1
|
Tai MDS, Ochoa L, Flydal MI, Velasco-Carneros L, Muntaner J, Santiago C, Gamiz-Arco G, Moro F, Jung-Kc K, Gil-Cantero D, Marcilla M, Kallio JP, Muga A, Valpuesta JM, Cuéllar J, Martinez A. Structural recognition and stabilization of tyrosine hydroxylase by the J-domain protein DNAJC12. Nat Commun 2025; 16:2755. [PMID: 40113792 PMCID: PMC11926245 DOI: 10.1038/s41467-025-57733-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/28/2025] [Indexed: 03/22/2025] Open
Abstract
Pathogenic variants of the J-domain protein DNAJC12 cause parkinsonism, which is associated with a defective interaction of DNAJC12 with tyrosine hydroxylase (TH), the rate-limiting enzyme in dopamine biosynthesis. In this work, we characterize the formation of the TH:DNAJC12 complex, showing that DNAJC12 binding stabilizes both TH and the variant TH-p.R202H, associated with TH deficiency. This binding delays their time-dependent aggregation in an Hsp70-independent manner, while preserving TH activity and feedback regulatory inhibition by dopamine. DNAJC12 alone barely activates Hsc70 but synergistically stimulates Hsc70 ATPase activity when complexed with TH. Cryo-electron microscopy supported by crosslinking-mass spectroscopy reveals two DNAJC12 monomers bound per TH tetramer, each embracing one of the two regulatory domain dimers, leaving the active sites available for substrate, cofactor and inhibitory dopamine interaction. Our results also reveal the key role of the C-terminal region of DNAJC12 in TH binding, explaining the pathogenic mechanism of the DNAJC12 disease variant p.W175Ter.
Collapse
Affiliation(s)
- Mary Dayne S Tai
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Lissette Ochoa
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Marte I Flydal
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Lorea Velasco-Carneros
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena, Leioa, Spain
| | | | - César Santiago
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain
| | - Gloria Gamiz-Arco
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
| | - Fernando Moro
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena, Leioa, Spain
| | - Kunwar Jung-Kc
- Department of Biomedicine, University of Bergen, Bergen, Norway
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway
| | | | | | - Juha P Kallio
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Arturo Muga
- Instituto Biofisika (UPV/EHU, CSIC) and Departamento de Bioquímica y Biología Molecular, Facultad de Ciencia y Tecnología, Universidad del País Vasco (UPV/EHU), Barrio Sarriena, Leioa, Spain
| | - José María Valpuesta
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
- Unidad de Nanobiotecnología, CNB-CSIC-IMDEA Nanociencia Associated Unit, Madrid, Spain.
| | - Jorge Cuéllar
- Centro Nacional de Biotecnología (CNB-CSIC), Madrid, Spain.
| | - Aurora Martinez
- Department of Biomedicine, University of Bergen, Bergen, Norway.
- Neuro-SysMed Center, Department of Neurology, Haukeland University Hospital, Bergen, Norway.
- K.G Jebsen Center for Translational Research in Parkinson's Disease, University of Bergen, Bergen, Norway.
| |
Collapse
|
2
|
Gatti PHF, Mangone FRR, Pavanelli AC, Nonogaki S, Osorio CABDT, Capelozzi VL, Nagai MA. Downregulation of DNAJC12 Expression Predicts Worse Survival for ER-Positive Breast Cancer Patients. Biomark Insights 2025; 20:11772719251323095. [PMID: 40008192 PMCID: PMC11851741 DOI: 10.1177/11772719251323095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/06/2025] [Indexed: 02/27/2025] Open
Abstract
Background DNAJC12 (DnaJ heat shock protein family (Hsp40) member C12) encodes a member of the molecular chaperone Hsp40/DnaJ family, which are important protein folding and proteostasis regulators. Its role as a biomarker has been studied for a limited number of cancer types. Objectives: Here, we sought to investigate the potential of DNAJC12 mRNA and protein expression as a prognostic and predictive biomarker for breast cancer (BC). Methods Using in silico analysis and data from immunohistochemistry analysis (IHC) of 292 samples from patients with primary BC, we determined the expression pattern and prognostic value of DNAJC12 mRNA and protein expression. Results From online publicly available data, we were able to identify the transcripts of DNAJC12 as differentially expressed in patients with different clinicopathological characteristics, such as ER status (P < .001), PR status (P < .001), HER2 status (P < .010) and molecular subtype (P ⩽ .001). We also found DNAJC12 to be a potential prognostic predictor for overall survival, disease-free survival, and responsiveness to treatment; a low DNAJC12 mRNA expression is commonly associated with a worse prognosis. Using IHC analysis, we showed that low DNAJC12 protein-level expression is also associated with a worse prognosis in patients with all subtypes of BC and patients with Luminal BC, and its expression is significantly different between patients with different tumor size classifications (T1/T2 vs T3/T4; P = .013) or with different lymph node involvement (N0 vs N+; P = .005). Conclusion Our findings suggested a potential role for DNAJC12 as a prognostic and predictive biomarker for BC.
