1
|
Ma Y, Xu Y, Tang K. Olfactory perception complexity induced by key odorants perceptual interactions of alcoholic beverages: Wine as a focus case example. Food Chem 2025; 463:141433. [PMID: 39362100 DOI: 10.1016/j.foodchem.2024.141433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/30/2024] [Accepted: 09/23/2024] [Indexed: 10/05/2024]
Abstract
The odorants in alcoholic beverages are frequently experienced as complex mixtures, and there is a complex array of influence factors and interactions involved during consumption that deeply increase its olfactory perception complexity, especially the complexity induced by perceptual interactions between different odorants. In this review, the effect of olfactory perceptual interactions and other factors related to the complexity of olfactory perception of alcoholic beverages are discussed. The classification, influencing factors, and mechanisms of olfactory perceptual interactions are outlined. Recent research progress as well as the methodologies applied in these studies on perceptual interactions between odorants observed in representative alcoholic beverages, especially wine, are briefly summarized. In the future, unified theory or systematic research methodology need to be established, since up to now, the rules of perceptual interaction between multiple odorants, which is critical to the alcoholic beverage industry to improve the flavor of their products, are still not revealed.
Collapse
Affiliation(s)
- Yue Ma
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Yan Xu
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| | - Ke Tang
- Lab of Brewing Microbiology and Applied Enzymology, School of Biotechnology and Key Laboratory of Industrial Biotechnology of Ministry of Education, Jiangnan University, Wuxi 214122, PR China; China Key Laboratory of microbiomics and Eco-brewing Technology for Light Industry, Key Laboratory of Industrial Biotechnology of Ministry of Education, State Key Laboratory of Food Science and Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214122, PR China.
| |
Collapse
|
2
|
Yuan W, Yu G, Zhu G, Yi F. Characterization of perceptual interactions among aroma compounds found in Rose damascena and Angelica dahurica root essential oil with threshold, S-curve, σ-τ plot and molecular docking. Food Res Int 2025; 200:115447. [PMID: 39779078 DOI: 10.1016/j.foodres.2024.115447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/10/2024] [Accepted: 11/26/2024] [Indexed: 01/11/2025]
Abstract
The study investigated the perceptual interaction between two types of Rose damascena essential oil and two types of Angelica dahurica root essential oil. Using gas chromatography-olfactometer (GC-O) and gas chromatography-mass spectrometer (GC-MS), 24 and 25 aromatic compounds in Rose damascena essential oil and Angelica dahurica root essential oil were identified and quantified, respectively. Based on flavor dilution (FD) values and odor activity values (OAVs), 10 important aroma compounds in Rose damascena essential oil and 6 in Angelica dahurica root essential oil were identified. The perceptual interactions between these aroma compounds were explored by using the threshold method, S-curve, and σ-τ plot. Additionally, molecular docking analysis revealed changes in binding energy and binding sites. Notably, when aroma compounds shared similar structures and fragrances, they exhibited additive or synergistic effects. Conversely, dissimilar compounds showed different interactions. The molecular docking results aligned with our experimental findings. Overall, our study demonstrates that the threshold method, S-curve, σ-τ plot, and molecular docking enhance our understanding of aroma compound perceptual interactions between Rose damascena essential oil and Angelica dahurica root essential oil. These insights provide a theoretical foundation and practical guidance for improving the aroma of Angelica dahurica root essential oil and studying perceptual interactions among essential oils.
Collapse
Affiliation(s)
- Weijian Yuan
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Genfa Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China
| | - Guangyong Zhu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| | - Fengping Yi
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai 201418, China.
| |
Collapse
|
3
|
Li H, Lee C, Kay LM. Testing effects of trigeminal stimulation on binary odor mixture quality in rats. Front Neurosci 2023; 17:1059741. [PMID: 36960175 PMCID: PMC10027748 DOI: 10.3389/fnins.2023.1059741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 02/16/2023] [Indexed: 03/09/2023] Open
Abstract
Prior attempts at forming theoretical predictions regarding the quality of binary odor mixtures have failed to find any consistent predictor for overshadowing of one component in a binary mixture by the other. We test here the hypothesis that trigeminality contributes to overshadowing effects in binary mixture perception. Most odorants stimulate the trigeminal nerve in the nasal sensory epithelium. In the current study we test rats' ability to detect component odorants in four binary odor sets chosen for their relative trigeminality. We predicted that the difference in trigeminal intensity would predict the degree of overshadowing by boosting or suppressing perceptual intensity of these odorants during learning or during mixture perception. We used a two-alternative choice (TAC) task in which rats were trained to recognize the two components of each mixture and tested on a range of mixtures of the two without reinforcement. We found that even though odorant concentrations were adjusted to balance volatility, all odor sets produced asymmetric psychometric curves. Odor pairs with the greatest difference in trigeminality showed overshadowing by the odorant with weaker trigeminal properties. Odor sets with more evenly matched trigeminal properties also showed asymmetry that was not predicted by either small differences in volatility or trigeminality. Thus, trigeminal properties may influence overshadowing in odor mixtures, but other factors are also likely involved. These mixed results further support the need to test each odor mixture to determine its odor quality and underscore recent results at the level of olfactory receptor neurons that show massive and unpredictable inhibition among odorants in complex mixtures.
