1
|
Pu J, Long X, Li Y, Zhang J, Qi F, Gao J, Shen Q, Yu Z. MSB2-activated pheromone pathway regulates fungal plasma membrane integrity in response to herbicide adjuvant. SCIENCE ADVANCES 2025; 11:eadt8715. [PMID: 40020065 PMCID: PMC11870069 DOI: 10.1126/sciadv.adt8715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Accepted: 01/24/2025] [Indexed: 03/03/2025]
Abstract
Glyphosate-based herbicides (GBHs) are used worldwide for weed management. However, GBHs pose a threat to soil fungal community, although fungi can degrade and use glyphosate as a nutrient source. How fungi respond to GBHs remains enigmatic. Here, we found that, not as in plants, the commercial GBH Roundup does not target the 5-enolpyruvyl-shikimate-3-phosphate synthase in the soil-derived fungus Trichoderma guizhouense, whereas it impairs fungal growth. We demonstrate that the herbicide adjuvant Triton CG-110 is more toxic to fungal cells than pure glyphosate. It limits nitrogen uptake, which induces the expression of proteinase YPS1 to catalyze the shedding of the MSB2 extracellular domain from the plasma membrane, leading to the activation of the MAPK TMK1 pheromone pathway. The downstream B2H2-type transcription factor STE12 directly regulates ergosterol biosynthesis, affecting membrane fluidity and stability. To our knowledge, this is the first evidence that the pheromone pathway is implicated in ergosterol biosynthesis and plasma membrane integrity.
Collapse
Affiliation(s)
- Jianwei Pu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Provincial Center for Agricultural Microbial Resource Protection and Germplasm Innovation and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Xiuju Long
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Provincial Center for Agricultural Microbial Resource Protection and Germplasm Innovation and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Yifan Li
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Provincial Center for Agricultural Microbial Resource Protection and Germplasm Innovation and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Jian Zhang
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Provincial Center for Agricultural Microbial Resource Protection and Germplasm Innovation and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Fei Qi
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Xiamen University, Xiamen 361102, China
| | - Jiangtao Gao
- State Key Laboratory of Ecological Pest Control for Fujian and Taiwan Crops, College of Life Sciences, Key Laboratory of Biopesticide and Chemical Biology of Ministry of Education, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou 350002, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Provincial Center for Agricultural Microbial Resource Protection and Germplasm Innovation and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| | - Zhenzhong Yu
- Jiangsu Provincial Key Lab for Solid Organic Waste Utilization, Key Lab of Organic-based Fertilizers of China, Jiangsu Collaborative Innovation Center for Solid Organic Wastes, Educational Ministry Engineering Center of Resource-saving fertilizers, Jiangsu Provincial Center for Agricultural Microbial Resource Protection and Germplasm Innovation and Utilization, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
2
|
Maor U, Barda O, Sadhasivam S, Bi Y, Levin E, Zakin V, Prusky DB, Sionov E. Functional roles of LaeA, polyketide synthase, and glucose oxidase in the regulation of ochratoxin A biosynthesis and virulence in Aspergillus carbonarius. MOLECULAR PLANT PATHOLOGY 2021; 22:117-129. [PMID: 33169928 PMCID: PMC7749749 DOI: 10.1111/mpp.13013] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 08/25/2020] [Accepted: 10/07/2020] [Indexed: 05/04/2023]
Abstract
Aspergillus carbonarius is the major producer of ochratoxin A (OTA) among Aspergillus species, but the contribution of this secondary metabolite to fungal virulence has not been assessed. We characterized the functions and addressed the roles of three factors in the regulation of OTA synthesis and pathogenicity in A. carbonarius: LaeA, a transcriptional factor regulating the production of secondary metabolites; polyketide synthase, required for OTA biosynthesis; and glucose oxidase (GOX), regulating gluconic acid (GLA) accumulation and acidification of the host tissue during fungal growth. Deletion of laeA in A. carbonarius resulted in significantly reduced OTA production in colonized nectarines and grapes. The ∆laeA mutant was unable to efficiently acidify the colonized tissue, as a direct result of diminished GLA production, leading to attenuated virulence in infected fruit compared to the wild type (WT). The designed Acpks-knockout mutant resulted in complete inhibition of OTA production in vitro and in colonized fruit. Interestingly, physiological analysis revealed that the colonization pattern of the ∆Acpks mutant was similar to that of the WT strain, with high production of GLA in the colonized tissue, suggesting that OTA accumulation does not contribute to A. carbonarius pathogenicity. Disruption of the Acgox gene inactivated GLA production in A. carbonarius, and this mutant showed attenuated virulence in infected fruit compared to the WT strain. These data identify the global regulator LaeA and GOX as critical factors modulating A. carbonarius pathogenicity by controlling transcription of genes important for fungal secondary metabolism and infection.