Collapse
Affiliation(s)
- Pedro Henrique Fernandes Gatti
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
| | - Flavia Regina Rotea Mangone
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
| | - Ana Carolina Pavanelli
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
| | - Suely Nonogaki
- Departamento de Patologia, A.C.Camargo Cancer Center, São Paulo, Brazil
| | | | - Vera Luiza Capelozzi
- Department of Pathology, University of São Paulo Medical School, São Paulo, Brazil
| | - Maria Aparecida Nagai
- Laboratory of Molecular Genetics, Centro de Investigação Translacional em Oncologia-CTO, Instituto do Câncer do Estado de São Paulo (ICESP), Faculdade de Medicina da Universidade de São Paulo (FMUSP), São Paulo, Brazil
- Comprehensive Center for Precision Oncology (C2PO), Universidade de São Paulo, São Paulo, Brazil
- Departamento de Radiologia e Oncologia, Faculdade de Medicina da Universidade de São Paulo (USP), São Paulo, Brazil
| |
Collapse
|
3
|
Shen M, Cao S, Long X, Xiao L, Yang L, Zhang P, Li L, Chen F, Lei T, Gao H, Ye F, Bu H. DNAJC12 causes breast cancer chemotherapy resistance by repressing doxorubicin-induced ferroptosis and apoptosis via activation of AKT. Redox Biol 2024; 70:103035. [PMID: 38306757 PMCID: PMC10847378 DOI: 10.1016/j.redox.2024.103035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/04/2024] Open
Abstract
BACKGROUND Chemotherapy is a primary treatment for breast cancer (BC), yet many patients develop resistance over time. This study aims to identify critical factors contributing to chemoresistance and their underlying molecular mechanisms, with a focus on reversing this resistance. METHODS We utilized samples from the Gene Expression Omnibus (GEO) and West China Hospital to identify and validate genes associated with chemoresistance. Functional studies were conducted using MDA-MB-231 and MCF-7 cell lines, involving gain-of-function and loss-of-function approaches. RNA sequencing (RNA-seq) identified potential mechanisms. We examined interactions between DNAJC12, HSP70, and AKT using co-immunoprecipitation (Co-IP) assays and established cell line-derived xenograft (CDX) models for in vivo validations. RESULTS Boruta analysis of four GEO datasets identified DNAJC12 as highly significant. Patients with high DNAJC12 expression showed an 8 % pathological complete response (pCR) rate, compared to 38 % in the low expression group. DNAJC12 inhibited doxorubicin (DOX)-induced cell death through both ferroptosis and apoptosis. Combining apoptosis and ferroptosis inhibitors completely reversed DOX resistance caused by DNAJC12 overexpression. RNA-seq suggested that DNAJC12 overexpression activated the PI3K-AKT pathway. Inhibition of AKT reversed the DOX resistance induced by DNAJC12, including reduced apoptosis and ferroptosis, restoration of cleaved caspase 3, and decreased GPX4 and SLC7A11 levels. Additionally, DNAJC12 was found to increase AKT phosphorylation in an HSP70-dependent manner, and inhibiting HSP70 also reversed the DOX resistance. In vivo studies confirmed that AKT inhibition reversed DNAJC12-induced DOX resistance in the CDX model. CONCLUSION DNAJC12 expression is closely linked to chemoresistance in BC. The DNAJC12-HSP70-AKT signaling axis is crucial in mediating resistance to chemotherapy by suppressing DOX-induced ferroptosis and apoptosis. Our findings suggest that targeting AKT and HSP70 activities may offer new therapeutic strategies to overcome chemoresistance in BC.
