1
|
Beltrán I, Vila-Pouca C, Loiseleur R, Webb JK, Herculano-Houzel S, Whiting MJ. Effect of elevated incubation temperatures on learning and brain anatomy of hatchling and juvenile lizards. J Comp Physiol B 2025; 195:67-79. [PMID: 39648166 DOI: 10.1007/s00360-024-01595-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 08/02/2024] [Accepted: 11/17/2024] [Indexed: 12/10/2024]
Abstract
Global warming is a major threat to reptiles because temperature strongly affects their development. High incubation temperatures reduce hatchling body size and physiological performance; however, its effects on brain development and learning abilities are less well understood. In particular, it remains unclear if the effects of elevated temperatures on learning are restricted to hatchlings or instead will persist later in life. To address this gap, we examined the effect of 'current' and 'future' (end-of-century, + 4 °C) incubation temperatures on hatchling and juvenile geckos Amalosia lesueurii, to test: (1) if elevated temperatures affect hatchling learning ability; (2) if the effects on learning persist in juvenile lizards, and (3) if and how elevated temperatures affect hatchling and juvenile brain anatomy and neuronal count. We found that fewer future-incubated hatchlings succeeded in the learning tasks. Nonetheless, the successful ones needed fewer trials to learn compared to current-incubated hatchlings, possibly due to a higher motivation. Reduced learning ability was still observed at the juvenile stage, but it did not differ between treatments due to a reduced cognitive performance of current-incubated juveniles. Future-incubated hatchlings had a smaller telencephalon, but this pattern was not found in juveniles. Neuron number and density in hatchlings or juveniles from both treatments were not different. Our results suggest that global warming will affect hatchling survival in the wild but it remains unclear if future-incubated lizards could compensate for the harmful effects of elevated temperatures. Further testing beyond the laboratory is required to understand whether phenotypic plasticity in lizards is sufficient to track global warming.
Collapse
Affiliation(s)
- Iván Beltrán
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia.
| | - Catarina Vila-Pouca
- Centre d'Ecologie Fonctionnelle et Evolutive, UMR 5175 CNRS, Montpellier, France
| | - Rebecca Loiseleur
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
- Faculty of Life Sciences, University of Strasbourg, Strasbourg, France
| | - Jonathan K Webb
- School of Life Sciences, University of Technology Sydney, Sydney, NSW, Australia
| | | | - Martin J Whiting
- School of Natural Sciences, Macquarie University, Sydney, NSW, Australia
| |
Collapse
|
2
|
Thompson JC, Parkinson C. Interactions between neural representations of the social and spatial environment. Philos Trans R Soc Lond B Biol Sci 2024; 379:20220522. [PMID: 39230453 PMCID: PMC11449203 DOI: 10.1098/rstb.2022.0522] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 09/05/2024] Open
Abstract
Even in our highly interconnected modern world, geographic factors play an important role in human social connections. Similarly, social relationships influence how and where we travel, and how we think about our spatial world. Here, we review the growing body of neuroscience research that is revealing multiple interactions between social and spatial processes in both humans and non-human animals. We review research on the cognitive and neural representation of spatial and social information, and highlight recent findings suggesting that underlying mechanisms might be common to both. We discuss how spatial factors can influence social behaviour, and how social concepts modify representations of space. In so doing, this review elucidates not only how neural representations of social and spatial information interact but also similarities in how the brain represents and operates on analogous information about its social and spatial surroundings.This article is part of the theme issue 'The spatial-social interface: a theoretical and empirical integration'.
Collapse
Affiliation(s)
- James C. Thompson
- Department of Psychology, and Center for Adaptive Systems of Brain-Body Interactions, George Mason University, MS3F5 4400 University Drive, Fairfax, VA22030, USA
| | - Carolyn Parkinson
- Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
3
|
Givon S, Altsuler-Nagar R, Oring N, Vinepinsky E, Segev R. Lateral and medial telencephalic pallium lesions impair spatial memory in goldfish. Brain Res Bull 2023; 204:110802. [PMID: 39492553 DOI: 10.1016/j.brainresbull.2023.110802] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 10/19/2023] [Accepted: 10/27/2023] [Indexed: 11/05/2024]
Abstract
Fish, like many other animals, navigate to ensure survival. While the telencephalon region of the teleost fish brain is believed to play a critical role in navigation, lesion and electrophysiology studies differ as to whether navigation is situated in the lateral pallium or the medial pallium. To address this inconsistency, we replicated combined behavioral and lesion studies in the goldfish. Goldfish were trained in two navigation tasks testing allocentric navigation on a horizontal plus-maze and a horizontal breadboard to get a reward. The fish were divided randomly into lateral pallium lesion, medial pallium lesion, and sham groups and retested for their success rates. The lateral lesion group had a significant decrease of success on the breadboard task but not on the plus-maze task, whereas the medial lesion affected both tasks significantly. These results suggest that both the medial and lateral pallium are essential for the coding of spatial memory and challenge the assumption that one distinct region of the pallium is involved in spatial memory in teleost.
Collapse
Affiliation(s)
- Shachar Givon
- Department of Life Sciences, Ben-Gurion University of the Negev
| | | | - Naama Oring
- Department of Life Sciences, Ben-Gurion University of the Negev
| | - Ehud Vinepinsky
- Institut de Biologie de l'ENS (IBENS), Département de Biologie, Ecole normale supérieure, CNRS, INSERM, Université PSL, Paris, France
| | - Ronen Segev
- Department of Life Sciences, Ben-Gurion University of the Negev; Department of Biomedical Engineering, Ben-Gurion University of the Negev.
| |
Collapse
|
4
|
Jude MB, Strand CR. Sex and Season Affect Cortical Volumes in Free-Living Western Fence Lizards, Sceloporus occidentalis. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:160-170. [PMID: 36796337 DOI: 10.1159/000529692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023]
Abstract
The hippocampus plays an important role in spatial navigation and spatial learning across a variety of vertebrate species. Sex and seasonal differences in space use and behavior are known to affect hippocampal volume. Similarly, territoriality and differences in home range size are known to affect the volume of the reptile hippocampal homologues, the medial and dorsal cortices (MC, DC). However, studies have almost exclusively investigated males and little is known about sex or seasonal differences in MC and/or DC volumes in lizards. Here, we are the first to simultaneously examine sex and seasonal differences in MC and DC volumes in a wild lizard population. In Sceloporus occidentalis, males display territorial behaviors that are more pronounced during the breeding season. Given this sex difference in behavioral ecology, we expected males to have larger MC and/or DC volumes than females and for this difference to be most pronounced during the breeding season when territorial behavior is increased. Male and female S. occidentalis were captured from the wild during the breeding season and the post-breeding season and were sacrificed within 2 days of capture. Brains were collected and processed for histology. Cresyl-violet-stained sections were used to quantify brain region volumes. In these lizards, breeding females had larger DC volumes than breeding males and nonbreeding females. There was no sex or seasonal difference in MC volumes. Differences in spatial navigation in these lizards may involve aspects of spatial memory related to breeding other than territoriality that affect plasticity of the DC. This study highlights the importance of investigating sex differences and including females in studies of spatial ecology and neuroplasticity.
Collapse
Affiliation(s)
- Morgan B Jude
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA,
- School of Medicine, University of California Davis Medical Center, Sacramento, California, USA,
| | - Christine R Strand
- Department of Biological Sciences, California Polytechnic State University, San Luis Obispo, California, USA
| |
Collapse
|
5
|
Hussan MT, Sakai A, Matsui H. Glutamatergic pathways in the brains of turtles: A comparative perspective among reptiles, birds, and mammals. Front Neuroanat 2022; 16:937504. [PMID: 36059432 PMCID: PMC9428285 DOI: 10.3389/fnana.2022.937504] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/22/2022] [Indexed: 11/13/2022] Open
Abstract
Glutamate acts as the main excitatory neurotransmitter in the brain and plays a vital role in physiological and pathological neuronal functions. In mammals, glutamate can cause detrimental excitotoxic effects under anoxic conditions. In contrast, Trachemys scripta, a freshwater turtle, is one of the most anoxia-tolerant animals, being able to survive up to months without oxygen. Therefore, turtles have been investigated to assess the molecular mechanisms of neuroprotective strategies used by them in anoxic conditions, such as maintaining low levels of glutamate, increasing adenosine and GABA, upregulating heat shock proteins, and downregulating KATP channels. These mechanisms of anoxia tolerance of the turtle brain may be applied to finding therapeutics for human glutamatergic neurological disorders such as brain injury or cerebral stroke due to ischemia. Despite the importance of glutamate as a neurotransmitter and of the turtle as an ideal research model, the glutamatergic circuits in the turtle brain remain less described whereas they have been well studied in mammalian and avian brains. In reptiles, particularly in the turtle brain, glutamatergic neurons have been identified by examining the expression of vesicular glutamate transporters (VGLUTs). In certain areas of the brain, some ionotropic glutamate receptors (GluRs) have been immunohistochemically studied, implying that there are glutamatergic target areas. Based on the expression patterns of these glutamate-related molecules and fiber connection data of the turtle brain that is available in the literature, many candidate glutamatergic circuits could be clarified, such as the olfactory circuit, hippocampal–septal pathway, corticostriatal pathway, visual pathway, auditory pathway, and granule cell–Purkinje cell pathway. This review summarizes the probable glutamatergic pathways and the distribution of glutamatergic neurons in the pallium of the turtle brain and compares them with those of avian and mammalian brains. The integrated knowledge of glutamatergic pathways serves as the fundamental basis for further functional studies in the turtle brain, which would provide insights on physiological and pathological mechanisms of glutamate regulation as well as neural circuits in different species.
