1
|
Comparative genomics analysis of Nitriliruptoria reveals the genomic differences and salt adaptation strategies. Extremophiles 2019; 24:249-264. [PMID: 31820112 DOI: 10.1007/s00792-019-01150-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Accepted: 11/25/2019] [Indexed: 12/22/2022]
Abstract
The group Nitriliruptoria, recently classified as a separate class of phylum Actinobacteria, has five members at present, which belong to halophilic or halotolerant Actinobacteria. Here, we sequenced the genomes of Egicoccus halophilus EGI 80432T and Egibacter rhizosphaerae EGI 80759T, and performed a comparative genomics approach to analyze the genomic differences and salt adaptation mechanisms in Nitriliruptoria. Phylogenetic analysis suggested that Euzebya tangerina F10T has a closer phylogenetic relationship to Euzebya rosea DSW09T, while genomic analysis revealed highest genomic similarity with Nitriliruptor alkaliphilus ANL-iso2T and E. halophilus EGI 80432T. Genomic differences of Nitriliruptoria were mainly observed in genome size, gene contents, and the amounts of gene in per functional categories. Furthermore, our analysis also revealed that Nitriliruptoria possess similar synthesis systems of solutes, such as trehalose, glutamine, glutamate, and proline. On the other hand, each member of Nitriliruptoria species possesses specific mechanisms, K+ influx and efflux, betaine and ectoine synthesis, and compatible solutes transport to survive in various high-salt environments.
Collapse
|
2
|
Zhang Q, Zhao L, Li Y, Wang F, Li S, Shi G, Ding Z. Comparative transcriptomics and transcriptional regulation analysis of enhanced laccase production induced by co-culture of Pleurotus eryngii var. ferulae with Rhodotorula mucilaginosa. Appl Microbiol Biotechnol 2019; 104:241-255. [PMID: 31735984 DOI: 10.1007/s00253-019-10228-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/09/2019] [Accepted: 10/29/2019] [Indexed: 12/11/2022]
Abstract
The co-culturing of Pleurotus eryngii var. ferulae and Rhodotorula mucilaginosa was confirmed in our previous studies to be an efficient strategy to improve laccase production by submerged fermentation. To determine the possible regulation principles underlying this behaviour, comparative transcriptomic analysis was performed on P. eryngii var. ferulae to investigate the differential expression of genes in co-culture. RNA-seq analysis showed that genes concerning xenobiotic biodegradation and expenditure of energy were upregulated. However, genes related to oxidative stress were downregulated. In addition, the transcription levels of laccase isoenzymes were not consistent in the co-culture system: 3 laccase genes (lacc1, lacc2, lacc12) were upregulated, and 3 laccase genes (lacc4, lacc6, lacc9) were downregulated. The enhancement in laccase activity can be due to upregulation of a laccase heterodimer encoded by the genes lacc2 and ssPOXA3a (or ssPOXA3b), whose expression levels were increased by 459% and 769% (or 585% for ssPOXA3b) compared with those of a control, respectively. β-Carotene produced by R. mucilaginosa upregulated the transcription of lacc2 only. Combining these results with an analysis of cis-acting responsive elements indicated that four transcription factors (TFs) had potential regulatory effects on the transcription of laccase genes. It was supposed that TFa regulated lacc transcription by binding with methyl jasmonate and heat shock response elements. The expression of TFb, TFc, and TFd was regulated by β-carotene. However, β-carotene had no effect on TFa expression. These results provide a possible mechanism for the regulation of laccase gene transcription in the co-culture system and are also beneficial for the future intensification of fungal laccase production.
Collapse
Affiliation(s)
- Qi Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Liting Zhao
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - YouRan Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Song Li
- School of Biological and Chemical Engineering, Anhui Polytechnic University, Wuhu, 241000, China
| | - Guiyang Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China
| | - Zhongyang Ding
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, 214122, China.