Collapse
Affiliation(s)
- Mengjia Shen
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Shiyu Cao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Xinyi Long
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lin Xiao
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Libo Yang
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Peichuan Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Li Li
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Fei Chen
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Ting Lei
- Department of Pathology, The Third Affiliated Hospital of Soochow University, Changzhou, Jiangsu 213003, China
| | - Hongwei Gao
- Laboratory Medicine Center, Lanzhou University Second Hospital, The Second Clinical Medical College of Lanzhou University, Lanzhou 730000, China
| | - Feng Ye
- Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Hong Bu
- Department of Pathology, West China Hospital, Sichuan University, No. 37, Guo Xue Xiang, Chengdu, 610041, Sichuan, China; Institute of Clinical Pathology, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China; Key Lab of Transplant Engineering and Immunology, Ministry of Health, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Donnelly C, Estrella L, Ginevic I, Ganesh J. A Case of DNAJC12-Deficient Hyperphenylalaninemia Detected on Newborn Screening: Clinical Outcomes from Early Detection. Int J Neonatal Screen 2024; 10:7. [PMID: 38248634 PMCID: PMC10801465 DOI: 10.3390/ijns10010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/04/2024] [Accepted: 01/10/2024] [Indexed: 01/23/2024] Open
Abstract
DNAJC12-deficient hyperphenylalaninemia is a recently described inborn error of metabolism associated with hyperphenylalaninemia, neurotransmitter deficiency, and developmental delay caused by biallelic pathogenic variants of the DNAJC12 gene. The loss of the DNAJC12-encoded chaperone results in the destabilization of the biopterin-dependent aromatic amino acid hydroxylases, resulting in deficiencies in dopamine, norepinephrine, and serotonin. We present the case of a patient who screened positive for hyperphenylalaninemia on newborn screening and was discovered to be homozygous for a likely pathogenic variant of DNAJC12. Here, we review the management of DNAJC12-related hyperphenylalaninemia and compare our patient to other reported cases in the literature to investigate how early detection and management may impact clinical outcomes.
Collapse
Affiliation(s)
- Colleen Donnelly
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.E.)
| | | | | | - Jaya Ganesh
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; (L.E.)
| |
Collapse
|
5
|
Li M, Yang Q, Yi S, Qin Z, Luo J, Fan X. Two novel mutations in DNAJC12 identified by whole-exome sequencing in a patient with mild hyperphenylalaninemia. Mol Genet Genomic Med 2020; 8:e1303. [PMID: 32519510 PMCID: PMC7434608 DOI: 10.1002/mgg3.1303] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 04/22/2020] [Accepted: 04/23/2020] [Indexed: 12/23/2022] Open
Abstract
Background Recently hyperphenylalaninemia (HPA) caused by variants in DNAJC12 was reported and this suggested a new strategy for diagnosis. But DNAJC12‐associated HPA is a rare in Chinese population so far. Methods The clinical information and blood samples from the patient and his family members were collected and analyzed. Whole‐exome sequencing (WES) was used to identify the causative gene. Results We reported a newborn patient with HPA, having excluded the causes in common genes associated with HPA. By using whole‐exome sequencing, novel compound heterozygosity mutations in DNAJC12 were found, namely c.306C>G (p.His102Gln) and c.182delA (p.Lys61Argfs*6). Administering a diet with low phenylalanine combined with tetrahydrobiopterin and neurotransmitter precursors were shown to be effective in preventing neurodevelopmental delay for these patients. Conclusion Our finding confirms the diagnosis of DNAJC12‐associated HPA and suggests that genetic detection of DNAJC12 should be considered when newborn screening results are positive for HPA.