Collapse
Affiliation(s)
- Mohammad Tufazzal Hussan
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Anatomy and Histology, Patuakhali Science and Technology University, Barishal, Bangladesh
- *Correspondence: Mohammad Tufazzal Hussan,
| | - Akiko Sakai
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hideaki Matsui
- Department of Neuroscience of Disease, Brain Research Institute, Niigata University, Niigata, Japan
- Hideaki Matsui,
| |
Collapse
|
6
|
Morandi-Raikova A, Mayer U. Active exploration of an environment drives the activation of the hippocampus-amygdala complex of domestic chicks. J Exp Biol 2022; 225:275962. [PMID: 35815434 DOI: 10.1242/jeb.244190] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/06/2022] [Indexed: 11/20/2022]
Abstract
In birds, like in mammals, the hippocampus critically mediates spatial navigation through the formation of a spatial map. This study investigates the impact of active exploration of an environment on the hippocampus of young domestic chicks. Chicks that were free to actively explore the environment exhibited a significantly higher neural activation (measured by c-Fos expression), compared to those that passively observed the same environment from a restricted area. The difference was limited to the anterior and the dorsolateral parts of the intermediate hippocampus. Furthermore, the nucleus taeniae of the amygdala showed a higher c-Fos expression in the active exploration group than the passive observation group. In both brain regions, brain activation correlated with the number of locations that chicks visited during the test. This suggest that the increase of c-Fos expression in the hippocampus is related to increased firing rates of spatially coding neurons. Furthermore, our study indicates a functional linkage of the hippocampus and nucleus taeniae of the amygdala in processing spatial information. Overall, with the present study, we confirm that, in birds like in mammals, hippocampus and amygdala functions are linked and likely related to spatial representations.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068, Rovereto (TN), Italy
| |
Collapse
|
7
|
Baratti G, Potrich D, Lee SA, Morandi-Raikova A, Sovrano VA. The Geometric World of Fishes: A Synthesis on Spatial Reorientation in Teleosts. Animals (Basel) 2022; 12:881. [PMID: 35405870 PMCID: PMC8997125 DOI: 10.3390/ani12070881] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/09/2022] [Accepted: 03/23/2022] [Indexed: 02/04/2023] Open
Abstract
Fishes navigate through underwater environments with remarkable spatial precision and memory. Freshwater and seawater species make use of several orientation strategies for adaptative behavior that is on par with terrestrial organisms, and research on cognitive mapping and landmark use in fish have shown that relational and associative spatial learning guide goal-directed navigation not only in terrestrial but also in aquatic habitats. In the past thirty years, researchers explored spatial cognition in fishes in relation to the use of environmental geometry, perhaps because of the scientific value to compare them with land-dwelling animals. Geometric navigation involves the encoding of macrostructural characteristics of space, which are based on the Euclidean concepts of "points", "surfaces", and "boundaries". The current review aims to inspect the extant literature on navigation by geometry in fishes, emphasizing both the recruitment of visual/extra-visual strategies and the nature of the behavioral task on orientation performance.
Collapse
Affiliation(s)
- Greta Baratti
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Davide Potrich
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Sang Ah Lee
- Department of Brain and Cognitive Sciences, Seoul National University, Seoul 08826, Korea;
| | - Anastasia Morandi-Raikova
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
| | - Valeria Anna Sovrano
- CIMeC, Center for Mind/Brain Sciences, University of Trento, 38068 Rovereto, Italy; (D.P.); (A.M.-R.)
- Department of Psychology and Cognitive Science, University of Trento, 38068 Rovereto, Italy
| |
Collapse
|
8
|
De Meester G, Baeckens S. Reinstating reptiles: from clueless creatures to esteemed models of cognitive biology. BEHAVIOUR 2021. [DOI: 10.1163/1568539x-00003718] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Abstract
Non-avian reptiles have long been neglect in cognitive science due to their reputation as slow and inflexible learners, but fortunately, this archaic view on reptile cognition is changing rapidly. The last two decades have witnessed a renewed interest in the cognitive capacities of reptiles, and more ecologically relevant protocols have been designed to measure such abilities. Now, we appreciate that reptiles possess an impressive set of cognitive skills, including problem-solving abilities, fast and flexible learning, quantity discrimination, and even social learning. This special issue highlights current research on reptiles in cognitive biology and showcases the diversity of research questions that can be answered by using reptiles as study model. Here, we briefly address (the key results of) the contributing articles and their role in the endeavour for total inclusion of reptiles in cognitive biological research, which is instrumental for our understanding of the evolution of animal cognition. We also discuss and illustrate the promising potential of reptiles as model organisms in various areas of cognitive research.
Collapse
Affiliation(s)
- Gilles De Meester
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| | - Simon Baeckens
- Functional Morphology Lab, Biology Department, University of Antwerp, Belgium
| |
Collapse
|
9
|
Bennett MS. Five Breakthroughs: A First Approximation of Brain Evolution From Early Bilaterians to Humans. Front Neuroanat 2021; 15:693346. [PMID: 34489649 PMCID: PMC8418099 DOI: 10.3389/fnana.2021.693346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 07/13/2021] [Indexed: 11/13/2022] Open
Abstract
Retracing the evolutionary steps by which human brains evolved can offer insights into the underlying mechanisms of human brain function as well as the phylogenetic origin of various features of human behavior. To this end, this article presents a model for interpreting the physical and behavioral modifications throughout major milestones in human brain evolution. This model introduces the concept of a "breakthrough" as a useful tool for interpreting suites of brain modifications and the various adaptive behaviors these modifications enabled. This offers a unique view into the ordered steps by which human brains evolved and suggests several unique hypotheses on the mechanisms of human brain function.
Collapse
|
10
|
Rodríguez F, Quintero B, Amores L, Madrid D, Salas-Peña C, Salas C. Spatial Cognition in Teleost Fish: Strategies and Mechanisms. Animals (Basel) 2021; 11:2271. [PMID: 34438729 PMCID: PMC8388456 DOI: 10.3390/ani11082271] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/20/2021] [Accepted: 07/28/2021] [Indexed: 01/25/2023] Open
Abstract
Teleost fish have been traditionally considered primitive vertebrates compared to mammals and birds in regard to brain complexity and behavioral functions. However, an increasing amount of evidence suggests that teleosts show advanced cognitive capabilities including spatial navigation skills that parallel those of land vertebrates. Teleost fish rely on a multiplicity of sensory cues and can use a variety of spatial strategies for navigation, ranging from relatively simple body-centered orientation responses to allocentric or "external world-centered" navigation, likely based on map-like relational memory representations of the environment. These distinct spatial strategies are based on separate brain mechanisms. For example, a crucial brain center for egocentric orientation in teleost fish is the optic tectum, which can be considered an essential hub in a wider brain network responsible for the generation of egocentrically referenced actions in space. In contrast, other brain centers, such as the dorsolateral telencephalic pallium of teleost fish, considered homologue to the hippocampal pallium of land vertebrates, seem to be crucial for allocentric navigation based on map-like spatial memory. Such hypothetical relational memory representations endow fish's spatial behavior with considerable navigational flexibility, allowing them, for example, to perform shortcuts and detours.