Collapse
Affiliation(s)
- Huibo Li
- Department of Psychology, The University of Chicago, Chicago, IL, United States
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, United States
| | - Clara Lee
- The College, The University of Chicago, Chicago, IL, United States
| | - Leslie M. Kay
- Department of Psychology, The University of Chicago, Chicago, IL, United States
- Institute for Mind and Biology, The University of Chicago, Chicago, IL, United States
- The College, The University of Chicago, Chicago, IL, United States
- *Correspondence: Leslie M. Kay,
| |
Collapse
|
4
|
Concha AR, Guest CM, Harris R, Pike TW, Feugier A, Zulch H, Mills DS. Canine Olfactory Thresholds to Amyl Acetate in a Biomedical Detection Scenario. Front Vet Sci 2019; 5:345. [PMID: 30723722 PMCID: PMC6350102 DOI: 10.3389/fvets.2018.00345] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 12/27/2018] [Indexed: 12/13/2022] Open
Abstract
Dogs' abilities to respond to concentrations of odorant molecules are generally deemed superior to electronic sensors. This sensitivity has been used traditionally in many areas; but is a more recent innovation within the medical field. As a bio-detection sensor for human diseases such as cancer and infections, dogs often need to detect volatile organic compounds in bodily fluids such as urine and blood. Although the limits of olfactory sensitivity in dogs have been studied since the 1960s, there is a gap in our knowledge concerning these limits in relation to the concentration of odorants presented in a fluid phase. Therefore, the aim of this study was to estimate olfactory detection thresholds to an inert substance, amyl acetate presented in a liquid phase. Ten dogs were trained in a “Go/No go” single scent-detection task using an eight-choice carousel apparatus. They were trained to respond to the presence of solutions of amyl acetate diluted to varying degrees in mineral oil by sitting in front of the positive sample, and not responding to the 7 other control samples. Training and testing took place in an indoor room with the same handler throughout using a food reward. After 30 weeks of training, using a forward chaining technique, dogs were tested for their sensitivity. The handler did not assist the dog during the search and was blind to the concentration of amyl acetate tested and the position of the target in the carousel. The global olfactory threshold trend for each dog was estimated by fitting a least-squares logistic curve to the association between the proportion of true positives and amyl acetate concentration. Results show an olfactory detection threshold for fluid mixtures ranging from 40 parts per billion to 1.5 parts per trillion. There was considerable inter-dog difference in sensitivity, even though all dogs were trained in the same way and worked without the assistance of the handler. This variation highlights factors to be considered in future work assessing olfactory detection performance by dogs.
Collapse
Affiliation(s)
- Astrid R Concha
- Animal Scent Detection Consultancy and Research, Santiago, Chile.,School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | | | - Rob Harris
- Medical Detection Dogs, Milton Keynes, United Kingdom
| | - Thomas W Pike
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom
| | | | - Helen Zulch
- School of Life Sciences, University of Lincoln, Lincoln, United Kingdom.,Dog Trust, London, United Kingdom
| | | |
Collapse
|
5
|
Abraham MH, Gola JMR, Cometto-Muñiz JE. An assessment of air quality reflecting the chemosensory irritation impact of mixtures of volatile organic compounds. ENVIRONMENT INTERNATIONAL 2016; 86:84-91. [PMID: 26550706 DOI: 10.1016/j.envint.2015.07.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 07/03/2015] [Accepted: 07/06/2015] [Indexed: 06/05/2023]
Abstract
We present a method to assess the air quality of an environment based on the chemosensory irritation impact of mixtures of volatile organic compounds (VOCs) present in such environment. We begin by approximating the sigmoid function that characterizes psychometric plots of probability of irritation detection (Q) versus VOC vapor concentration to a linear function. First, we apply an established equation that correlates and predicts human sensory irritation thresholds (SIT) (i.e., nasal and eye irritation) based on the transfer of the VOC from the gas phase to biophases, e.g., nasal mucus and tear film. Second, we expand the equation to include other biological data (e.g., odor detection thresholds) and to include further VOCs that act mainly by "specific" effects rather than by transfer (i.e., "physical") effects as defined in the article. Then we show that, for 72 VOCs in common, Q values based on our calculated SITs are consistent with the Threshold Limit Values (TLVs) listed for those same VOCs on the basis of sensory irritation by the American Conference of Governmental Industrial Hygienists (ACGIH). Third, we set two equations to calculate the probability (Qmix) that a given air sample containing a number of VOCs could elicit chemosensory irritation: one equation based on response addition (Qmix scale: 0.00 to 1.00) and the other based on dose addition (1000*Qmix scale: 0 to 2000). We further validate the applicability of our air quality assessment method by showing that both Qmix scales provide values consistent with the expected sensory irritation burden from VOC mixtures present in a wide variety of indoor and outdoor environments as reported on field studies in the literature. These scales take into account both the concentration of VOCs at a particular site and the propensity of the VOCs to evoke sensory irritation.
