. Accumbens shell neurons exhibited significantly greater SD tone-evoked activity than did accumbens core neurons. Although the onset of SD tone-evoked activity occurred well before the earliest movements commenced (150 msec), this activity often persisted beyond the onset of tone-evoked movements. These results indicate that accumbens shell neurons exhibit persistent processing of information regarding reward-related stimuli after prolonged drug abstinence. Moreover, the accumbens shell appears to be involved in discriminating the motivational value of reward-related associative stimuli, whereas the accumbens core does not.
Collapse
|
21
|
Olausson P, Jentsch JD, Taylor JR. Repeated nicotine exposure enhances reward-related learning in the rat. Neuropsychopharmacology 2003; 28:1264-71. [PMID: 12700688 DOI: 10.1038/sj.npp.1300173] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Repeated exposure to addictive drugs causes neuroadaptive changes in cortico-limbic-striatal circuits that may underlie alterations in incentive-motivational processes and reward-related learning. Such drug-induced alterations may be relevant to drug addiction because enhanced incentive motivation and increased control over behavior by drug-associated stimuli may contribute to aspects of compulsive drug-seeking and drug-taking behaviors. This study investigated the consequences of repeated nicotine treatment on the acquisition and performance of Pavlovian discriminative approach behavior, a measure of reward-related learning, in male rats. Water-restricted rats were trained to associate a compound conditioned stimulus (tone+light) with the availability of water (the unconditioned stimulus) in 15 consecutive daily sessions. In separate experiments, rats were repeatedly treated with nicotine (0.35 mg/kg, s.c.) either (1) prior to the onset of training, (2) after each daily training session was completed (ie postsession injections), or (3) received nicotine both before the onset of training as well as after each daily training session. In this study, all nicotine treatment schedules increased Pavlovian discriminative approach behavior and, thus, prior repeated exposure to nicotine, repeated postsession nicotine injections, or both, facilitated reward-related learning.
Collapse
Affiliation(s)
- Peter Olausson
- Department of Psychiatry, Laboratory of Molecular Psychiatry, Yale University, New Haven, CT, USA
| | | | | |
Collapse
|
22
|
Phillips GD, Harmer CJ, Hitchcott PK. Isolation rearing-induced facilitation of Pavlovian learning: abolition by postsession intra-amygdala nafadotride. Physiol Behav 2002; 76:677-84. [PMID: 12127008 DOI: 10.1016/s0031-9384(02)00802-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
It has been shown previously in this laboratory that rats reared in social isolation acquire a Pavlovian-conditioned approach task much more rapidly than their respective controls. This study assessed the involvement specifically of the mesoamygdaloid dopamine pathway in this facilitated learning of isolates. Thus, animals were required to associate arbitrary stimuli with a pulsed light stimulus (unconditioned stimulus, US). The US, while without biological significance, was nevertheless capable of eliciting an intrinsic and sustained alerting response. Procedures ensured that the arbitrary stimuli (tone or clicker) did not elicit a response in the first instance, and were presented either paired (CS+) or unpaired (CS-) with the US. Isolates and socially reared controls received intra-amygdala infusions of the D3 dopamine receptor antagonist, L-nafadotride, or vehicle immediately following the end of each training session. The conditioned response increased over sessions in both groups of vehicle-infused rats during presentations of the CS+ stimulus, but not CS-, and isolates acquired this association more rapidly than controls. However, acquisition of this association was abolished by postsession intra-amygdala L-nafadotride. Responding to the US was largely unaffected by drug or rearing conditions. Hence, these data provide strong evidence for the specific involvement of the mesoamygdaloid dopamine projection in the facilitation of associative learning by isolation rearing.
Collapse
Affiliation(s)
- Gavin D Phillips
- Department of Psychology, University of York, Heslington, York YO10 5DD, UK.
| | | | | |
Collapse
|