| |
Collapse
|
3
|
Fonseca M, Molina M, Winnik D, Busi M, Fariña J, Villalba L, Zapata P. Isolation of a laccase-coding gene from the lignin-degrading fungusPhlebia brevisporaBAFC 633 and heterologous expression inPichia pastoris. J Appl Microbiol 2018; 124:1454-1468. [DOI: 10.1111/jam.13720] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 01/26/2018] [Accepted: 01/29/2018] [Indexed: 11/28/2022]
Affiliation(s)
- M.I. Fonseca
- Laboratorio de Biotecnología Molecular; Instituto de Biotecnología Misiones; Facultad de Ciencias Exactas Químicas y Naturales; Universidad Nacional de Misiones; Posadas Misiones Argentina
| | - M.A. Molina
- Laboratorio de Biotecnología Molecular; Instituto de Biotecnología Misiones; Facultad de Ciencias Exactas Químicas y Naturales; Universidad Nacional de Misiones; Posadas Misiones Argentina
| | - D.L. Winnik
- Laboratorio de Biotecnología Molecular; Instituto de Biotecnología Misiones; Facultad de Ciencias Exactas Químicas y Naturales; Universidad Nacional de Misiones; Posadas Misiones Argentina
| | - M.V. Busi
- Centro de Estudios Fotosintéticos y Bioquímicos (CEFOBI-CONICET); Universidad Nacional de Rosario; Rosario Argentina
| | - J.I. Fariña
- Laboratorio de Biotecnología Fúngica; PROIMI-CONICET; Tucumán Argentina
| | - L.L. Villalba
- Laboratorio de Biotecnología Molecular; Instituto de Biotecnología Misiones; Facultad de Ciencias Exactas Químicas y Naturales; Universidad Nacional de Misiones; Posadas Misiones Argentina
| | - P.D. Zapata
- Laboratorio de Biotecnología Molecular; Instituto de Biotecnología Misiones; Facultad de Ciencias Exactas Químicas y Naturales; Universidad Nacional de Misiones; Posadas Misiones Argentina
| |
Collapse
|
4
|
Peters AK, Leonards PE, Zhao B, Bergman A, Denison MS, Van den Berg M. Determination of in vitro relative potency (REP) values for mono-ortho polychlorinated biphenyls after purification with active charcoal. Toxicol Lett 2006; 165:230-41. [PMID: 16750337 PMCID: PMC3032053 DOI: 10.1016/j.toxlet.2006.04.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2006] [Revised: 04/23/2006] [Accepted: 04/24/2006] [Indexed: 11/22/2022]
Abstract
The TEF system for dioxin-like compounds has included assignment of TEF values for mono-ortho polychlorinated biphenyls (MO-PCBs). Small traces of aryl hydrocarbon receptor (AhR)-active impurities could result in artifactually higher relative potency (REP) values. MO-PCBs -105, -118, -156, and -167 were purified on an active charcoal column to remove AhR agonists that could be present as impurities. Activation or inhibition of AhR-dependent gene expression by purified MO-PCBs was studied in stably transfected cell lines (H1G1.1c3 mouse, H4G1.1c2 rat hepatoma), containing an AhR-responsive (AhR-EGFP) reporter gene. In addition, EROD activity was used as marker for CYP1A1 activity in these cell lines. MO-PCBs -105, -118, -156 induced AhR-EGFP expression in both rodent cell lines, with PCB-156 (10microM) being most effectively; inducing gene expression to approximately 27% of TCDD (mouse cells) and 62.5+/-3.4% (rat cells) of TCDD. This concurred with increased EROD activity in both cell lines to maxima of 20.5+/-1.5% and 68+/-3.2% of TCDD, respectively. No induction was observed for PCB-167. In the H1G1.1c3 mouse cells, PCB-105, -118 and -156 (10microM) significantly reduced TCDD-induced AhR-EGFP expression to 50.9+/-2.9%, 58.3+/-2.2% and 70.8+/-1.3% of TCDD. Reduced EROD activity was also observed, of 39.3+/-2.8%, 67+/-5% and 48.3+/-4% compared to TCDD. PCB-167 did not result in significant reduction. In rat cells, only PCB-156 resulted in significant decrease in TCDD-induced AhR-EGFP expression of 35%, suggesting species differences play a role. Our results suggest that purification of MO-PCBs is an essential step in determining accurate REP values, and could very likely lead to lower TEF values than those presently assigned by the WHO.