Collapse
Affiliation(s)
- Michael H Abraham
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK.
| | - Joelle M R Gola
- Department of Chemistry, University College London, 20 Gordon Street, London WC1H OAJ, UK
| | | |
Collapse
|
6
|
Cometto-Muñiz JE, Abraham MH. Dose-Response Functions for the Olfactory, Nasal Trigeminal, and Ocular Trigeminal Detectability of Airborne Chemicals by Humans. Chem Senses 2015; 41:3-14. [PMID: 26476441 DOI: 10.1093/chemse/bjv060] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
We gathered from the literature 47 odor and 37 trigeminal (nasal and ocular) chemesthetic psychometric (i.e., detectability or dose-response) functions from a group of 41 chemicals. Vapors delivered were quantified by analytical methods. All functions were very well fitted by the sigmoid (logistic) equation: y = 1 / (1 + e({-(x-C)/D})), where parameter C quantifies the detection threshold concentration and parameter D the steepness of the function. Odor and chemesthetic functions showed no concentration overlap: olfactory functions grew along the parts per billion (ppb by volume) range or lower, whereas trigeminal functions grew along the part per million (ppm by volume) range. Although, on average, odor detectability rose from chance detection to perfect detection within 2 orders of magnitude in concentration, chemesthetic detectability did it within one. For 16 compounds having at least 1 odor and 1 chemesthetic function, the average gap between the 2 functions was 4.6 orders of magnitude in concentration. A quantitative structure-activity relationship (QSAR) using 5 chemical descriptors that had previously described stand-alone odor and chemesthetic threshold values, also holds promise to describe, and eventually predict, olfactory and chemesthetic detectability functions, albeit functions from additional compounds are needed to strengthen the QSAR.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- University of California-San Diego, 8950 Villa La Jolla Drive, Suite C135, La Jolla, CA 92037, USA and
| | | |
Collapse
|
7
|
Abstract
To investigate more about the interaction of mixing odorants, a series of sensory tests were conducted using five ketones [butanone (Bu), 2-Pentanone (Pe), 2-Hexanone (Hex), 2-Heptanone (Hep), 2-Octanone (Oc)] at varying concentration levels. The determination of odor threshold (OT) was initially conducted by the triangle odor bag method (GB/T 14675, China). The odor activity values (OAVs) of individual odorants at a wide range of concentrations were derived from concentration-to-odor threshold ratios. The resulting data were then evaluated to define the empirical relationship for each ketone between the OAV and odor intensity (OI) scaling. Based on the relationships defined for each individual ketone, the OI values were estimated for a synthetic mixture of five ketones. The effect of mixing was then examined by assessing those estimated OI values with the actually measured OI values. The overall results of this study confirmed that the OI values of the synthetic mixture is not governed by the common theoretical basis (e.g., rule of additivity, synergism, or a stronger component model) but is best represented by the averaged contribution of all ketone components. Thus, the odor intensity (OI) of a given mixture sample containing odorants with similar chemical properties can be accessed through the conversion from its concentration value with the application of empirical equations instead of direct measurement by the human test panel.