Collapse
Affiliation(s)
| | | | | | | | | | - Cosme Salas
- Laboratorio de Psicobiología, Universidad de Sevilla, 41018 Sevilla, Spain; (F.R.); (B.Q.); (L.A.); (D.M.); (C.S.-P.)
| |
Collapse
|
11
|
Bennett MS. What Behavioral Abilities Emerged at Key Milestones in Human Brain Evolution? 13 Hypotheses on the 600-Million-Year Phylogenetic History of Human Intelligence. Front Psychol 2021; 12:685853. [PMID: 34393912 PMCID: PMC8358274 DOI: 10.3389/fpsyg.2021.685853] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 01/24/2023] Open
Abstract
This paper presents 13 hypotheses regarding the specific behavioral abilities that emerged at key milestones during the 600-million-year phylogenetic history from early bilaterians to extant humans. The behavioral, intellectual, and cognitive faculties of humans are complex and varied: we have abilities as diverse as map-based navigation, theory of mind, counterfactual learning, episodic memory, and language. But these faculties, which emerge from the complex human brain, are likely to have evolved from simpler prototypes in the simpler brains of our ancestors. Understanding the order in which behavioral abilities evolved can shed light on how and why our brains evolved. To propose these hypotheses, I review the available data from comparative psychology and evolutionary neuroscience.
Collapse
|
12
|
Strausfeld N, Sayre ME. Shore crabs reveal novel evolutionary attributes of the mushroom body. eLife 2021; 10:65167. [PMID: 33559601 PMCID: PMC7872517 DOI: 10.7554/elife.65167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 01/14/2021] [Indexed: 11/13/2022] Open
Abstract
Neural organization of mushroom bodies is largely consistent across insects, whereas the ancestral ground pattern diverges broadly across crustacean lineages resulting in successive loss of columns and the acquisition of domed centers retaining ancestral Hebbian-like networks and aminergic connections. We demonstrate here a major departure from this evolutionary trend in Brachyura, the most recent malacostracan lineage. In the shore crab Hemigrapsus nudus, instead of occupying the rostral surface of the lateral protocerebrum, mushroom body calyces are buried deep within it with their columns extending outwards to an expansive system of gyri on the brain’s surface. The organization amongst mushroom body neurons reaches extreme elaboration throughout its constituent neuropils. The calyces, columns, and especially the gyri show DC0 immunoreactivity, an indicator of extensive circuits involved in learning and memory.
Collapse
Affiliation(s)
| | - Marcel E Sayre
- Lund Vision Group, Department of Biology, Lund University, Lund, Sweden.,Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| |
Collapse
|
13
|
Morandi-Raikova A, Mayer U. Selective activation of the right hippocampus during navigation by spatial cues in domestic chicks (Gallus gallus). Neurobiol Learn Mem 2020; 177:107344. [PMID: 33242588 DOI: 10.1016/j.nlm.2020.107344] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 10/26/2020] [Accepted: 11/16/2020] [Indexed: 11/28/2022]
Abstract
In different vertebrate species, hippocampus plays a crucial role for spatial orientation. However, even though cognitive lateralization is widespread in the animal kingdom, the lateralization of this hippocampal function has been poorly studied. The aim of the present study was to investigate the lateralization of hippocampal activation in domestic chicks, during spatial navigation in relation to free-standing objects. Two groups of chicks were trained to find food in one of the feeders located in a large circular arena. Chicks of one group solved the task using the relational spatial information provided by free-standing objects present in the arena, while the other group used the local appearance of the baited feeder as a beacon. The immediate early gene product c-Fos was employed to map neural activation of hippocampus and medial striatum of both hemispheres. Chicks that used spatial cues for navigation showed higher activation of the right hippocampus compared to chicks that oriented by local features and compared to the left hippocampus. Such differences between the two groups were not present in the left hippocampus or in the medial striatum. Relational spatial information seems thus to be selectively processed by the right hippocampus in domestic chicks. The results are discussed in light of existing evidence of hippocampal lateralization of spatial processing in chicks, with particular attention to the contrasting evidence found in pigeons.
Collapse
Affiliation(s)
- Anastasia Morandi-Raikova
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy
| | - Uwe Mayer
- Center for Mind/Brain Sciences (CIMeC), University of Trento, Piazza Manifattura 1, I-38068 Rovereto (TN), Italy.
| |
Collapse
|
14
|
LaDage LD. Broadening the functional and evolutionary understanding of postnatal neurogenesis using reptilian models. ACTA ACUST UNITED AC 2020; 223:223/15/jeb210542. [PMID: 32788272 DOI: 10.1242/jeb.210542] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The production of new neurons in the brains of adult animals was first identified by Altman and Das in 1965, but it was not until the late 20th century when methods for visualizing new neuron production improved that there was a dramatic increase in research on neurogenesis in the adult brain. We now know that adult neurogenesis is a ubiquitous process that occurs across a wide range of taxonomic groups. This process has largely been studied in mammals; however, there are notable differences between mammals and other taxonomic groups in how, why and where new neuron production occurs. This Review will begin by describing the processes of adult neurogenesis in reptiles and identifying the similarities and differences in these processes between reptiles and model rodent species. Further, this Review underscores the importance of appreciating how wild-caught animals vary in neurogenic properties compared with laboratory-reared animals and how this can be used to broaden the functional and evolutionary understanding of why and how new neurons are produced in the adult brain. Studying variation in neural processes across taxonomic groups provides an evolutionary context to adult neurogenesis while also advancing our overall understanding of neurogenesis and brain plasticity.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona, 3000 Ivyside Dr., Altoona, PA 16601, USA
| |
Collapse
|
15
|
Gazzola A, Vallortigara G, Pellitteri-Rosa D. Continuous and discrete quantity discrimination in tortoises. Biol Lett 2019; 14:20180649. [PMID: 30958247 DOI: 10.1098/rsbl.2018.0649] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The ability to estimate quantity, which is crucially important in several aspects of animal behaviour (e.g. foraging), has been extensively investigated in most taxa, with the exception of reptiles. The few studies available, in lizards, report lack of spontaneous discrimination of quantity, which may suggest that reptiles could represent an exception in numerical abilities among vertebrates. We investigated the spontaneous ability of Hermann's tortoises ( Testudo hermanni) to select the larger quantity of food items. Tortoises were able to choose the larger food item when exposed to two options differing in size, but equal in numerousness (0.25, 0.50, 0.67 and 0.75 ratio) and when presented with two groups differing in numerousness, but equal in size (1 versus 4, 2 versus 4, 2 versus 3 and 3 versus 4 items). The tortoises succeeded in both size and numerousness discrimination, and their performance appeared to depend on the ratio of items to be discriminated (thus following Weber's Law). These findings in chelonians provide evidence of an ancient system for the extrapolation of numerical magnitudes from given sets of elements, shared among vertebrates.
Collapse
Affiliation(s)
- Andrea Gazzola
- 1 Laboratorio di Eco-Etologia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia , 27100 Pavia , Italy
| | | | - Daniele Pellitteri-Rosa
- 1 Laboratorio di Eco-Etologia, Dipartimento di Scienze della Terra e dell'Ambiente, Università di Pavia , 27100 Pavia , Italy
| |
Collapse
|
16
|
Roth TC, Krochmal AR, LaDage LD. Reptilian Cognition: A More Complex Picture via Integration of Neurological Mechanisms, Behavioral Constraints, and Evolutionary Context. Bioessays 2019; 41:e1900033. [PMID: 31210380 DOI: 10.1002/bies.201900033] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/10/2019] [Indexed: 12/16/2022]
Abstract
Unlike birds and mammals, reptiles are commonly thought to possess only the most rudimentary means of interacting with their environments, reflexively responding to sensory information to the near exclusion of higher cognitive function. However, reptilian brains, though structurally somewhat different from those of mammals and birds, use many of the same cellular and molecular processes to support complex behaviors in homologous brain regions. Here, the neurological mechanisms supporting reptilian cognition are reviewed, focusing specifically on spatial cognition and the hippocampus. These processes are compared to those seen in mammals and birds within an ecologically and evolutionarily relevant context. By viewing reptilian cognition through an integrative framework, a more robust understanding of reptile cognition is gleaned. Doing so yields a broader view of the evolutionarily conserved molecular and cellular mechanisms that underlie cognitive function and a better understanding of the factors that led to the evolution of complex cognition.