Collapse
Affiliation(s)
- A K Peters
- Institute for Risk Assessment Sciences (IRAS), Utrecht University, PO Box 80176, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | |
Collapse
|
5
|
Peters AK, Nijmeijer S, Gradin K, Backlund M, Bergman A, Poellinger L, Denison MS, Van den Berg M. Interactions of polybrominated diphenyl ethers with the aryl hydrocarbon receptor pathway. Toxicol Sci 2006; 92:133-42. [PMID: 16601081 PMCID: PMC3032055 DOI: 10.1093/toxsci/kfj186] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Polybrominated diphenyl ethers (PBDEs) are brominated flame retardants that have been in use as additives in various consumer products. Structural similarities of PBDEs with other polyhalogenated aromatic hydrocarbons that show affinity for the aryl hydrocarbon receptor (AhR), such as some polychlorinated biphenyls, raised concerns about their possible dioxin-like properties. We studied the ability of environmentally relevant PBDEs (BDE-47, -99, -100, -153, -154, and -183) and the "planar" congener BDE-77 to bind and/or activate the AhR in stably transfected rodent hepatoma cell lines with an AhR-responsive enhanced green fluorescent protein (AhR-EGFP) reporter gene (H1G1.1c3 mouse and H4G1.1c2 rat hepatoma). 7-Ethoxyresorufin-O-deethylation (EROD) was used as a marker for CYP1A1 activity. Dose- and bromination-specific inhibition of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-induced responses was measured by their ability to inhibit the induction of AhR-EGFP expression and EROD activity. Individual exposure to these PBDEs did not result in any increase in induction of AhR-EGFP or CYP1A1 activity. The lower brominated PBDEs showed the strongest inhibitory effect on TCDD-induced activities in both cell lines. While the highest brominated PBDE tested, BDE-183, inhibited EROD activity, it did not affect the induction of AhR-EGFP expression. Similar findings were observed after exposing stably transfected human hepatoma (xenobiotic response element [XRE]-HepG2) cells to these PBDEs, resulting in a small but statically significant agonistic effect on XRE-driven luciferase activity. Co-exposure with TCDD resulted again in antagonistic effects, confirming that the inhibitory effect of these PBDEs on TCDD-induced responses was not only due to direct interaction at receptor level but also at DNA-binding level. This antagonism was confirmed for BDE-99 in HepG2 cells transiently transfected with a Gal4-AhR construct and the corresponding Gal4-Luc reporter gene. In addition, a chromatin immunoprecipitation assay further confirmed that BDE-99 could bind to the AhR and activate the AhR nuclear translocation and dioxin responsive element (DRE) binding in the context of the CYP1A1 promoter. However, the transactivation function of the BDE-99-activated AhR seems to be very weak. These combined results suggest that PBDEs do bind but not activate the AhR-AhR nuclear translocator protein-XRE complex.
Collapse
Affiliation(s)
- A K Peters
- Institute for Risk Assessment Sciences, Utrecht University, PO Box 80176, Yalelaan 2, 3508 TD Utrecht, The Netherlands.
| | | | | | | | | | | | | | | |
Collapse
|
6
|
Kuramoto N, Baba K, Gion K, Sugiyama C, Taniura H, Yoneda Y. Xenobiotic response element binding enriched in both nuclear and microsomal fractions of rat cerebellum. J Neurochem 2003; 85:264-73. [PMID: 12641748 DOI: 10.1046/j.1471-4159.2003.01679.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Xenobiotic response element (XRE) is a core nucleotide sequence at the upstream of inducible target genes for the transcription factor aryl hydrocarbon receptor (AhR) that is responsible for signal transduction of exogenous environmental pollutants in eukaryotic cells. Immunoblotting analysis revealed the constitutive expression of AhR-related proteins in rat liver and brain, while specific binding of a radiolabelled probe containing XRE was detected in nuclear preparations of both liver and brain on gel retardation electrophoresis. Among discrete rat brain structures examined, cerebellum exhibited the highest XRE binding with less potent binding in hypothalamus, midbrain, medulla-oblongata, hippocampus, cerebral cortex and striatum. In contrast to liver and hippocampus, cerebellum also contained unusually higher XRE binding in microsomal fractions than that in either nuclear or mitochondrial fractions. Limited proteolysis by V8 protease did not markedly affect XRE binding in cerebellar nuclear extracts, with concomitant diminution of that in hepatic and hippocampal nuclear extracts. In primary cultured cerebellar neurons, indigo was effective in significantly increasing XRE binding only when determined immediately after sustained exposure for 120 min in the presence of high potassium chloride. These results suggest the abundance of as-yet unidentified proteins with high affinity for XRE and responsiveness to indigo in both nuclear and microsomal fractions of rat cerebellum.
Collapse
Affiliation(s)
- Nobuyuki Kuramoto
- Laboratory of Molecular Pharmacology, Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|