Collapse
|
8
|
Abstract
Exhaustive odour impact assessment should involve the evaluation of the impact of odours directly on citizens. For this purpose it might be useful to have an instrument capable of continuously monitoring ambient air quality, detecting the presence of odours and also recognizing their provenance. This paper discusses the laboratory and field tests conducted in order to evaluate the performance of a new electronic nose, specifically developed for monitoring environmental odours. The laboratory tests proved the instrument was able to discriminate between the different pure substances being tested, and to estimate the odour concentrations giving correlation indexes (R2) of 0.99 and errors below 15%. Finally, the experimental monitoring tests conducted in the field, allowed us to verify the effectiveness of this electronic nose for the continuous detection of odours in ambient air, proving its stability to variable atmospheric conditions and its capability to detect odour peaks.
Collapse
|
9
|
YODER WENDYM, CURRLIN SETHW, LARUE ALLISON, FERNANDEZ KRISTINAM, KING DAJIA, SMITH DAVIDW. INTERACTION OF GUAIACOL AND METHYL SALICYLATE IN BINARY MIXTURE SIGNIFICANTLY LOWERS PERCEPTUAL THRESHOLD IN HUMAN OBSERVERS. J SENS STUD 2012. [DOI: 10.1111/j.1745-459x.2012.00378.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
10
|
Effect of functional group and carbon chain length on the odor detection threshold of aliphatic compounds. SENSORS 2012; 12:4105-12. [PMID: 22666021 PMCID: PMC3355402 DOI: 10.3390/s120404105] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/30/2012] [Revised: 03/20/2012] [Accepted: 03/22/2012] [Indexed: 11/17/2022]
Abstract
Odor detection thresholds (ODTs) are used for assessing outdoor and indoor air quality. They are obtained experimentally by olfactometry and psychophysical methods, and large compilations are available in the literature. A non-linear regression equation was fitted to describe the ODT variability of 114 aliphatic compounds based on the alkyl chain length for different homologous series (carboxylic acids, aldehydes, 2-ketones, esters, 1-alcohols, amines, thiols, thioethers and hydrocarbons). The resulting equation reveals an effect of the functional group, molecular size and also an interaction between both factors. Although the mechanistic interpretation of results is uncertain, the relatively high goodness-of-fit (R2 = 0.90) suggests that ODT values of aliphatic compounds can be predicted rather accurately, which is not the case for rigid molecules. This equation may serve as a basis for the development of more complex ODT models taking into account diverse structural features of odorants. The variability of power-law exponents was also investigated for the homologous series.
Collapse
|
11
|
Chaput MA, El Mountassir F, Atanasova B, Thomas-Danguin T, Le Bon AM, Perrut A, Ferry B, Duchamp-Viret P. Interactions of odorants with olfactory receptors and receptor neurons match the perceptual dynamics observed for woody and fruity odorant mixtures. Eur J Neurosci 2012; 35:584-97. [PMID: 22304504 DOI: 10.1111/j.1460-9568.2011.07976.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The present study aimed to create a direct bridge between observations on peripheral and central responses to odorant mixtures and their components. Three experiments were performed using mixtures of fruity (isoamyl acetate; ISO) and woody (whiskey lactone; WL) odorants known to contribute to some of the major notes in Burgundy red wine. These experiments consisted of (i) calcium imaging of human embryonic kidney cells (HEK293T) transfected with olfactory receptors (ORs); (ii) single-unit electrophysiological recordings from olfactory receptor neurons (ORNs) and analyses of electro-olfactogram (EOG) responses in the rat nose in vivo; and (iii) psychophysical measurements of the perceived intensity of the mixtures as rated by human subjects. The calcium imaging and electrophysiological results revealed that ISO and WL can act simultaneously on single ORs or ORNs and confirm that receptor responses to mixtures are not the result of a simple sum of the effects of the individual mixture compounds. The addition of WL to ISO principally suppressed the ORN activation induced by ISO alone and was found to enhance this activation in a subset of cases. In the human studies, the addition of high concentrations of WL to ISO decreased the perceived intensity of the ISO. In contrast, the addition of low concentrations of WL enhanced the perceived intensity of the fruity note (ISO) in this mixture, as it enhanced EOG responses in ORNs. Thus, both OR and ORN responses to ISO + WL mixtures faithfully reflected perceptual response changes, so the odour mixture information is set up after the peripheral stage of the olfactory system.