Collapse
Affiliation(s)
- Timothy C Roth
- Department of Psychology, Franklin and Marshall College, P.O. Box 3003, Lancaster, PA, 17603, USA
| | - Aaron R Krochmal
- Department of Biology, Washington College, 300 Washington Avenue, Chestertown, MD, 21620, USA
| | - Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona, Altoona, PA, 16601, USA
| |
Collapse
|
17
|
|
18
|
Augusto-Oliveira M, Arrifano GPF, Malva JO, Crespo-Lopez ME. Adult Hippocampal Neurogenesis in Different Taxonomic Groups: Possible Functional Similarities and Striking Controversies. Cells 2019; 8:cells8020125. [PMID: 30764477 PMCID: PMC6406791 DOI: 10.3390/cells8020125] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2018] [Revised: 01/31/2019] [Accepted: 01/31/2019] [Indexed: 12/13/2022] Open
Abstract
Adult neurogenesis occurs in many species, from fish to mammals, with an apparent reduction in the number of both neurogenic zones and new neurons inserted into established circuits with increasing brain complexity. Although the absolute number of new neurons is high in some species, the ratio of these cells to those already existing in the circuit is low. Continuous replacement/addition plays a role in spatial navigation (migration) and other cognitive processes in birds and rodents, but none of the literature relates adult neurogenesis to spatial navigation and memory in primates and humans. Some models developed by computational neuroscience attribute a high weight to hippocampal adult neurogenesis in learning and memory processes, with greater relevance to pattern separation. In contrast to theories involving neurogenesis in cognitive processes, absence/rarity of neurogenesis in the hippocampus of primates and adult humans was recently suggested and is under intense debate. Although the learning process is supported by plasticity, the retention of memories requires a certain degree of consolidated circuitry structures, otherwise the consolidation process would be hampered. Here, we compare and discuss hippocampal adult neurogenesis in different species and the inherent paradoxical aspects.
Collapse
Affiliation(s)
- Marcus Augusto-Oliveira
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Research on Neurodegeneration and Infection, University Hospital João de Barros Barreto, Federal University of Pará, Belém 66073-005, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - Gabriela P F Arrifano
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
- Laboratory of Experimental Neuropathology, Department of Pharmacology, University of Oxford, Oxford OX1 3QT, UK.
| | - João O Malva
- Coimbra Institute for Clinical and Biomedical Research (iCBR), and Center for Neuroscience and Cell Biology and Institute for Biomedical Imaging and Life Sciences (CNC.IBILI), Faculty of Medicine, University of Coimbra, Coimbra 3000-548, Portugal.
| | - Maria Elena Crespo-Lopez
- Laboratory of Molecular Pharmacology, Institute of Biological Sciences, Federal University of Pará, Belém 66075-110, Brazil.
| |
Collapse
|
19
|
Fournier J, Müller CM, Schneider I, Laurent G. Spatial Information in a Non-retinotopic Visual Cortex. Neuron 2018; 97:164-180.e7. [DOI: 10.1016/j.neuron.2017.11.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 08/25/2017] [Accepted: 11/10/2017] [Indexed: 02/04/2023]
|
20
|
Murray EA, Wise SP, Graham KS. Representational specializations of the hippocampus in phylogenetic perspective. Neurosci Lett 2017; 680:4-12. [PMID: 28473258 PMCID: PMC5665731 DOI: 10.1016/j.neulet.2017.04.065] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 04/28/2017] [Accepted: 04/29/2017] [Indexed: 11/28/2022]
Abstract
In a major evolutionary transition that occurred more than 520 million years ago, the earliest vertebrates adapted to a life of mobile, predatory foraging guided by distance receptors concentrated on their heads. Vision and olfaction served as the principal sensory systems for guiding their search for nutrients and safe haven. Among their neural innovations, these animals had a telencephalon that included a homologue of the hippocampus. Experiments on goldfish, turtles, lizards, rodents, macaque monkeys and humans have provided insight into the initial adaptive advantages provided by the hippocampus homologue. These findings indicate that it housed specialized map-like representations of odors and sights encountered at various locations in an animal's home range, including the order and timing in which they should be encountered during a journey. Once these representations emerged in early vertebrates, they also enabled a variety of behaviors beyond navigation. In modern rodents and primates, for example, the specialized representations of the hippocampus enable the learning and performance of tasks involving serial order, timing, recency, relations, sequences of events and behavioral contexts. During primate evolution, certain aspects of these representations gained particular prominence, in part due to the advent of foveal vision in haplorhines. As anthropoid primates-the ancestors of monkeys, apes and humans-changed from small animals that foraged locally into large ones with an extensive home range, they made foraging choices at a distance based on visual scenes. Experimental evidence shows that the hippocampus of monkeys specializes in memories that reflect the representation of such scenes, rather than spatial processing in a general sense. Furthermore, and contrary to the idea that the hippocampus functions in memory to the exclusion of perception, brain imaging studies and lesion effects in humans show that its specialized representations support both the perception and memory of scenes and sequences.
Collapse
Affiliation(s)
- Elisabeth A Murray
- Laboratory of Neuropsychology, NIMH, Building 49, Suite 1B80, 49 Convent Drive, Bethesda, MD 20892-4415, USA.
| | - Steven P Wise
- Olschefskie Institute for the Neurobiology of Knowledge, Potomac, MD 20854, USA
| | - Kim S Graham
- Cognitive Neuroscience, School of Psychology, Cardiff University, CUBRIC Building, Maindy Road, Cardiff, CF24 4HQ, UK
| |
Collapse
|
21
|
LaDage LD, Roth TC, Downs CJ, Sinervo B, Pravosudov VV. Increased Testosterone Decreases Medial Cortical Volume and Neurogenesis in Territorial Side-Blotched Lizards ( Uta stansburiana). Front Neurosci 2017; 11:97. [PMID: 28298883 PMCID: PMC5331184 DOI: 10.3389/fnins.2017.00097] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 02/14/2017] [Indexed: 01/18/2023] Open
Abstract
Variation in an animal's spatial environment can induce variation in the hippocampus, an area of the brain involved in spatial cognitive processing. Specifically, increased spatial area use is correlated with increased hippocampal attributes, such as volume and neurogenesis. In the side-blotched lizard (Uta stansburiana), males demonstrate alternative reproductive tactics and are either territorial—defending large, clearly defined spatial boundaries—or non-territorial—traversing home ranges that are smaller than the territorial males' territories. Our previous work demonstrated cortical volume (reptilian hippocampal homolog) correlates with these spatial niches. We found that territorial holders have larger medial cortices than non-territory holders, yet these differences in the neural architecture demonstrated some degree of plasticity as well. Although we have demonstrated a link among territoriality, spatial use, and brain plasticity, the mechanisms that underlie this relationship are unclear. Previous studies found that higher testosterone levels can induce increased use of the spatial area and can cause an upregulation in hippocampal attributes. Thus, testosterone may be the mechanistic link between spatial area use and the brain. What remains unclear, however, is if testosterone can affect the cortices independent of spatial experiences and whether testosterone differentially interacts with territorial status to produce the resultant cortical phenotype. In this study, we compared neurogenesis as measured by the total number of doublecortin-positive cells and cortical volume between territorial and non-territorial males supplemented with testosterone. We found no significant differences in the number of doublecortin-positive cells or cortical volume among control territorial, control non-territorial, and testosterone-supplemented non-territorial males, while testosterone-supplemented territorial males had smaller medial cortices containing fewer doublecortin-positive cells. These results demonstrate that testosterone can modulate medial cortical attributes outside of differential spatial processing experiences but that territorial males appear to be more sensitive to alterations in testosterone levels compared with non-territorial males.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State University Altoona Altoona, PA, USA
| | - Timothy C Roth
- Department of Psychology, Franklin and Marshall College Lancaster, PA, USA
| | | | - Barry Sinervo
- Department of Ecology and Evolutionary Biology, University of California Santa Cruz, CA, USA
| | | |
Collapse
|
22
|
LaDage LD, Cobb Irvin TE, Gould VA. Assessing Spatial Learning and Memory in Small Squamate Reptiles. J Vis Exp 2017. [PMID: 28117775 DOI: 10.3791/55103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Clinical research has leveraged a variety of paradigms to assess cognitive decline, commonly targeting spatial learning and memory abilities. However, interest in the cognitive processes of nonmodel species, typically within an ecological context, has also become an emerging field of study. In particular, interest in the cognitive processes in reptiles is growing although experimental studies on reptilian cognition are sparse. The few reptilian studies that have experimentally tested for spatial learning and memory have used rodent paradigms modified for use in reptiles. However, ecologically important aspects of the physiology and behavior of this taxonomic group must be taken into account when testing for spatially based cognition. Here, we describe modifications of the dry land Barnes maze and associated testing protocol that can improve performance when probing for spatial learning and memory ability in small squamate reptiles. The described paradigm and procedures were successfully used with male side-blotched lizards (Uta stansburiana), demonstrating that spatial learning and memory can be assessed in this taxonomic group with an ecologically relevant apparatus and protocol.