Collapse
Affiliation(s)
- Mengting Li
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Qi Yang
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Sheng Yi
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Zailong Qin
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Jingsi Luo
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China
| | - Xin Fan
- Department of Genetic and Metabolic Central Laboratory, Maternal and Child Health Hospital of Guangxi Zhuang Autonomous Region, Nanning, China.,Department of Pediatric, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
6
|
Gallego D, Leal F, Gámez A, Castro M, Navarrete R, Sanchez-Lijarcio O, Vitoria I, Bueno-Delgado M, Belanger-Quintana A, Morais A, Pedrón-Giner C, García I, Campistol J, Artuch R, Alcaide C, Cornejo V, Gil D, Yahyaoui R, Desviat LR, Ugarte M, Martínez A, Pérez B. Pathogenic variants of DNAJC12 and evaluation of the encoded cochaperone as a genetic modifier of hyperphenylalaninemia. Hum Mutat 2020; 41:1329-1338. [PMID: 32333439 DOI: 10.1002/humu.24026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 03/18/2020] [Accepted: 04/17/2020] [Indexed: 12/26/2022]
Abstract
Biallelic variants of the gene DNAJC12, which encodes a cochaperone, were recently described in patients with hyperphenylalaninemia (HPA). This paper reports the retrospective genetic analysis of a cohort of unsolved cases of HPA. Biallelic variants of DNAJC12 were identified in 20 patients (generally neurologically asymptomatic) previously diagnosed with phenylalanine hydroxylase (PAH) deficiency (phenylketonuria [PKU]). Further, mutations of DNAJC12 were identified in four carriers of a pathogenic variant of PAH. The genetic spectrum of DNAJC12 in the present patients included four new variants, two intronic changes c.298-2A>C and c.502+1G>C, presumably affecting the splicing process, and two exonic changes c.309G>T (p.Trp103Cys) and c.524G>A (p.Trp175Ter), classified as variants of unknown clinical significance (VUS). The variant p.Trp175Ter was detected in 83% of the mutant alleles, with 14 cases homozygous, and was present in 0.3% of a Spanish control population. Functional analysis indicated a significant reduction in PAH and its activity, reduced tyrosine hydroxylase stability, but no effect on tryptophan hydroxylase 2 stability, classifying the two VUS as pathogenic variants. Additionally, the effect of the overexpression of DNAJC12 on some destabilizing PAH mutations was examined and a mutation-specific effect on stabilization was detected suggesting that the proteostasis network could be a genetic modifier of PAH deficiency and a potential target for developing mutation-specific treatments for PKU.
Collapse
Affiliation(s)
- Diana Gallego
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Fátima Leal
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Alejandra Gámez
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Margarita Castro
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Rosa Navarrete
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Obdulia Sanchez-Lijarcio
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Isidro Vitoria
- Unidad de Nutrición y Metabolopatías, Hospital Universitario La Fe, Valencia, Spain
| | | | - Amaya Belanger-Quintana
- Unidad de Enfermedades Metabólicas Congénitas, Hospital Universitario Ramón y Cajal, Madrid, Spain
| | - Ana Morais
- Unidad de Nutrición Infantil y Enfermedades Metabólicas, Hospital Universitario La Paz, Madrid, Spain
| | - Consuelo Pedrón-Giner
- Unidad de Gastroenterología y Nutrición, Hospital Infantil Universitario Niño Jesús, Madrid, Spain
| | - Inmaculada García
- Unidad de Enfermedades Metabólicas, Hospital Universitario Miguel Servet, Zaragoza, Spain
| | - Jaume Campistol
- Unidad de Enfermedades Metabólicas Congénitas, Institut de Recerca and Hospital Universitario Sant Joan de Déu, Barcelona, Spain
| | - Rafael Artuch
- Unidad de Enfermedades Metabólicas Congénitas, Institut de Recerca and Hospital Universitario Sant Joan de Déu, Barcelona, Spain
| | | | | | - David Gil
- Unidad de Gastroenterología, Hepatología y Nutrición Pediátrica, Hospital Virgen de la Arrixaca, Murcia, Spain
| | - Raquel Yahyaoui
- Unidad de Metabolopatías Instituto de Investigación Biomédica de Málaga-IBIMA, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Lourdes R Desviat
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Magdalena Ugarte
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| | - Aurora Martínez
- Department of Biomedicine, University of Bergen, Bergen, Norway
| | - Belén Pérez
- Centro de Diagnóstico de Enfermedades Moleculares, Universidad Autónoma de Madrid, Madrid, Spain
| |
Collapse
|
7
|
de Alcantara Filho PR, Mangone FR, Pavanelli AC, de Bessa Garcia SA, Nonogaki S, de Toledo Osório CAB, de Andrade VP, Nagai MA. Gene expression profiling of triple-negative breast tumors with different expression of secreted protein acidic and cysteine rich (SPARC). BREAST CANCER MANAGEMENT 2018. [DOI: 10.2217/bmt-2017-0019] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: To determine the expression signature of triple-negative breast cancer (TNBC) with differences of secreted protein acidic and rich in cysteine expression and clinical behavior. Patients, materials & methods: cDNA microarray analysis was performed to determine the expression profiling of TNBC, characterized regarding secreted protein acidic and rich in cysteine expression status. Immunohistochemistry analysis on tissue microarrays containing an independent cohort of TNBC was performed for validation. Results: Negative staining of SOHLH2 and positive staining of DNAJC12 and LIM1 was correlated with a poor outcome of the patients. Conclusion: Our findings provide new information on transcriptome changes associated with the clinical behavior of TNBC that may serve as a potential tool for the identification and characterization of new candidate biomarkers.