Collapse
Affiliation(s)
- M A Chaput
- UMR 5292, Centre de recherche en neurosciences de Lyon, Université de Lyon, CNRS, INSERM, 50 avenue Tony Garnier, F-69366 Lyon, France.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Marks LE, Veldhuizen MG, Shepard TG, Shavit AY. Detecting gustatory-olfactory flavor mixtures: models of probability summation. Chem Senses 2011; 37:263-77. [PMID: 22075720 DOI: 10.1093/chemse/bjr103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Odorants and flavorants typically contain many components. It is generally easier to detect multicomponent stimuli than to detect a single component, through either neural integration or probability summation (PS) (or both). PS assumes that the sensory effects of 2 (or more) stimulus components (e.g., gustatory and olfactory components of a flavorant) are detected in statistically independent channels, that each channel makes a separate decision whether a component is detected, and that the behavioral response depends solely on the separate decisions. Models of PS traditionally assume high thresholds for detecting each component, noise being irrelevant. The core assumptions may be adapted, however, to signal-detection theory, where noise limits detection. The present article derives predictions of high-threshold and signal-detection models of independent-decision PS in detecting gustatory-olfactory flavorants, comparing predictions in yes/no and 2-alternative forced-choice tasks using blocked and intermixed stimulus designs. The models also extend to measures of response times to suprathreshold flavorants. Predictions derived from high-threshold and signal-detection models differ markedly. Available empirical evidence on gustatory-olfactory flavor detection suggests that neither the high-threshold nor the signal-detection versions of PS can readily account for the results, which likely reflect neural integration in the flavor system.
Collapse
|
13
|
Ferreira V. Revisiting psychophysical work on the quantitative and qualitative odour properties of simple odour mixtures: a flavour chemistry view. Part 1: intensity and detectability. A review. FLAVOUR FRAG J 2011. [DOI: 10.1002/ffj.2090] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Vicente Ferreira
- Laboratory for Aroma Analysis and Enology, Aragón Institute of Engineering Research (I3A); Department of Analytical Chemistry, Faculty of Sciences; University of Zaragoza; 50009; Zaragoza; Spain
| |
Collapse
|
14
|
Kim KH. The averaging effect of odorant mixing as determined by air dilution sensory tests: a case study on reduced sulfur compounds. SENSORS 2011; 11:1405-17. [PMID: 22319360 PMCID: PMC3274054 DOI: 10.3390/s110201405] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2010] [Revised: 01/05/2011] [Accepted: 01/20/2011] [Indexed: 11/16/2022]
Abstract
To learn more about the effects of mixing different odorants, a series of air dilution sensory (ADS) tests were conducted using four reduced sulfur compounds [RSC: hydrogen sulfide (H2S), methanethiol (CH3SH), dimethylsulfide (DMS), and dimethyldisulfide (DMDS)] at varying concentration levels. The tests were initially conducted by analyzing samples containing single individual RSCs at a wide range of concentrations. The resulting data were then evaluated to define the empirical relationship for each RSC between the dilution-to-threshold (D/T) ratio and odor intensity (OI) scaling. Based on the relationships defined for each individual RSC, the D/T ratios were estimated for a synthetic mixture of four RSCs. The effect of mixing was then examined by assessing the relative contribution of each RSC to those estimates with the aid of the actually measured D/T values. This stepwise test confirmed that the odor intensity of the synthetic mixture is not governed by the common theoretical basis (e.g., rule of additivity, synergism, or a stronger component model) but is best represented by the averaged contribution of all RSC components. The overall results of this study thus suggest that the mixing phenomenon between odorants with similar chemical properties (like RSC family) can be characterized by the averaging effect of all participants.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Atmospheric Environment Laboratory, Department of Environment & Energy, Sejong University, Seoul 143-747, Korea.
| |
Collapse
|
15
|
Tang KT, Lin YS, Shyu JM. A local weighted nearest neighbor algorithm and a weighted and constrained least-squared method for mixed odor analysis by electronic nose systems. SENSORS (BASEL, SWITZERLAND) 2010; 10:10467-83. [PMID: 22163481 PMCID: PMC3231012 DOI: 10.3390/s101110467] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2010] [Revised: 11/11/2010] [Accepted: 11/15/2010] [Indexed: 11/16/2022]
Abstract
A great deal of work has been done to develop techniques for odor analysis by electronic nose systems. These analyses mostly focus on identifying a particular odor by comparing with a known odor dataset. However, in many situations, it would be more practical if each individual odorant could be determined directly. This paper proposes two methods for such odor components analysis for electronic nose systems. First, a K-nearest neighbor (KNN)-based local weighted nearest neighbor (LWNN) algorithm is proposed to determine the components of an odor. According to the component analysis, the odor training data is firstly categorized into several groups, each of which is represented by its centroid. The examined odor is then classified as the class of the nearest centroid. The distance between the examined odor and the centroid is calculated based on a weighting scheme, which captures the local structure of each predefined group. To further determine the concentration of each component, odor models are built by regressions. Then, a weighted and constrained least-squares (WCLS) method is proposed to estimate the component concentrations. Experiments were carried out to assess the effectiveness of the proposed methods. The LWNN algorithm is able to classify mixed odors with different mixing ratios, while the WCLS method can provide good estimates on component concentrations.