Collapse
Affiliation(s)
- Lara D LaDage
- Division of Mathematics and Natural Sciences, Penn State Altoona;
| | | | - Victoria A Gould
- Division of Mathematics and Natural Sciences, Penn State Altoona
| |
Collapse
|
23
|
The effects of incubation temperature on the development of the cortical forebrain in a lizard. Anim Cogn 2016; 20:117-125. [DOI: 10.1007/s10071-016-0993-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2015] [Revised: 04/25/2016] [Accepted: 05/05/2016] [Indexed: 02/05/2023]
|
24
|
Environmental experiences influence cortical volume in territorial and nonterritorial side-blotched lizards, Uta stansburiana. Anim Behav 2016. [DOI: 10.1016/j.anbehav.2016.01.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
25
|
Naumann RK, Ondracek JM, Reiter S, Shein-Idelson M, Tosches MA, Yamawaki TM, Laurent G. The reptilian brain. Curr Biol 2016; 25:R317-21. [PMID: 25898097 PMCID: PMC4406946 DOI: 10.1016/j.cub.2015.02.049] [Citation(s) in RCA: 64] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Robert K Naumann
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Janie M Ondracek
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Samuel Reiter
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Mark Shein-Idelson
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | | | - Tracy M Yamawaki
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany
| | - Gilles Laurent
- Max Planck Institute for Brain Research, Max von Laue Str. 4, 60438 Frankfurt am Main, Germany.
| |
Collapse
|
26
|
Uceda S, Ocaña FM, Martín-Monzón I, Rodríguez-Expósito B, Durán E, Rodríguez F. Spatial learning-related changes in metabolic brain activity contribute to the delimitation of the hippocampal pallium in goldfish. Behav Brain Res 2015; 292:403-8. [PMID: 26142782 DOI: 10.1016/j.bbr.2015.06.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2015] [Revised: 05/29/2015] [Accepted: 06/08/2015] [Indexed: 01/17/2023]
Abstract
Comparative neuroanatomical, developmental and functional evidence suggests that the lateral division of the area dorsalis telencephali (Dl) of the teleost fish is homologous to the hippocampus of tetrapods. Nonetheless, some important aspects of the organization of the hippocampal pallium of teleosts are still under discussion and conflicting hypotheses regarding the extension and demarcation of this region have been proposed. Thus, whereas some authors suggest that the entire Dl region, including its dorsal (Dld) and ventral (Dlv) subdivisions, is homologue to the mammalian hippocampus, others claim that only Dlv should be considered as such. To further elucidate this debate, we investigated the role of Dld and Dlv in one of the most unambiguous functions of the hippocampus, spatial learning. We trained goldfish in a spatial constancy task and mapped the activity of Dld, Dlv, and the medial division of the area dorsalis telencephali (Dm) by means of cytochrome oxidase (CO) histochemistry. The results revealed that training goldfish in the spatial constancy task significantly increased the metabolic activity in Dlv, but not in Dld or Dm, suggesting that only Dlv is critically involved in spatial learning and in this regard comparable to the hippocampus. These data provide additional functional support to the hypotheses that consider Dl as a heterogeneous pallial region and propose that Dlv, but not Dld, might be homologous to the hippocampus.
Collapse
Affiliation(s)
- S Uceda
- Laboratory of Psychobiology, University of Sevilla, Campus Santiago Ramón y Cajal, 41018, Sevilla, Spain.
| | - F M Ocaña
- Laboratory of Psychobiology, University of Sevilla, Campus Santiago Ramón y Cajal, 41018, Sevilla, Spain
| | - I Martín-Monzón
- Laboratory of Psychobiology, University of Sevilla, Campus Santiago Ramón y Cajal, 41018, Sevilla, Spain
| | - B Rodríguez-Expósito
- Laboratory of Psychobiology, University of Sevilla, Campus Santiago Ramón y Cajal, 41018, Sevilla, Spain
| | - E Durán
- Laboratory of Psychobiology, University of Sevilla, Campus Santiago Ramón y Cajal, 41018, Sevilla, Spain
| | - F Rodríguez
- Laboratory of Psychobiology, University of Sevilla, Campus Santiago Ramón y Cajal, 41018, Sevilla, Spain
| |
Collapse
|
27
|
Striedter GF. Evolution of the hippocampus in reptiles and birds. J Comp Neurol 2015; 524:496-517. [DOI: 10.1002/cne.23803] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/17/2015] [Accepted: 04/29/2015] [Indexed: 02/04/2023]
Affiliation(s)
- Georg F. Striedter
- Department of Neurobiology & Behavior and Center for the Neurobiology of Learning and Memory; University of California; Irvine Irvine California 92697-4550
| |
Collapse
|
28
|
Smith RW, Cash P, Hogg DW, Buck LT. Proteomic changes in the brain of the western painted turtle (Chrysemys picta bellii) during exposure to anoxia. Proteomics 2015; 15:1587-97. [PMID: 25583675 DOI: 10.1002/pmic.201300229] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Revised: 10/03/2014] [Accepted: 01/09/2015] [Indexed: 01/10/2023]
Abstract
During anoxia, overall protein synthesis is almost undetectable in the brain of the western painted turtle. The aim of this investigation was to address the question of whether there are alterations to specific proteins by comparing the normoxic and anoxic brain proteomes. Reductions in creatine kinase, hexokinase, glyceraldehyde-3-phosphate dehydrogenase, and pyruvate kinase reflected the reduced production of adenosine triphosphate (ATP) during anoxia while the reduction in transitional endoplasmic reticulum ATPase reflected the conservation of ATP or possibly a decrease in intracellular Ca(2+). In terms of neural protection programed cell death 6 interacting protein (PDCD6IP; a protein associated with apoptosis), dihydropyrimidinase-like protein, t-complex protein, and guanine nucleotide protein G(o) subunit alpha (Go alpha; proteins associated with neural degradation and impaired cognitive function) also declined. A decline in actin, gelsolin, and PDCD6IP, together with an increase in tubulin, also provided evidence for the induction of a neurological repair response. Although these proteomic alterations show some similarities with the crucian carp (another anoxia-tolerant species), there are species-specific responses, which supports the theory of no single strategy for anoxia tolerance. These findings also suggest the anoxic turtle brain could be an etiological model for investigating mammalian hypoxic damage and clinical neurological disorders.
Collapse
Affiliation(s)
- Richard W Smith
- Department of Medical Physics and Applied Radiation Sciences, McMaster University, Hamilton, ON, Canada
| | | | | | | |
Collapse
|
29
|
Broglio C, Martín-Monzón I, Ocaña FM, Gómez A, Durán E, Salas C, Rodríguez F. Hippocampal Pallium and Map-Like Memories through Vertebrate Evolution. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/jbbs.2015.53011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
30
|
Looking for the roots of cortical sensory computation in three-layered cortices. Curr Opin Neurobiol 2014; 31:119-26. [PMID: 25291080 DOI: 10.1016/j.conb.2014.09.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 09/15/2014] [Accepted: 09/15/2014] [Indexed: 02/03/2023]
Abstract
Despite considerable effort over a century and the benefit of remarkable technical advances in the past few decades, we are still far from understanding mammalian cerebral neocortex. With its six layers, modular architecture, canonical circuits, innumerable cell types, and computational complexity, isocortex remains a challenging mystery. In this review, we argue that identifying the structural and functional similarities between mammalian piriform cortex and reptilian dorsal cortex could help reveal common organizational and computational principles and by extension, some of the most primordial computations carried out in cortical networks.
Collapse
|
31
|
Abstract
One of the grand challenges in neuroscience is to comprehend neural computation in the association cortices, the parts of the cortex that have shown the largest expansion and differentiation during mammalian evolution and that are thought to contribute profoundly to the emergence of advanced cognition in humans. In this Review, we use grid cells in the medial entorhinal cortex as a gateway to understand network computation at a stage of cortical processing in which firing patterns are shaped not primarily by incoming sensory signals but to a large extent by the intrinsic properties of the local circuit.