Collapse
Affiliation(s)
- Paulo R de Alcantara Filho
- Discipline of Oncology, Department of Radiology & Oncology, Faculty of Medicine, University of São Paulo, 01246–903, São Paulo, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246–000, São Paulo, Brazil
- Department of Breast Surgery, A. C. Camargo Cancer Center, 01509-020, São Paulo, Brazil
| | - Flavia R Mangone
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246–000, São Paulo, Brazil
| | - Ana C Pavanelli
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246–000, São Paulo, Brazil
| | - Simone A de Bessa Garcia
- Discipline of Oncology, Department of Radiology & Oncology, Faculty of Medicine, University of São Paulo, 01246–903, São Paulo, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246–000, São Paulo, Brazil
| | - Suely Nonogaki
- Department of Pathology, A. C. Camargo Cancer Center, 01509-020, São Paulo, Brazil
| | | | - Victor P de Andrade
- Department of Pathology, A. C. Camargo Cancer Center, 01509-020, São Paulo, Brazil
| | - Maria A Nagai
- Discipline of Oncology, Department of Radiology & Oncology, Faculty of Medicine, University of São Paulo, 01246–903, São Paulo, Brazil
- Laboratory of Molecular Genetics, Center for Translational Research in Oncology, Cancer Institute of the State of São Paulo (ICESP), 01246–000, São Paulo, Brazil
| |
Collapse
|
8
|
Méplan C, Johnson IT, Polley ACJ, Cockell S, Bradburn DM, Commane DM, Arasaradnam RP, Mulholland F, Zupanic A, Mathers JC, Hesketh J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies. FASEB J 2016; 30:2812-25. [PMID: 27103578 DOI: 10.1096/fj.201600251r] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2016] [Accepted: 04/12/2016] [Indexed: 01/11/2023]
Abstract
Epidemiologic studies highlight the potential role of dietary selenium (Se) in colorectal cancer prevention. Our goal was to elucidate whether expression of factors crucial for colorectal homoeostasis is affected by physiologic differences in Se status. Using transcriptomics and proteomics followed by pathway analysis, we identified pathways affected by Se status in rectal biopsies from 22 healthy adults, including 11 controls with optimal status (mean plasma Se = 1.43 μM) and 11 subjects with suboptimal status (mean plasma Se = 0.86 μM). We observed that 254 genes and 26 proteins implicated in cancer (80%), immune function and inflammatory response (40%), cell growth and proliferation (70%), cellular movement, and cell death (50%) were differentially expressed between the 2 groups. Expression of 69 genes, including selenoproteins W1 and K, which are genes involved in cytoskeleton remodelling and transcription factor NFκB signaling, correlated significantly with Se status. Integrating proteomics and transcriptomics datasets revealed reduced inflammatory and immune responses and cytoskeleton remodelling in the suboptimal Se status group. This is the first study combining omics technologies to describe the impact of differences in Se status on colorectal expression patterns, revealing that suboptimal Se status could alter inflammatory signaling and cytoskeleton in human rectal mucosa and so influence cancer risk.-Méplan, C., Johnson, I. T., Polley, A. C. J., Cockell, S., Bradburn, D. M., Commane, D. M., Arasaradnam, R. P., Mulholland, F., Zupanic, A., Mathers, J. C., Hesketh, J. Transcriptomics and proteomics show that selenium affects inflammation, cytoskeleton, and cancer pathways in human rectal biopsies.
