1
|
Miller JC, Delzell SB, Concepción-Acevedo J, Boucher MJ, Klingbeil MM. A DNA polymerization-independent role for mitochondrial DNA polymerase I-like protein C in African trypanosomes. J Cell Sci 2020; 133:jcs.233072. [PMID: 32079654 DOI: 10.1242/jcs.233072] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 02/10/2020] [Indexed: 01/01/2023] Open
Abstract
Mitochondrial DNA of Trypanosoma brucei and related parasites is a catenated network containing thousands of minicircles and tens of maxicircles, called kinetoplast DNA (kDNA). Replication of a single nucleoid requires at least three DNA polymerase I-like proteins (i.e. POLIB, POLIC and POLID), each showing discrete localizations near the kDNA during S phase. POLIB and POLID have roles in minicircle replication but the specific role of POLIC in kDNA maintenance is less clear. Here, we use an RNA interference (RNAi)-complementation system to dissect the functions of two distinct POLIC regions, i.e. the conserved family A DNA polymerase (POLA) domain and the uncharacterized N-terminal region (UCR). While RNAi complementation with wild-type POLIC restored kDNA content and cell cycle localization of kDNA, active site point mutations in the POLA domain impaired minicircle replication similar to that of POLIB and POLID depletions. Complementation with POLA domain alone abolished the formation of POLIC foci and partially rescued the RNAi phenotype. Furthermore, we provide evidence that the UCR is crucial in cell cycle-dependent protein localization and facilitates proper distribution of progeny networks. This is the first report of a DNA polymerase that impacts on mitochondrial nucleoid distribution.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Jonathan C Miller
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Stephanie B Delzell
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | - Jeniffer Concepción-Acevedo
- Centers for Disease Control and Prevention, National Center for Emerging and Zoonotic Infectious Diseases, 1600 Clifton Road, Atlanta, GA 30329, USA
| | - Michael J Boucher
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, CA 94158, USA
| | - Michele M Klingbeil
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA .,Division of Foodborne,Waterborne, and Environmental Diseases, The Institute of Applied Life Sciences, University of Massachusetts, Amherst, MA 01003, USA
| |
Collapse
|
2
|
Concepción-Acevedo J, Miller JC, Boucher MJ, Klingbeil MM. Cell cycle localization dynamics of mitochondrial DNA polymerase IC in African trypanosomes. Mol Biol Cell 2018; 29:2540-2552. [PMID: 30133333 PMCID: PMC6254582 DOI: 10.1091/mbc.e18-02-0127] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Trypanosoma brucei has a unique catenated mitochondrial DNA (mtDNA) network called kinetoplast DNA (kDNA). Replication of kDNA occurs once per cell cycle in near synchrony with nuclear S phase and requires the coordination of many proteins. Among these are three essential DNA polymerases (TbPOLIB, IC, and ID). Localization dynamics of these proteins with respect to kDNA replication stages and how they coordinate their functions during replication are not well understood. We previously demonstrated that TbPOLID undergoes dynamic localization changes that are coupled to kDNA replication events. Here, we report the localization of TbPOLIC, a second essential DNA polymerase, and demonstrate the accumulation of TbPOLIC foci at active kDNA replication sites (antipodal sites) during stage II of the kDNA duplication cycle. While TbPOLIC was undetectable by immunofluorescence during other cell cycle stages, steady-state protein levels measured by Western blot remained constant. TbPOLIC foci colocalized with the fraction of TbPOLID that localized to the antipodal sites. However, the partial colocalization of the two essential DNA polymerases suggests a highly dynamic environment at the antipodal sites to coordinate the trafficking of replication proteins during kDNA synthesis. These data indicate that cell cycle-dependent localization is a major regulatory mechanism for essential mtDNA polymerases during kDNA replication.