Collapse
Affiliation(s)
- Kea-Tiong Tang
- Department of Electrical Engineering, National Tsing Hua University / No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan
| | - Yi-Shan Lin
- Department of Computer Science, National Tsing Hua University / No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; E-Mails: (Y.-S.L.); (J.-M.S.)
| | - Jyuo-Min Shyu
- Department of Computer Science, National Tsing Hua University / No. 101, Sec. 2, Kuang-Fu Road, Hsinchu, 30013, Taiwan; E-Mails: (Y.-S.L.); (J.-M.S.)
| |
Collapse
|
16
|
Kim KH. Experimental demonstration of masking phenomena between competing odorants via an air dilution sensory test. SENSORS 2010; 10:7287-302. [PMID: 22163603 PMCID: PMC3231180 DOI: 10.3390/s100807287] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Revised: 07/08/2010] [Accepted: 07/22/2010] [Indexed: 11/16/2022]
Abstract
To simulate the occurrence of masking phenomena with the aid of an air dilution sensory (ads) test, two types of odorant mixtures were prepared: (1) M(2) with two individual odorants [H(2)S and acetaldehyde (AA)] and (2) M(6) with six individual odorants (H(2)S and five aldehydes). The test results derived for samples containing single individual odorants at a wide range of concentrations are initially used to define the empirical relationship between the dilution-to-threshold (D/T) ratio and odor intensity (OI) scaling. Based on these relationships, the D/T ratios were estimated for each odorant with the same intensity as the synthetic mixture. The relative contribution of each odorant to such mixture is then assessed by comparing the estimated and measured D/T values. This stepwise test confirmed the dominance of certain compounds at a given OI rating. In the case of M(2), H(2)S showed sensitive detection at high OI range, while AA did so at low end. The pattern of a competing relationship is also seen consistently from M(6) between AA (low) and iso-valeraldehyde (IA: high OI range). The overall results thus suggest that the masking phenomena between strong odorants should proceed under competing relationships, if released at the same time.
Collapse
Affiliation(s)
- Ki-Hyun Kim
- Atmospheric Environment Laboratory, Department of Environment & Energy, Sejong University, Seoul, 143-747 Korea.
| |
Collapse
|
17
|
Miyazawa T, Gallagher M, Preti G, Wise PM. Psychometric functions for ternary odor mixtures and their unmixed components. Chem Senses 2009; 34:753-61. [PMID: 19773409 DOI: 10.1093/chemse/bjp062] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
People are often able to reliably detect a mixture of 2 or more odorants, even if they cannot reliably detect the individual mixture components when presented individually. This phenomenon has been called mixture agonism. However, for some mixtures, agonism among mixture components is greater in barely detectable mixtures than in more easily detectable mixtures (level dependence). Most studies that have used rigorous methods have focused on simple, 2-component (binary) mixtures. The current work takes the next logical step to study detection of 3-component (ternary) mixtures. Psychometric functions were measured for 5 unmixed compounds and for 3 ternary mixtures of these compounds (2 of 5, forced-choice method). Experimenters used air dilution olfactometry to precisely control the duration and concentration of stimuli and used gas chromatography/mass spectrometry to verify vapor-phase concentrations. For 2 of the 3 mixtures, agonism was approximately additive in general agreement with similar work on binary mixtures. A third mixture was no more detectable than the most detectable component, demonstrating a lack of agonism. None of the 3 mixtures showed evidence of level dependence. Agonism may be common in ternary mixtures, but general rules of mixture interaction have yet to emerge. For now, detection of any mixture must be measured empirically.