Collapse
|
32
|
Maine AR, Powers SD, Lutterschmidt DI. Seasonal Variation in Cell Proliferation and Cell Migration in the Brain of Adult Red-Sided Garter Snakes(Thamnophis sirtalis parietalis). BRAIN, BEHAVIOR AND EVOLUTION 2014; 84:181-96. [DOI: 10.1159/000364778] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 12/13/2013] [Indexed: 11/19/2022]
|
33
|
Fuss T, Bleckmann H, Schluessel V. The shark Chiloscyllium griseum can orient using turn responses before and after partial telencephalon ablation. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:19-35. [PMID: 24114617 DOI: 10.1007/s00359-013-0858-y] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 12/01/2022]
Abstract
This study assessed spatial memory and orientation strategies in Chiloscyllium griseum. In the presence of visual landmarks, six sharks were trained in a fixed turn response. Group 1 started from two possible compartments approaching two goal locations, while group 2 started from and approached only one location, respectively. The learning criterion was reached within 9 ± 5.29 (group 1) and 8.3 ± 3.51 sessions (group 2). Transfer tests revealed that sharks had applied a direction strategy, possibly in combination with some form of place learning. Without visual cues, sharks relied solely on the former. To identify the underlying neural substrate(s), telencephalic were lesioned and performance compared before and after surgery. Ablation of the dorsal and medial pallia only had an effect on one shark (group 1), indicating that the acquisition and retention of previously gained knowledge were unaffected in the remaining four individuals. Nonetheless, the shark re-learned the task. In summary, C. griseum can utilize fixed turn responses to navigate to a goal; there is also some evidence for the use of external visual landmarks while orienting. Probably, strategies can be used alone or in combination. Neither the dorsal nor medial pallium seems to be responsible for the acquisition and processing of egocentric information.
Collapse
Affiliation(s)
- Theodora Fuss
- Abteilung für vergleichende Sinnes- und Neurobiologie, Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 169, 53115, Bonn, Germany,
| | | | | |
Collapse
|
34
|
Fuss T, Bleckmann H, Schluessel V. Place learning prior to and after telencephalon ablation in bamboo and coral cat sharks (Chiloscyllium griseum and Atelomycterus marmoratus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2013; 200:37-52. [PMID: 24114618 DOI: 10.1007/s00359-013-0859-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 09/18/2013] [Accepted: 09/19/2013] [Indexed: 11/29/2022]
Abstract
This study assessed complex spatial learning and memory in two species of shark, the grey bamboo shark (Chiloscyllium griseum) and the coral cat shark (Atelomycterus marmoratus). It was hypothesized that sharks can learn and apply an allocentric orientation strategy. Eight out of ten sharks successfully completed the initial training phase (by locating a fixed goal position in a diamond maze from two possible start points) within 14.9 ± 7.6 sessions and proceeded to seven sets of transfer tests, in which sharks had to perform under altered environmental conditions. Transfer tests revealed that sharks had oriented and solved the tasks visually, using all of the provided environmental cues. Unintentional cueing did not occur. Results correspond to earlier studies on spatial memory and cognitive mapping in other vertebrates. Future experiments should investigate whether sharks possess a cognitive spatial mapping system as has already been found in several teleosts and stingrays. Following the completion of transfer tests, sharks were subjected to ablation of most of the pallium, which compromised their previously acquired place learning abilities. These results indicate that the telencephalon plays a crucial role in the processing of information on place learning and allocentric orientation strategies.
Collapse
Affiliation(s)
- Theodora Fuss
- Abteilung für vergleichende Sinnes- und Neurobiologie, Institut für Zoologie, Rheinische Friedrich-Wilhelms-Universität Bonn, Meckenheimer Allee 169, 53115, Bonn, Germany,
| | | | | |
Collapse
|
35
|
Northcutt RG. Variation in Reptilian Brains and Cognition. BRAIN, BEHAVIOR AND EVOLUTION 2013; 82:45-54. [DOI: 10.1159/000351996] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
36
|
From chemotaxis to the cognitive map: the function of olfaction. Proc Natl Acad Sci U S A 2012; 109 Suppl 1:10693-700. [PMID: 22723365 DOI: 10.1073/pnas.1201880109] [Citation(s) in RCA: 131] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A paradox of vertebrate brain evolution is the unexplained variability in the size of the olfactory bulb (OB), in contrast to other brain regions, which scale predictably with brain size. Such variability appears to be the result of selection for olfactory function, yet there is no obvious concordance that would predict the causal relationship between OB size and behavior. This discordance may derive from assuming the primary function of olfaction is odorant discrimination and acuity. If instead the primary function of olfaction is navigation, i.e., predicting odorant distributions in time and space, variability in absolute OB size could be ascribed and explained by variability in navigational demand. This olfactory spatial hypothesis offers a single functional explanation to account for patterns of olfactory system scaling in vertebrates, the primacy of olfaction in spatial navigation, even in visual specialists, and proposes an evolutionary scenario to account for the convergence in olfactory structure and function across protostomes and deuterostomes. In addition, the unique percepts of olfaction may organize odorant information in a parallel map structure. This could have served as a scaffold for the evolution of the parallel map structure of the mammalian hippocampus, and possibly the arthropod mushroom body, and offers an explanation for similar flexible spatial navigation strategies in arthropods and vertebrates.
Collapse
|
37
|
O'Connell LA, Hofmann HA. The vertebrate mesolimbic reward system and social behavior network: a comparative synthesis. J Comp Neurol 2012; 519:3599-639. [PMID: 21800319 DOI: 10.1002/cne.22735] [Citation(s) in RCA: 726] [Impact Index Per Article: 55.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
All animals evaluate the salience of external stimuli and integrate them with internal physiological information into adaptive behavior. Natural and sexual selection impinge on these processes, yet our understanding of behavioral decision-making mechanisms and their evolution is still very limited. Insights from mammals indicate that two neural circuits are of crucial importance in this context: the social behavior network and the mesolimbic reward system. Here we review evidence from neurochemical, tract-tracing, developmental, and functional lesion/stimulation studies that delineates homology relationships for most of the nodes of these two circuits across the five major vertebrate lineages: mammals, birds, reptiles, amphibians, and teleost fish. We provide for the first time a comprehensive comparative analysis of the two neural circuits and conclude that they were already present in early vertebrates. We also propose that these circuits form a larger social decision-making (SDM) network that regulates adaptive behavior. Our synthesis thus provides an important foundation for understanding the evolution of the neural mechanisms underlying reward processing and behavioral regulation.
Collapse
Affiliation(s)
- Lauren A O'Connell
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, Texas 78712, USA
| | | |
Collapse
|
38
|
Holding ML, Frazier JA, Taylor EN, Strand CR. Experimentally Altered Navigational Demands Induce Changes in the Cortical Forebrain of Free-Ranging Northern Pacific Rattlesnakes(Crotalus o. oreganus). BRAIN, BEHAVIOR AND EVOLUTION 2012; 79:144-54. [DOI: 10.1159/000335034] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2011] [Accepted: 10/28/2011] [Indexed: 11/19/2022]
|
39
|
Rattenborg NC, Martinez-Gonzalez D, Roth TC, Pravosudov VV. Hippocampal memory consolidation during sleep: a comparison of mammals and birds. Biol Rev Camb Philos Soc 2011; 86:658-91. [PMID: 21070585 PMCID: PMC3117012 DOI: 10.1111/j.1469-185x.2010.00165.x] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The transition from wakefulness to sleep is marked by pronounced changes in brain activity. The brain rhythms that characterize the two main types of mammalian sleep, slow-wave sleep (SWS) and rapid eye movement (REM) sleep, are thought to be involved in the functions of sleep. In particular, recent theories suggest that the synchronous slow-oscillation of neocortical neuronal membrane potentials, the defining feature of SWS, is involved in processing information acquired during wakefulness. According to the Standard Model of memory consolidation, during wakefulness the hippocampus receives input from neocortical regions involved in the initial encoding of an experience and binds this information into a coherent memory trace that is then transferred to the neocortex during SWS where it is stored and integrated within preexisting memory traces. Evidence suggests that this process selectively involves direct connections from the hippocampus to the prefrontal cortex (PFC), a multimodal, high-order association region implicated in coordinating the storage and recall of remote memories in the neocortex. The slow-oscillation is thought to orchestrate the transfer of information from the hippocampus by temporally coupling hippocampal sharp-wave/ripples (SWRs) and thalamocortical spindles. SWRs are synchronous bursts of hippocampal activity, during which waking neuronal firing patterns are reactivated in the hippocampus and neocortex in a coordinated manner. Thalamocortical spindles are brief 7-14 Hz oscillations that may facilitate the encoding of information reactivated during SWRs. By temporally coupling the readout of information from the hippocampus with conditions conducive to encoding in the neocortex, the slow-oscillation is thought to mediate the transfer of information from the hippocampus to the neocortex. Although several lines of evidence are consistent with this function for mammalian SWS, it is unclear whether SWS serves a similar function in birds, the only taxonomic group other than mammals to exhibit SWS and REM sleep. Based on our review of research on avian sleep, neuroanatomy, and memory, although involved in some forms of memory consolidation, avian sleep does not appear to be involved in transferring hippocampal memories to other brain regions. Despite exhibiting the slow-oscillation, SWRs and spindles have not been found in birds. Moreover, although birds independently evolved a brain region--the caudolateral nidopallium (NCL)--involved in performing high-order cognitive functions similar to those performed by the PFC, direct connections between the NCL and hippocampus have not been found in birds, and evidence for the transfer of information from the hippocampus to the NCL or other extra-hippocampal regions is lacking. Although based on the absence of evidence for various traits, collectively, these findings suggest that unlike mammalian SWS, avian SWS may not be involved in transferring memories from the hippocampus. Furthermore, it suggests that the slow-oscillation, the defining feature of mammalian and avian SWS, may serve a more general function independent of that related to coordinating the transfer of information from the hippocampus to the PFC in mammals. Given that SWS is homeostatically regulated (a process intimately related to the slow-oscillation) in mammals and birds, functional hypotheses linked to this process may apply to both taxonomic groups.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Ornithology, Sleep and Flight Group, Eberhard-Gwinner-Strasse, 82319, Seewiesen, Germany.