Collapse
Affiliation(s)
| | - Jonathan C Miller
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Michael J Boucher
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| | - Michele M Klingbeil
- Department of Microbiology, University of Massachusetts Amherst, Amherst, MA 01003
| |
Collapse
|
3
|
A second mitochondrial DNA primase is essential for cell growth and kinetoplast minicircle DNA replication in Trypanosoma brucei. EUKARYOTIC CELL 2011; 10:445-54. [PMID: 21257796 DOI: 10.1128/ec.00308-10] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The mitochondrial DNA of trypanosomes contains two types of circular DNAs, minicircles and maxicircles. Both minicircles and maxicircles replicate from specific replication origins by unidirectional theta-type intermediates. Initiation of the minicircle leading strand and also that of at least the first Okazaki fragment involve RNA priming. The Trypanosoma brucei genome encodes two mitochondrial DNA primases, PRI1 and PRI2, related to the primases of eukaryotic nucleocytoplasmic large DNA viruses. These primases are members of the archeoeukaryotic primase superfamily, and each of them contain an RNA recognition motif and a PriCT-2 motif. In Leishmania species, PRI2 proteins are approximately 61 to 66 kDa in size, whereas in Trypanosoma species, PRI2 proteins have additional long amino-terminal extensions. RNA interference (RNAi) of T. brucei PRI2 resulted in the loss of kinetoplast DNA and accumulation of covalently closed free minicircles. Recombinant PRI2 lacking this extension (PRI2ΔNT) primes poly(dA) synthesis on a poly(dT) template in an ATP-dependent manner. Mutation of two conserved aspartate residues (PRI2ΔNTCS) resulted in loss of enzymatic activity but not loss of DNA binding. We propose that PRI2 is directly involved in initiating kinetoplast minicircle replication.
Collapse
|
4
|
A mitochondrial DNA primase is essential for cell growth and kinetoplast DNA replication in Trypanosoma brucei. Mol Cell Biol 2010; 30:1319-28. [PMID: 20065037 DOI: 10.1128/mcb.01231-09] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Kinetoplast DNA in African trypanosomes contains a novel form of mitochondrial DNA consisting of thousands of minicircles and dozens of maxicircles topologically interlocked to form a two-dimensional sheet. The replication of this unusual form of mitochondrial DNA has been studied for more than 30 years, and although a large number of kinetoplast replication genes and proteins have been identified, in vitro replication of these DNAs has not been possible since a kinetoplast DNA primase has not been available. We describe here a Trypanosoma brucei DNA primase gene, PRI1, that encodes a 70-kDa protein that localizes to the kinetoplast and is essential for both cell growth and kinetoplast DNA replication. The expression of PRI1 mRNA is cyclic and reaches maximum levels at a time corresponding to duplication of the kinetoplast DNA. A 3'-hydroxyl-terminated oligoriboadenylate is synthesized on a poly(dT) template by a recombinant form of the PRI1 protein and is subsequently elongated by DNA polymerase and added dATP. Poly(dA) synthesis is dependent on both PRI1 protein and ATP and is inhibited by RNase H treatment of the product of PRI1 synthesis.
Collapse
|
5
|
Bruhn DF, Mozeleski B, Falkin L, Klingbeil MM. Mitochondrial DNA polymerase POLIB is essential for minicircle DNA replication in African trypanosomes. Mol Microbiol 2009; 75:1414-25. [PMID: 20132449 DOI: 10.1111/j.1365-2958.2010.07061.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
The unique mitochondrial DNA of trypanosomes is a catenated network of minicircles and maxicircles called kinetoplast DNA (kDNA). The network is essential for survival, and requires an elaborate topoisomerase-mediated release and reattachment mechanism for minicircle theta structure replication. At least seven DNA polymerases (pols) are involved in kDNA transactions, including three essential proteins related to bacterial DNA pol I (POLIB, POLIC and POLID). How Trypanosoma brucei utilizes multiple DNA pols to complete the topologically complex task of kDNA replication is unknown. To fill this gap in knowledge we investigated the cellular role of POLIB using RNA interference (RNAi). POLIB silencing resulted in growth inhibition and progressive loss of kDNA networks. Additionally, unreplicated covalently closed precursors become the most abundant minicircle replication intermediate as minicircle copy number declines. Leading and lagging strand minicircle progeny similarly declined during POLIB silencing, indicating POLIB had no apparent strand preference. Interestingly, POLIB RNAi led to the accumulation of a novel population of free minicircles that is composed mainly of covalently closed minicircle dimers. Based on these data, we propose that POLIB performs an essential role at the core of the minicircle replication machinery.