Collapse
Affiliation(s)
- Toshio Miyazawa
- Flavor System & Technology Laboratory, R&D Control Division, Ogawa & Co., Ltd, 15-7 Chidori Urayashu-shi, Chiba 279-0032, Japan
| | | | | | | |
Collapse
|
18
|
The Impact of Subthreshold Carboxylic Acids on the Odor Intensity of Suprathreshold Flavor Compounds. CHEMOSENS PERCEPT 2008. [DOI: 10.1007/s12078-008-9019-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
19
|
Miyazawa T, Gallagher M, Preti G, Wise PM. Synergistic mixture interactions in detection of perithreshold odors by humans. Chem Senses 2008; 33:363-9. [PMID: 18283044 DOI: 10.1093/chemse/bjn004] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Laboratory demonstrations of synergistic mixture interactions in human odor perception have been rare. The current study examined perithreshold mixture interactions between maple lactone (ML) and selected carboxylic acids. An air-dilution olfactometer allowed precise stimulus control. Experimenters measured stimulus concentrations in vapor phase using a combination of solid-phase microextraction and gas chromatography/mass spectrometry. A probability of detection versus concentration, or a psychometric, functions was measured for pure ML. Psychometric functions were also measured for ML with the addition of fixed, subthreshold concentrations of carboxylic acids. Relative to statistical independence in detection, clear synergy occurred over a range of ML concentrations. To the best of our knowledge, the current results constitute the first clear demonstration of synergy in odor detection by humans from an experiment that combined precise stimulus control, vapor-phase calibration of stimuli, and a clear statistical definition of synergy.
Collapse
Affiliation(s)
- Toshio Miyazawa
- Flavor System & Technology Laboratory, R&D Control Division, Ogawa & Co. Ltd, 15-7 Chidori Urayashu-shi, Chiba 279-0032, Japan
| | | | | | | |
Collapse
|
20
|
Cometto-Muñiz JE, Abraham MH. Human olfactory detection of homologous n-alcohols measured via concentration-response functions. Pharmacol Biochem Behav 2008; 89:279-91. [PMID: 18258288 DOI: 10.1016/j.pbb.2007.12.023] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2007] [Revised: 11/16/2007] [Accepted: 12/21/2007] [Indexed: 11/19/2022]
Abstract
We explored in humans concentration-detection functions for the odor of the homologous n-alcohols ethanol, 1-butanol, 1-hexanol, and 1-octanol. These functions serve to establish structure-activity relationships, and reflect the pharmacology of the olfactory sense at the behavioral level. We tested groups of 14 to 17 subjects (half of them females), averaging 31 to 35 years old. An 8-station vapor delivery device (VDD8) presented the stimulus under a three-alternative forced-choice procedure against carbon-filtered air. The VDD8 was built to meet the demands of typical human sniffs in a short-term (<5 s) olfactory detection task, and to accurately control odorant generation, delivery, and stability. Actual stimulus concentration was quantified by gas chromatography before and during testing. The functions obtained were log normally distributed and were accurately modeled by a sigmoid (logistic) function, both at the group and at the individual level. Sensitivity to ethanol was the lowest and to 1-octanol the highest. Functions became steeper with increasing carbon chain length. For all alcohols the concentration detected halfway between chance and perfect detection (threshold) was at the ppb (or nM) level. Females were slightly more sensitive than males. Intersubject variability across participants was between one and two orders of magnitude. The present odor thresholds were lower than many reported in the past but their relative pattern across alcohols paralleled that in our earlier data and in compilation studies. A previously described quantitative structure-activity relationship for odor potency holds promise to model thresholds that, like those obtained here, best reflect the intrinsic sensitivity of human olfaction.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- Chemosensory Perception Laboratory, Department of Surgery (Otolaryngology), University of California San Diego, La Jolla, CA 92093-0957, USA.
| | | |
Collapse
|
21
|
Wise PM, Miyazawa T, Gallagher M, Preti G. Human Odor Detection of Homologous Carboxylic Acids and Their Binary Mixtures. Chem Senses 2007; 32:475-82. [PMID: 17488748 DOI: 10.1093/chemse/bjm016] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Does structural similarity of odorants influence detectability of their mixtures? To address this question, psychometric (probability of correct detection vs. concentration) functions were measured for aliphatic carboxylic acids and selected binary mixtures thereof. Unmixed stimuli included acetic (C2), butyric (C4), hexanoic (C6), and octanoic (C8) acids. Mixtures included C2 + C4, C2 + C6, and C2 + C8. Vapor-phase concentrations of individual compounds, as measured by a combination of solid-phase micro extraction and gas chromatography/mass spectrometry, were always the same, whether presented singly or in a binary mixture. Additivity of detectability was assessed with respect to response addition (independent processing of mixture components). For C2 + C6, for which the mixture components differed by 4 methylene units, and C2 + C8, which differed by 6 methylene units, response addition provided a reasonably good description of detection at all levels of performance. In contrast, for C2 + C4, which differed by only 2 methylene units, detection showed a tendency to exceed additivity at low concentrations but fell below additivity at higher concentrations. These results suggest that interaction among odors in binary mixtures does depend on structural similarity, at least for detection of carboxylic acids. Future studies can determine if this result is particular to carboxylic acids.