Collapse
Affiliation(s)
- Catherine Méplan
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom; School of Biomedical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom; Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom; The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom;
| | - Ian T Johnson
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Abigael C J Polley
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Simon Cockell
- Bioinformatics Support Unit, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | | | - Daniel M Commane
- Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Ramesh P Arasaradnam
- School of Biomedical Sciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom; Wansbeck General Hospital, Ashingon, United Kingdom; and **Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - Francis Mulholland
- Institute of Food Research, Norwich Research Park, Norwich, United Kingdom
| | - Anze Zupanic
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John C Mathers
- Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom; **Institute of Cellular Medicine, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| | - John Hesketh
- Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle-upon-Tyne, United Kingdom; Human Nutrition Research Centre, Newcastle University, Newcastle-upon-Tyne, United Kingdom; The Medical School, Newcastle University, Newcastle-upon-Tyne, United Kingdom
| |
Collapse
|
9
|
He HL, Lee YE, Chen HP, Hsing CH, Chang IW, Shiue YL, Lee SW, Hsu CT, Lin LC, Wu TF, Li CF. Overexpression of DNAJC12 predicts poor response to neoadjuvant concurrent chemoradiotherapy in patients with rectal cancer. Exp Mol Pathol 2015; 98:338-345. [PMID: 25805104 DOI: 10.1016/j.yexmp.2015.03.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 03/20/2015] [Indexed: 12/16/2022]
Abstract
Genes associated with protein folding have been found to have certain prognostic significance in a subset of cancers. The aim of this study is to evaluate the clinical impact of DNAJC12 expression in patients with rectal cancers receiving neoadjuvant concurrent chemoradiotherapy (CCRT) followed by surgery. Through data mining from a public transcriptomic dataset of rectal cancer focusing on genes associated with protein folding, we found that DNAJC12, a member of the HSP40/DNAJ family, was the most significant such gene correlated with the CCRT response. We further evaluated the expression of DNAJC12 by immunohistochemistry in the pre-treatment tumor specimens from 172 patients with rectal cancers. From this set, we statistically analyzed the association of DNAJC12 expression with various clinicopathological factors, tumor regression grade, overall survival (OS), disease-free survival (DFS) and local recurrence-free survival (LRFS). High expression of DNAJC12 was significantly associated with advanced pre- and post-treatment tumor status (P<0.001), advanced pre- and post-treatment nodal status (P<0.001), increased vascular invasion (P=0.015), increased perineural invasion (P=0.023) and lower tumor regression grade (P=0.009). More importantly, high expression of DNAJC12 was found to be correlated with poor prognosis for OS (P=0.0012), DFS (P<0.0001) and LRFS (P=0.0001). In multivariate analysis, DNAJC12 overexpression still emerged as an independent prognosticator for shorter OS (P=0.040), DFS (P<0.001) and LRFS (P=0.016). The data indicate that DNAJC12 overexpression acts as a negative predictive factor for the response to neoadjuvant CCRT and was significantly associated with shorter survival in patients with rectal cancers receiving neoadjuvant CCRT followed by surgery.
Collapse
Affiliation(s)
- Hong-Lin He
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Ying-En Lee
- Department of Anesthesiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Hsin-Pao Chen
- Department of Colorectal Surgery, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Chung-Hsi Hsing
- Department of Anesthesiology, Chi Mei Medical Center, Tainan, Taiwan
| | - I-Wei Chang
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan; Institute of Biotechnology and Chemical Engineering, I-Shou University, Kaohsiung, Taiwan
| | - Yow-Ling Shiue
- Institute of Biomedical Science, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Sung-Wei Lee
- Department of Radiation Oncology, Chi-Mei Medical Center, Liouying, Tainan, Taiwan
| | - Chao-Tien Hsu
- Department of Pathology, E-DA Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Li-Ching Lin
- Department of Radiation Oncology, Chi-Mei Medical Center, Tainan, Taiwan
| | - Ting-Feng Wu
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan
| | - Chien-Feng Li
- Department of Biotechnology, Southern Taiwan University of Science and Technology, Tainan, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan; National Institute of Cancer Research, National Health Research Institutes, Tainan, Taiwan; Department of Pathology, Chi Mei Medical Center, Tainan, Taiwan.