| | | | | | | |
Collapse
|
40
|
Rajan KE, Ganesh A, Dharaneedharan S, Radhakrishnan K. Spatial learning-induced egr-1 expression in telencephalon of gold fish Carassius auratus. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:153-159. [PMID: 20714804 DOI: 10.1007/s10695-010-9425-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2010] [Accepted: 07/29/2010] [Indexed: 05/29/2023]
Abstract
The immediate-early gene (egr-1) expression was used to examine the neuron's response in telencephalon of goldfish during spatial learning in small space. Fishes were pre-exposed in the experimental apparatus and trained to pick food from the tray in a rectangular-shaped arena. The apparatus was divided into identical compartments comprising three gates to provide different spatial tasks. After the fish learned to pass through the gate one, two more gates were introduced one by one. Fish made more number of attempts and took longer time (P < 0.05) to pass through the first gate than the gate two or three. This active learning induces the expression of egr-1 in telencephalon as established by western blot analysis. Subsequently, the fish learn quickly to cross the similar type of second and third gate and make fewer errors with a corresponding decline in the level of egr-1 expression. As the fish learned to pass through all the three gates, third gate was replaced by modified gate three. Interestingly, the level of egr-1 expression increased again, when the fish exhibit a high exploratory behavior to cross the modified gate three. The present study shows that egr-1 expression is induced in the telencephalon of goldfish while intensively acquiring geometric spatial information to pass through the gates.
Collapse
Affiliation(s)
- K Emmanuvel Rajan
- Department of Animal Science, School of Life Sciences, Bharathidasan University, Tiruchirappalli, India.
| | | | | | | |
Collapse
|
41
|
Baragli P, Vitale V, Paoletti E, Sighieri C, Reddon AR. Detour behaviour in horses (Equus caballus). J ETHOL 2010. [DOI: 10.1007/s10164-010-0246-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
42
|
Durán E, Ocaña FM, Broglio C, Rodríguez F, Salas C. Lateral but not medial telencephalic pallium ablation impairs the use of goldfish spatial allocentric strategies in a "hole-board" task. Behav Brain Res 2010; 214:480-7. [PMID: 20600353 DOI: 10.1016/j.bbr.2010.06.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2010] [Revised: 05/28/2010] [Accepted: 06/14/2010] [Indexed: 11/25/2022]
Abstract
Strong evidence suggests that the ventral region of the lateral telencephalic pallium of teleost fish, a structure involved in allocentric spatial cognition, is homologous to the hippocampus of tetrapods. This homology was first proposed on basis of anatomical data, and subsequently confirmed by developmental, functional and behavioural studies. Nonetheless, Saito and Watanabe [30,32] claim that not the lateral but, rather, the medial pallium participates in goldfish spatial navigation and should be considered the homologue of the hippocampus. Here, we further investigate the effects of selective pallial lesions on the spatial cognition abilities of goldfish, trained in a "hole-board" analogue task, to find the baited feeder within a 5 x 5 feeder matrix surrounded by visual cues. The task in the present experiment is similar to that used by Saito and Watanabe, but including thorough probe tests that enabled to define clearly the spatial strategies employed by the animals, and, therefore, the spatial deficits caused by the pallial lesions. The results showed that the lateral, but not the medial pallium lesions, produced a dramatic impairment in the implementation of allocentric spatial strategies. Thus, only lateral pallium lesioned goldfish, like hippocampus lesioned tetrapods, failed to reach the goal when the cues in its proximity were excluded, indicating that they used a guidance strategy. These results do not replicate Saito and Watanabe's, but are consistent to previous data indicating a close functional similarity between the lateral pallium of teleost fish and the hippocampus of amniotes.
Collapse
Affiliation(s)
- Emilio Durán
- Laboratory of Psychobiology, Campus Santiago Ramón y Cajal, University of Sevilla, Sevilla, Spain.
| | | | | | | | | |
Collapse
|
43
|
Selective involvement of the goldfish lateral pallium in spatial memory. Behav Brain Res 2010; 210:191-201. [PMID: 20178818 DOI: 10.1016/j.bbr.2010.02.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/11/2010] [Accepted: 02/15/2010] [Indexed: 11/20/2022]
Abstract
The involvement of the main pallial subdivisions of the teleost telencephalic pallium in spatial cognition was evaluated in a series of three experiments. The first two compared the effects of lesions selective to the lateral (LP), medial (MP) and dorsal (DP) telencephalic pallium of goldfish, on the retention and the reversal learning of a spatial constancy task which requires the use of allocentric or relational strategies. The results showed that LP lesions produced a selective impairment on the capability of goldfish to solve the spatial task previously learned and on the reversal learning of the same procedure, whereas MP and DP lesions did not produce observable deficits. The third experiment evaluated, by means of the AgNOR stain, learning-dependent changes of the neuronal transcription activity in the pallium of goldfish trained in the spatial constancy task or in a cue version of the same procedure, which only differed on their spatial cognition demands. The results revealed that training in the spatial task produced an increment in the transcriptive activity which was selective to the neurons of the ventral lateral pallium, as indicated by increases in the size of the nucleolar organizing region (NOR), the nucleolar organelles associated with the synthesis of ribosomal proteins. In contrast, training in the cue version did not produced observable changes. These data, revealing a striking functional similarity between the lateral telencephalic pallium of the teleost fish and the amniote hippocampus, provide additional evidence regarding the homology of both structures.
Collapse
|
44
|
LADAGE LARAD, RIGGS BECKYJ, SINERVO BARRY, PRAVOSUDOV VLADIMIRV. Dorsal cortex volume in male side-blotched lizards (Uta stansburiana) is associated with different space use strategies. Anim Behav 2009; 78:91-96. [PMID: 20161271 PMCID: PMC2701711 DOI: 10.1016/j.anbehav.2009.03.020] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Spatial abilities have been associated with many ecologically-relevant behaviors such as territoriality, mate choice, navigation and acquisition of food resources. Differential demands on spatial abilities in birds and mammals have been shown to affect the hippocampus, the region of the brain responsible for spatial processing. In some bird and mammal species, higher demands on spatial abilities are associated with larger hippocampal volumes. The medial and dorsal cortices are the putative reptilian homologues of the mammalian hippocampus, yet few studies have examined the relationship between these brain areas and differential spatial use strategies in reptiles. Further, many studies in birds and mammals compare hippocampal attributes between species that utilize space differently, potentially confounding species-specific effects with effects due to differential behaviors in spatial use. Here, we investigated the relationship between spatial use strategies and medial and dorsal cortical volumes in males of the side-blotched lizard (Uta stansburiana). In this species, males occur in three different morphs, each morph using different spatial niches: large territory holders, small territory holders and non-territory holders with home ranges smaller than the territories of small territory holders. We found that large territory holders had larger dorsal cortical volumes relative to the remainder of the telencephalon compared with non-territorial males, and small territory holders were intermediate. These results suggest that some aspect of holding a large territory may place demands on spatial abilities, which is reflected in a brain region thought partially responsible for spatial processing.