Collapse
Affiliation(s)
- David F Bruhn
- Department of Microbiology, University of Massachusetts, Amherst, MA 01003, USA
| | | | | | | |
Collapse
|
6
|
Stem-loop silencing reveals that a third mitochondrial DNA polymerase, POLID, is required for kinetoplast DNA replication in trypanosomes. EUKARYOTIC CELL 2008; 7:2141-6. [PMID: 18849470 DOI: 10.1128/ec.00199-08] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Kinetoplast DNA (kDNA), the mitochondrial genome of trypanosomes, is a catenated network containing thousands of minicircles and tens of maxicircles. The topological complexity dictates some unusual features including a topoisomerase-mediated release-and-reattachment mechanism for minicircle replication and at least six mitochondrial DNA polymerases (Pols) for kDNA transactions. Previously, we identified four family A DNA Pols from Trypanosoma brucei with similarity to bacterial DNA Pol I and demonstrated that two (POLIB and POLIC) were essential for maintaining the kDNA network, while POLIA was not. Here, we used RNA interference to investigate the function of POLID in procyclic T. brucei. Stem-loop silencing of POLID resulted in growth arrest and the progressive loss of the kDNA network. Additional defects in kDNA replication included a rapid decline in minicircle and maxicircle abundance and a transient accumulation of minicircle replication intermediates before loss of the kDNA network. These results demonstrate that POLID is a third essential DNA Pol required for kDNA replication. While other eukaryotes utilize a single DNA Pol (Pol gamma) for replication of mitochondrial DNA, T. brucei requires at least three to maintain the complex kDNA network.
Collapse
|
7
|
Sinha KM, Hines JC, Ray DS. Cell cycle-dependent localization and properties of a second mitochondrial DNA ligase in Crithidia fasciculata. EUKARYOTIC CELL 2006; 5:54-61. [PMID: 16400168 PMCID: PMC1360255 DOI: 10.1128/ec.5.1.54-61.2006] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The mitochondrial DNA in kinetoplastid protozoa is contained in a single highly condensed structure consisting of thousands of minicircles and approximately 25 maxicircles. The disk-shaped structure is termed kinetoplast DNA (kDNA) and is located in the mitochondrial matrix near the basal body. We have previously identified a mitochondrial DNA ligase (LIG kbeta) in the trypanosomatid Crithidia fasciculata that localizes to antipodal sites flanking the kDNA disk where several other replication proteins are localized. We describe here a second mitochondrial DNA ligase (LIG kalpha). LIG kalpha localizes to the kinetoplast primarily in cells that have completed mitosis and contain either a dividing kinetoplast or two newly divided kinetoplasts. Essentially all dividing or newly divided kinetoplasts show localization of LIG kalpha. The ligase is present on both faces of the kDNA disk and at a high level in the kinetoflagellar zone of the mitochondrial matrix. Cells containing a single nucleus show localization of the LIG kalpha to the kDNA but at a much lower frequency. The mRNA level of LIG kalpha varies during the cell cycle out of phase with that of LIG kbeta. LIG kalpha transcript levels are maximal during the phase when cells contain two nuclei, whereas LIG kbeta transcript levels are maximal during S phase. The LIG kalpha protein decays with a half-life of 100 min in the absence of protein synthesis. The periodic expression of the LIG kalpha transcript and the instability of the LIG kalpha protein suggest a possible role of the ligase in regulating minicircle replication.