| |
Collapse
|
10
|
Choi J, Djebbar S, Fournier A, Labrie C. The co-chaperone DNAJC12 binds to Hsc70 and is upregulated by endoplasmic reticulum stress. Cell Stress Chaperones 2014; 19:439-46. [PMID: 24122553 PMCID: PMC3982032 DOI: 10.1007/s12192-013-0471-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2013] [Revised: 09/27/2013] [Accepted: 09/30/2013] [Indexed: 02/08/2023] Open
Abstract
Human DNAJC12 is a J domain-containing protein whose regulation, subcellular localization, and function are currently unknown. We show here that the abundance of DNAJC12 in human LNCaP prostate cancer cells is upregulated by the stress-inducing drug A23187 and by the stressregulated transcription factor AIbZIP/CREB3L4. The DNAJC12 gene encodes two isoforms, only one of which (isoform a) is expressed in these cells. Immunofluorescence studies showed that a recombinant DNAJC12 protein is diffusely distributed in the cytoplasm. To identify substrates of DNAJC12, we used an immunoaffinity-mass spectrometry approach in cells that express epitope-tagged DNAJC12. The list of potential DNAJC12-binding proteins that were identified in this screen includes several nucleotide-binding proteins. The most frequently identified partner of DNAJC12 in unstressed cells was Hsc70, a cognate Hsp70 chaperone, whereas in stressed cells, the ER chaperone BiP was frequently associated with DNAJC12. Immunoprecipitation experiments confirmed that the endogenous DNAJC12 and Hsc70 proteins interact in LNCaP cells. These results clarify the role of DNAJC12 in the regulation of Hsp70 function.
Collapse
Affiliation(s)
- Jin Choi
- Laval University and Centre Hospitalier Universitaire de Québec Research Center, 2705 Laurier Boul, Québec, QC G1V 4G2 Canada
| | - Sonia Djebbar
- Laval University and Centre Hospitalier Universitaire de Québec Research Center, 2705 Laurier Boul, Québec, QC G1V 4G2 Canada
| | - Andréa Fournier
- Laval University and Centre Hospitalier Universitaire de Québec Research Center, 2705 Laurier Boul, Québec, QC G1V 4G2 Canada
| | - Claude Labrie
- Laval University and Centre Hospitalier Universitaire de Québec Research Center, 2705 Laurier Boul, Québec, QC G1V 4G2 Canada
| |
Collapse
|
11
|
Karamouzis MV, Konstantinopoulos PA, Papavassiliou AG. The activator protein-1 transcription factor in respiratory epithelium carcinogenesis. Mol Cancer Res 2007; 5:109-20. [PMID: 17314269 DOI: 10.1158/1541-7786.mcr-06-0311] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Respiratory epithelium cancers are the leading cause of cancer-related death worldwide. The multistep natural history of carcinogenesis can be considered as a gradual accumulation of genetic and epigenetic aberrations, resulting in the deregulation of cellular homeostasis. Growing evidence suggests that cross-talk between membrane and nuclear receptor signaling pathways along with the activator protein-1 (AP-1) cascade and its cofactor network represent a pivotal molecular circuitry participating directly or indirectly in respiratory epithelium carcinogenesis. The crucial role of AP-1 transcription factor renders it an appealing target of future nuclear-directed anticancer therapeutic and chemoprevention approaches. In the present review, we will summarize the current knowledge regarding the implication of AP-1 proteins in respiratory epithelium carcinogenesis, highlight the ongoing research, and consider the future perspectives of their potential therapeutic interest.
Collapse
Affiliation(s)
- Michalis V Karamouzis
- Department of Biological Chemistry, Medical School, University of Athens, 75 M. Asias Street, 11527 Athens, Greece
| | | | | |
Collapse
|
12
|
Ye Y, Xi W, Peng Y, Wang Y, Guo A. Long-term but not short-term blockade of dopamine release in Drosophila impairs orientation during flight in a visual attention paradigm. Eur J Neurosci 2004; 20:1001-7. [PMID: 15305868 DOI: 10.1111/j.1460-9568.2004.03575.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Dopamine is a major neuromodulator in both vertebrates and invertebrates and has profound effects on many physiological processes, including the regulation of attention. Most studies of the functions of dopamine use models with long-term blockade of dopamine release and few effects of transient blockade have yet been reported. The goal of the present study was to determine the role of dopamine in attention-like behavior in Drosophila by taking advantage of the fly's orientation behavior during flight. The examination of several different transgenic flies in a single-target visual attention paradigm showed that flies lost their orientation ability if dopamine release was blocked from the beginning of the development of dopaminergic neurons. This is similar to the attention loss in mammals. However, if the blockade of dopamine release was induced during the experimental procedure, flies performed normally. Statistical analysis of the behavioral assessment showed a significant difference between long-term and transient blockade. Using the RNA interference approach, we generated flies with down-regulated J-domain protein, which is a potential cochaperone in synaptic vesicle release, to make an alternative form of long-term dopamine-blockade mutant. Behavioral assays revealed that flies with permanent J-domain protein down-regulation specifically in dopaminergic neurons have an attention defect similar to that induced by long-term blockade of dopamine release. Furthermore, dopamine depletion beginning at eclosion also caused an attention deficit. Our results indicate that prolonged but not transient blockade of dopamine release impairs visual attention-like behavior in Drosophila.