Collapse
Affiliation(s)
| | | | - BARRY SINERVO
- University of California- Santa Cruz Department of Ecology & Evolutionary Biology
| | | |
Collapse
|
45
|
Wilkinson A, Coward S, Hall G. Visual and response-based navigation in the tortoise (Geochelone carbonaria). Anim Cogn 2009; 12:779-87. [DOI: 10.1007/s10071-009-0237-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2008] [Revised: 05/04/2009] [Accepted: 05/06/2009] [Indexed: 11/27/2022]
|
46
|
Rattenborg NC. Response to commentary on evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 2007; 72:187-93. [PMID: 17452280 DOI: 10.1016/j.brainresbull.2007.02.010] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2007] [Accepted: 02/17/2007] [Indexed: 11/23/2022]
Abstract
Mammals and birds are the only animals that exhibit high-amplitude slow-waves (SWs) in the electroencephalogram during sleep. The SWs that characterize slow-wave sleep (SWS) in mammals and birds reflect the large-scale synchronization of slow neuronal activity. In mammals, this synchronization is dependent upon the high degree of interconnectivity within the neocortex, a cytoarchitectonic trait also found in the avian hyperpallium, but not the reptilian dorsal cortex. Consequently, I recently proposed that the presence of SWs in sleeping mammals and birds, and their absence in sleeping reptiles, is attributable to the greater degree of interconnectivity within the neocortex and hyperpallium when compared to the dorsal cortex [N.C. Rattenborg, Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: A hypothesis, Brain Res. Bull. 69 (2006) 20-29]. Rial et al. (this issue) challenge this hypothesis by noting that high-amplitude SWs occur in awake reptiles. Based largely on this observation, they suggest that SWS in homeotherms evolved from reptilian wakefulness. SWs in awake reptiles do not seem to reflect neural processes comparable to those that generate sleep-related SWs in homeotherms, however. Moreover, the proposed conversion of reptilian wakefulness into SWS is untenable from behavioral, mechanistic and functional perspectives. A more parsimonious explanation is that the precursor state to SWS in homeotherms was a state comparable to reptilian sleep, rather than wakefulness, with the primary difference being that the reptilian dorsal cortex lacks the interconnectivity necessary to generate sleep-related SWs in the electroencephalogram.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Sleep & Flight Group, Max Planck Institute for Ornithology, Seewiesen, Postfach 1564, D-82305 Starnberg, Germany.
| |
Collapse
|
47
|
Abstract
Neuroanatomical evidence indicates that the lateral pallium (LP) of ray-finned fishes could be homologous to the hippocampus of mammals and birds. Recent studies have found that hippocampus of mammals and birds is critical for learning geometric properties of space. In this work, we studied the effects of lesions to the lateral pallium of goldfish on the encoding of geometric spatial information. Goldfish with telencephalic lesions were trained to search for a goal in a rectangular-shaped arena containing one different wall that served as the only distinctive environmental feature. Although fish with lateral pallium lesions learned the task even faster than sham and medial pallium (MP)-lesioned animals, subsequent probe trials showed that they were insensitive to geometric information. Sham and medial pallium-lesioned animals could use both geometric and feature information to locate the goal. By contrast, fish with lateral palium lesions relied exclusively on the feature information provided by the wall of a different colour. These results indicate that lesions to the lateral pallium of goldfish, like hippocampal lesions in mammals and birds, selectively impair the encoding of geometric spatial information of environmental space. Thus, the forebrain structures of teleost fish that are neuroanatomically equivalent to the mammalian and avian hippocampus also share a central role in supporting spatial cognition. Present results suggest that the presence of a hippocampal-dependent memory system implicated in the processing of geometric spatial information is an ancient feature of the vertebrate forebrain that has been conserved during the divergent evolution of different vertebrate groups.
Collapse
Affiliation(s)
- Juan Pedro Vargas
- Department of Psychology and J.P. Scott Center for Neuroscience, Mind and Behaviour, Bowling Green State University, Bowling Green, OH, USA.
| | | | | | | |
Collapse
|
48
|
Salas C, Broglio C, Durán E, Gómez A, Ocaña FM, Jiménez-Moya F, Rodríguez F. Neuropsychology of Learning and Memory in Teleost Fish. Zebrafish 2006; 3:157-71. [DOI: 10.1089/zeb.2006.3.157] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Cosme Salas
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | - Cristina Broglio
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | - Emilio Durán
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | - Antonia Gómez
- Laboratory of Psychobiology, University of Sevilla, Sevilla, Spain
| | | | | | | |
Collapse
|
49
|
Roth ED, Lutterschmidt WI, Wilson DA. Relative Medial and Dorsal Cortex Volume in Relation to Sex Differences in Spatial Ecology of a Snake Population. BRAIN, BEHAVIOR AND EVOLUTION 2006; 67:103-10. [PMID: 16244468 DOI: 10.1159/000089183] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2005] [Accepted: 08/03/2005] [Indexed: 11/19/2022]
Abstract
In non-avian reptiles the medial and dorsal cortices are putative homologues of the hippocampal formation in mammals and birds. Studies on mammals and birds commonly report neuro-ecological correlations between hippocampal volume and aspects of spatial ecology. We examined the relationship between putative homologous cortical volumes and spatial use in a population of the squamate reptile, Agkistrodon piscivorus, that exhibits sex differences in spatial use. Do male A. piscivorus that inhabit larger home ranges than females also have larger putative hippocampal volumes? Male and female brains were sectioned and digitized to quantify regional cortical volumes. Although sex differences in dorsal cortex volume were not observed, males had a significantly larger medial cortex relative to telencephalon volume. Similar to studies on mammals and birds, relative hippocampal or medial cortex volume was positively correlated with patterns of spatial use. We demonstrate volumetric sex differences within a reptilian putative hippocampal homologue.
Collapse
Affiliation(s)
- Eric D Roth
- Department of Zoology, University of Oklahoma, Norman, OK, USA.
| | | | | |
Collapse
|
50
|
Rattenborg NC. Evolution of slow-wave sleep and palliopallial connectivity in mammals and birds: a hypothesis. Brain Res Bull 2005; 69:20-9. [PMID: 16464681 DOI: 10.1016/j.brainresbull.2005.11.002] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2005] [Revised: 11/01/2005] [Accepted: 11/02/2005] [Indexed: 11/29/2022]
Abstract
Mammals and birds are the only animals that exhibit rapid eye-movement (REM) sleep and slow-wave sleep (SWS). Whereas the electroencephalogram (EEG) during REM sleep resembles the low-amplitude, high-frequency EEG of wakefulness, the EEG during SWS displays high-amplitude, slow-waves (1-4Hz). The absence of similar slow-waves (SWs) in sleeping reptiles suggests that the neuroanatomical and neurophysiological traits necessary for the genesis of SWs evolved independently in the mammalian and avian ancestors. Advances in our understanding of comparative neuroanatomy and the genesis of mammalian SWs suggest that the absence of SWs in reptiles is due to limited connectivity within the pallium, the dorsal portion of the telencephalon that includes the mammalian neocortex, reptilian dorsal cortex and avian Wulst (hyperpallium), as well as the dorsal ventricular ridge in birds and reptiles and the mammalian claustrum and pallial amygdala. In mammals, the slow oscillation (<1Hz) of cortical neurons acts through reciprocal corticothalamic loops and corticocortical connections to synchronize the 1-4Hz activity of thalamocortical neurons in a manner sufficient to generate SWs detectable in the EEG. Given the role that corticocortical (or palliopallial) connections play in the genesis of SWs in mammals, the degree of palliopallial connectivity might explain why birds show SWs and reptiles do not. Indeed, whereas the mammalian neocortex and avian pallium show extensive palliopallial connectivity, the reptilian pallium exhibits limited intrapallial connections. I thus propose that the evolution of SWs is linked to the independent evolution of extensive palliopallial connectivity in mammals and birds. As suggested by experiments functionally linking SWs to performance enhancements, the palliopallial connections that give rise to SWs might also depend on SWs to maintain their efficacy.
Collapse
Affiliation(s)
- Niels C Rattenborg
- Max Planck Institute for Ornithology, Seewiesen, Postfach 1564, Starnberg D-82305, Germany.
| |
Collapse
|