Collapse
Affiliation(s)
- Krishna Murari Sinha
- Molecular Biology Institute and Department of Microbiology, Immunology and Molecular Genetics, University of California at Los Angeles, 301A Paul D. Boyer Hall, 611 Charles Young Dr. East, Los Angeles, California 90095-1570, USA
| | | | | |
Collapse
|
8
|
Abstract
The mitochondrial DNA of Trypanosoma brucei, termed kinetoplast DNA or kDNA, consists of thousands of minicircles and a small number of maxicircles catenated into a single network organized as a nucleoprotein disk at the base of the flagellum. Minicircles are replicated free of the network but still contain nicks and gaps after rejoining to the network. Covalent closure of remaining discontinuities in newly replicated minicircles after their rejoining to the network is delayed until all minicircles have been replicated. The DNA ligase involved in this terminal step in minicircle replication has not been identified. A search of kinetoplastid genome databases has identified two putative DNA ligase genes in tandem. These genes (LIG k alpha and LIG k beta) are highly diverged from mitochondrial and nuclear DNA ligase genes of higher eukaryotes. Expression of epitope-tagged versions of these genes shows that both LIG k alpha and LIG k beta are mitochondrial DNA ligases. Epitope-tagged LIG k alpha localizes throughout the kDNA, whereas LIG k beta shows an antipodal localization close to, but not overlapping, that of topoisomerase II, suggesting that these proteins may be contained in distinct structures or protein complexes. Knockdown of the LIG k alpha mRNA by RNA interference led to a cessation of the release of minicircles from the network and resulted in a reduction in size of the kDNA networks and rapid loss of the kDNA from the cell. Closely related pairs of mitochondrial DNA ligase genes were also identified in Leishmania major and Crithidia fasciculata.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Cloning, Molecular
- DNA Ligases/genetics
- DNA Ligases/metabolism
- DNA Topoisomerases, Type II/metabolism
- DNA, Kinetoplast/genetics
- DNA, Kinetoplast/metabolism
- DNA, Mitochondrial/genetics
- DNA, Protozoan/genetics
- Databases as Topic
- Genome
- Mitochondria/enzymology
- Molecular Sequence Data
- RNA Interference
- RNA, Messenger/antagonists & inhibitors
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Homology, Amino Acid
- Trypanosoma brucei brucei/enzymology
- Trypanosoma brucei brucei/genetics
- Trypanosoma brucei brucei/ultrastructure
Collapse
Affiliation(s)
- Nick Downey
- Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, California 90095-1570, USA
| | | | | | | |
Collapse
|
9
|
Liu Y, Motyka SA, Englund PT. Effects of RNA interference of Trypanosoma brucei structure-specific endonuclease-I on kinetoplast DNA replication. J Biol Chem 2005; 280:35513-20. [PMID: 16096280 DOI: 10.1074/jbc.m507296200] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Kinetoplast DNA, the mitochondrial DNA of trypanosomatid protozoa, is a network containing several thousand topologically interlocked DNA minicircles. Kinetoplast DNA synthesis involves release of minicircles from the network, replication of the free minicircles, and reattachment of the progeny back onto the network. One enzyme involved in this process is structure-specific endonuclease-I. This enzyme, originally purified from Crithidia fasciculata, has been proposed to remove minicircle replication primers (Engel, M. L., and Ray, D. S. (1998) Nucleic Acids Res. 26, 4773-4778). We have studied the structure-specific endonuclease-I homolog from Trypanosoma brucei, showing it to be localized in the antipodal sites flanking the kinetoplast DNA disk, as previously shown in C. fasciculata. RNA interference of structure-specific endonuclease-I caused persistence of a single ribonucleotide at the 5' end of both the leading strand and at least the first Okazaki fragment in network minicircles, demonstrating that this enzyme in fact functions in primer removal. Probably because of the persistence of primers, RNA interference also impeded the reattachment of newly replicated free minicircles to the network and caused a delay in kinetoplast DNA segregation. These effects ultimately led to shrinkage and loss of the kinetoplast DNA network and cessation of growth of the cell.