Collapse
Affiliation(s)
- Yizhou Ye
- Institute of Neuroscience, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue-yang Road, Shanghai 200031, China
| | | | | | | | | |
Collapse
|
13
|
Oudejans CBM, Mulders J, Lachmeijer AMA, van Dijk M, Könst AAM, Westerman BA, van Wijk IJ, Leegwater PAJ, Kato HD, Matsuda T, Wake N, Dekker GA, Pals G, ten Kate LP, Blankenstein MA. The parent-of-origin effect of 10q22 in pre-eclamptic females coincides with two regions clustered for genes with down-regulated expression in androgenetic placentas. Mol Hum Reprod 2004; 10:589-98. [PMID: 15208369 DOI: 10.1093/molehr/gah080] [Citation(s) in RCA: 79] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
By affected sib-pair linkage analysis of 24 families with pre-eclampsia, we confirm a susceptibility locus on chromosome 10q22.1 in Dutch females: a multipoint non-parametric linkage score of 3.6 near marker D10S1432 was obtained. Haplotype analysis showed a parent-of-origin effect: maximal allele sharing in the affected sibs was found for maternally derived alleles in all families, but not for the paternally derived alleles. As matrilineal inheritance suggests the presence of maternally expressed imprinted genes, while imprinting operates predominantly in (extra)embryonic tissues, all genes (n=132) known on 10q22 between GATA121A08 and D10S580 were screened for seven sequence-related features associated with imprinting and subsequently tested for expression in first trimester placenta. Placental expression of genes selected in this way (n=55) was compared with expression in androgenetic placentas of identical gestational age. Two regions on 10q22 were identified with developmentally co-repressed genes with non-random chromosomal distribution. Interestingly, these two clusters, near CTNNA3 and KCNMA1 and each containing five genes with down-regulated expression in androgenetic placentas, coincided with the regions with maximal maternal allele sharing seen in the pre-eclamptic sisters. Our linkage and expression data are compatible with the concept that pre-eclampsia involves maternally expressed imprinted genes that operate in the first trimester placenta.
Collapse
Affiliation(s)
- Cees B M Oudejans
- Departments of Clinical Chemistry and Clinical Genetics and Human Genetics, VU University Medical Center, 1081 HV Amsterdam.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Mita K, Morimyo M, Okano K, Koike Y, Nohata J, Kawasaki H, Kadono-Okuda K, Yamamoto K, Suzuki MG, Shimada T, Goldsmith MR, Maeda S. The construction of an EST database for Bombyx mori and its application. Proc Natl Acad Sci U S A 2003; 100:14121-6. [PMID: 14614147 PMCID: PMC283556 DOI: 10.1073/pnas.2234984100] [Citation(s) in RCA: 216] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2002] [Indexed: 11/18/2022] Open
Abstract
To build a foundation for the complete genome analysis of Bombyx mori, we have constructed an EST database. Because gene expression patterns deeply depend on tissues as well as developmental stages, we analyzed many cDNA libraries prepared from various tissues and different developmental stages to cover the entire set of Bombyx genes. So far, the Bombyx EST database contains 35,000 ESTs from 36 cDNA libraries, which are grouped into approximately 11,000 nonredundant ESTs with the average length of 1.25 kb. The comparison with FlyBase suggests that the present EST database, SilkBase, covers >55% of all genes of Bombyx. The fraction of library-specific ESTs in each cDNA library indicates that we have not yet reached saturation, showing the validity of our strategy for constructing an EST database to cover all genes. To tackle the coming saturation problem, we have checked two methods, subtraction and normalization, to increase coverage and decrease the number of housekeeping genes, resulting in a 5-11% increase of library-specific ESTs. The identification of a number of genes and comprehensive cloning of gene families have already emerged from the SilkBase search. Direct links of SilkBase with FlyBase and WormBase provide ready identification of candidate Lepidoptera-specific genes.
Collapse
Affiliation(s)
- Kazuei Mita
- Laboratory of Insect Genome, National Institute of Agrobiological Sciences, Owashi 1-2, Tsukuba, Ibaraki 305-8634, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|