Collapse
Affiliation(s)
- Paul M Wise
- Monell Chemical Senses Center, Philadelphia, PA 19104-3308, USA.
| | | | | | | |
Collapse
|
22
|
Cometto-Muñiz JE, Cain WS, Abraham MH. Chemosensory additivity in trigeminal chemoreception as reflected by detection of mixtures. Exp Brain Res 2004; 158:196-206. [PMID: 15112117 PMCID: PMC1388341 DOI: 10.1007/s00221-004-1890-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2003] [Accepted: 03/09/2004] [Indexed: 10/26/2022]
Abstract
A series of experiments probed into the degree of chemosensory detection additivity exhibited by mixtures of ethyl propanoate and heptanoate in terms of their trigeminal detectability via nasal pungency (i.e., irritation) and eye irritation. Nasal pungency was tested in subjects lacking a functional sense of smell (i.e., anosmics) to avoid olfactory biases. First, we built concentration-detection functions for each chemical and sensory endpoint. Second, we used the data from the functions to prepare mixtures of the two compounds in complementary proportions, and suitable single-chemical standards, all of which should be equally detectable under a rule of complete additivity, i.e., independence of detection. Third, we compared the experimentally obtained detectability with that expected under such rule. The outcome revealed that, at a low detectability level (but still above chance), the mixtures showed complete additivity for both trigeminal endpoints. At a high detectability level (but below perfect detection), the mixtures showed complete additivity for nasal pungency but less than complete additivity for eye irritation. In the context of previous studies, the results consolidate a picture of higher degree of detection additivity at perithreshold levels in trigeminal than in olfactory chemoreception. The outcome presents another line of evidence suggesting broader chemical tuning in chemesthesis compared to olfaction.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- Chemosensory Perception Laboratory, Department of Surgery (Otolaryngology), University of California, San Diego, La Jolla, CA 92093-0957, USA.
| | | | | |
Collapse
|
23
|
Cometto-Muñiz JE, Cain WS, Abraham MH. Detection of single and mixed VOCs by smell and by sensory irritation. INDOOR AIR 2004; 14 Suppl 8:108-117. [PMID: 15663466 DOI: 10.1111/j.1600-0668.2004.00297.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
UNLABELLED We have measured complete concentration-detection (i.e., psychometric or detectability) functions to study the olfactory and ocular/nasal chemesthetic (a term that includes sensory irritation) impact of VOCs presented singly and in various binary mixtures. Such functions provide considerably more information than that provided by measuring only a "threshold". The outcome for single VOCs confirmed the much higher absolute sensitivity of olfaction compared to chemesthesis, but also demonstrated that the detection of ocular and nasal sensory irritation increases as a function of vapor concentration at a much higher rate than that for the detection of odor. The outcome for the binary mixtures revealed that, for both olfaction and chemesthesis, complete additivity of detection of individual components held at relatively low levels of detectability but broke down at higher levels. The breakdown for odor detection, compared to that for sensory irritation detection, was, first, more extensive, and, second, dependent to a larger extent on the degree of structural and chemical similarity/dissimilarity between the mixed VOCs. PRACTICAL IMPLICATIONS Concentration-detection functions for the chemesthetic and olfactory detectability of VOCs have shown that, even when nasal pungency and eye irritation begin to be evoked at concentrations orders of magnitude larger than those evoking odor, they sharply increase in detectability to become clearly noticeable. In contrast, odor detectability increases with concentration at a much lower rate. As a result, any fixed reduction (e.g., 10-times) in the concentration of a VOC will reduce detectability of sensory irritation much more dramatically than detectability of odor, within their respective ranges. Concentration-detection functions are particularly informative when employed to probe into the rules of dose- and response-additivity in mixtures. Our results for olfaction, and to a lesser extent for chemesthesis, indicate that additivity of detection of individual VOCs in mixtures is level-dependent: as detectability increases, the degree of additivity decreases. This suggests that a substantial improvement of perceived air quality could follow from control of just the few dominating chemosensory sources.
Collapse
Affiliation(s)
- J Enrique Cometto-Muñiz
- Chemosensory Perception Laboratory, Department of Surgery (Otolaryngology), University of California, San Diego, La Jolla CA 92093-0957, USA.
| | | | | |
Collapse
|
24
|
Current Awareness in Flavour and Fragrance. FLAVOUR FRAG J 2003. [DOI: 10.1002/ffj.1209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|