Collapse
Affiliation(s)
- Yanan Liu
- Department of Biological Chemistry, Johns Hopkins Medical School, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
10
|
Sinha KM, Hines JC, Downey N, Ray DS. Mitochondrial DNA ligase in Crithidia fasciculata. Proc Natl Acad Sci U S A 2004; 101:4361-6. [PMID: 15070723 PMCID: PMC384752 DOI: 10.1073/pnas.0305705101] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Kinetoplast DNA (kDNA), the form of mitochondrial DNA in trypanosomatids, consists of thousands of interlocked circular DNAs organized into a compact disk structure. A type II DNA topoisomerase, a DNA polymerase beta, and a structure-specific endonuclease have been localized to antipodal sites flanking the kDNA disk along with nascent DNA minicircles. We have cloned a gene (LIG k) encoding a mitochondrial DNA ligase in the trypanosomatid Crithidia fasciculata, and we show that an epitope-tagged form of the ligase colocalizes with the other replication proteins at the antipodal sites and also at the two faces of the kDNA disk. DNA LIG k becomes adenylated in reactions with ATP, and the adenylate moiety is removed by incubation with pyrophosphate or nicked DNA. The ligase interacts physically with the beta polymerase and is proposed to be involved in the repair of gaps in the newly synthesized minicircles. In yeast and mammals, a single gene encodes both nuclear and mitochondrial forms of DNA ligase. The LIG K protein sequence has low similarity to mitochondrial DNA ligases in other eukaryotes and is distinct from the C. fasciculata nuclear DNA ligase (LIG I).
Collapse
Affiliation(s)
- Krishna Murari Sinha
- Molecular Biology Institute and Department of Microbiology, Immunology, and Molecular Genetics, University of California, Los Angeles, CA 90095, USA
| | | | | | | |
Collapse
|
11
|
Saxowsky TT, Choudhary G, Klingbeil MM, Englund PT. Trypanosoma brucei has two distinct mitochondrial DNA polymerase beta enzymes. J Biol Chem 2003; 278:49095-101. [PMID: 12966090 DOI: 10.1074/jbc.m308565200] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In higher eukaryotes, DNA polymerase (pol) beta resides in the nucleus and participates primarily in DNA repair. The DNA polymerase beta from the trypanosomatid Crithidia fasciculata, however, was the first mitochondrial enzyme of this type described. Upon searching the nearly completed genome data base of the related parasite Trypanosoma brucei, we discovered genes for two pol beta-like proteins. One is approximately 70% identical to the C. fasciculata pol beta and is likely the homolog of this enzyme. The other, although approximately 30% identical within the polymerase region, has unusual structural features including a short C-terminal tail and a long N-terminal extension rich in prolines, alanines, and lysines. Both proteins, when expressed recombinantly, are active as DNA polymerases and deoxyribose phosphate lyases, but their polymerase activity optima differ with respect to pH and KCl and MgCl2 concentrations. Remarkably, green fluorescent protein fusion proteins and immunofluorescence demonstrate that both are mitochondrial, but their locations with respect to the mitochondrial DNA (kinetoplast DNA network) in this organism are strikingly different.
Collapse
Affiliation(s)
- Tina T Saxowsky
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | | | |
Collapse
|
12
|
Saxowsky TT, Matsumoto Y, Englund PT. The mitochondrial DNA polymerase beta from Crithidia fasciculata has 5'-deoxyribose phosphate (dRP) lyase activity but is deficient in the release of dRP. J Biol Chem 2002; 277:37201-6. [PMID: 12151410 DOI: 10.1074/jbc.m206654200] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
DNA polymerase beta (pol beta) has long been described as a nuclear enzyme involved in DNA repair. A pol beta from the trypanosomatid parasite Crithidia fasciculata, however, is the first example of a mitochondrial enzyme of this type. The mammalian nuclear enzyme functions not only as a nucleotidyl transferase but also has a dRP lyase activity that cleaves 5'-deoxyribose phosphate (dRP) groups from DNA, thus contributing to two consecutive steps of the base excision repair pathway. We find that the mitochondrial pol beta also has dRP lyase activity. Interestingly, the K(m) of this enzyme for a dRP-containing substrate is similar to that for the rat enzyme, but its k(cat) is very low. This difference is due to a deficiency of the mitochondrial enzyme in the release of dRP from the enzyme following its cleavage from the DNA.
Collapse
Affiliation(s)
- Tina T Saxowsky
- Department of Biological Chemistry, Johns Hopkins School of Medicine, Baltimore, Maryland 21205, USA
| | | | | |
Collapse
|
13
|
Klingbeil MM, Drew ME, Liu Y, Morris JC, Motyka SA, Saxowsky TT, Wang Z, Englund PT. Unlocking the secrets of trypanosome kinetoplast DNA network replication. Protist 2001; 152:255-62. [PMID: 11822657 DOI: 10.1078/1434-4610-00066] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|