Collapse
Affiliation(s)
- Uriel Maor
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- Institute of Biochemistry, Food Science and NutritionThe Robert H. Smith Faculty of Agriculture, Food and EnvironmentThe Hebrew University of JerusalemRehovotIsrael
| | - Omer Barda
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Sudharsan Sadhasivam
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Yang Bi
- College of Food Science and EngineeringGansu Agricultural UniversityLanzhouChina
| | - Elena Levin
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Varda Zakin
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| | - Dov B. Prusky
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
- College of Food Science and EngineeringGansu Agricultural UniversityLanzhouChina
| | - Edward Sionov
- Institute of Postharvest and Food SciencesThe Volcani CenterAgricultural Research OrganizationRishon LeZionIsrael
| |
Collapse
|
3
|
Identification of a Classical Mutant in the Industrial Host Aspergillus niger by Systems Genetics: LaeA Is Required for Citric Acid Production and Regulates the Formation of Some Secondary Metabolites. G3-GENES GENOMES GENETICS 2015; 6:193-204. [PMID: 26566947 PMCID: PMC4704718 DOI: 10.1534/g3.115.024067] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The asexual filamentous fungus Aspergillus niger is an important industrial cell factory for citric acid production. In this study, we genetically characterized a UV-generated A. niger mutant that was originally isolated as a nonacidifying mutant, which is a desirable trait for industrial enzyme production. Physiological analysis showed that this mutant did not secrete large amounts of citric acid and oxalic acid, thus explaining the nonacidifying phenotype. As traditional complementation approaches to characterize the mutant genotype were unsuccessful, we used bulk segregant analysis in combination with high-throughput genome sequencing to identify the mutation responsible for the nonacidifying phenotype. Since A. niger has no sexual cycle, parasexual genetics was used to generate haploid segregants derived from diploids by loss of whole chromosomes. We found that the nonacidifying phenotype was caused by a point mutation in the laeA gene. LaeA encodes a putative methyltransferase-domain protein, which we show here to be required for citric acid production in an A. niger lab strain (N402) and in other citric acid production strains. The unexpected link between LaeA and citric acid production could provide new insights into the transcriptional control mechanisms related to citric acid production in A. niger. Interestingly, the secondary metabolite profile of a ΔlaeA strain differed from the wild-type strain, showing both decreased and increased metabolite levels, indicating that LaeA is also involved in regulating the production of secondary metabolites. Finally, we show that our systems genetics approach is a powerful tool to identify trait mutations.
Collapse
|
4
|
Gilbert MK, Mack BM, Wei Q, Bland JM, Bhatnagar D, Cary JW. RNA sequencing of an nsdC mutant reveals global regulation of secondary metabolic gene clusters in Aspergillus flavus. Microbiol Res 2015; 182:150-61. [PMID: 26686623 DOI: 10.1016/j.micres.2015.08.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/21/2015] [Accepted: 08/31/2015] [Indexed: 01/16/2023]
Abstract
The filamentous fungus, Aspergillus flavus (A. flavus) is an opportunistic pathogen capable of invading a number of crops and contaminating them with toxic secondary metabolites such as aflatoxins. Characterizing the molecular mechanisms governing growth and development of this organism is vital for developing safe and effective strategies for reducing crop contamination. The transcription factor nsdC has been identified as being required for normal asexual development and aflatoxin production in A. flavus. Building on a previous study using a large (L)-sclerotial morphotype A. flavus nsdC mutant we observed alterations in conidiophore development and loss of sclerotial and aflatoxin production using a nsdC mutant of a small (S)-sclerotial morphotype, that normally produces aflatoxin and sclerotia in quantities much higher than the L-morphotype. RNA sequencing analysis of the nsdC knockout mutant and isogenic control strain identified a number of differentially expressed genes related to development and production of secondary metabolites, including aflatoxin, penicillin and aflatrem. Further, RNA-seq data indicating down regulation of aflatrem biosynthetic gene expression in the nsdC mutant correlated with HPLC analyses showing a decrease in aflatrem levels. The current study expands the role of nsdC as a globally acting transcription factor that is a critical regulator of both asexual reproduction and secondary metabolism in A. flavus.
Collapse
Affiliation(s)
- Matthew K Gilbert
- USDA, ARS, Southern Regional Research Center 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA
| | - Brian M Mack
- USDA, ARS, Southern Regional Research Center 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA
| | - Qijian Wei
- USDA, ARS, Southern Regional Research Center 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA
| | - John M Bland
- USDA, ARS, Southern Regional Research Center 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA
| | - Deepak Bhatnagar
- USDA, ARS, Southern Regional Research Center 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA
| | - Jeffrey W Cary
- USDA, ARS, Southern Regional Research Center 1100 Robert E Lee Blvd., New Orleans, LA 70124, USA.
| |
Collapse
|
5
|
Spatial differentiation of gene expression in Aspergillus niger colony grown for sugar beet pulp utilization. Sci Rep 2015; 5:13592. [PMID: 26314379 PMCID: PMC4552001 DOI: 10.1038/srep13592] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/31/2015] [Indexed: 11/15/2022] Open
Abstract
Degradation of plant biomass to fermentable sugars is of critical importance for the use of plant materials for biofuels. Filamentous fungi are ubiquitous organisms and major plant biomass degraders. Single colonies of some fungal species can colonize massive areas as large as five soccer stadia. During growth, the mycelium encounters heterogeneous carbon sources. Here we assessed whether substrate heterogeneity is a major determinant of spatial gene expression in colonies of Aspergillus niger. We analyzed whole-genome gene expression in five concentric zones of 5-day-old colonies utilizing sugar beet pulp as a complex carbon source. Growth, protein production and secretion occurred throughout the colony. Genes involved in carbon catabolism were expressed uniformly from the centre to the periphery whereas genes encoding plant biomass degrading enzymes and nitrate utilization were expressed differentially across the colony. A combined adaptive response of carbon-catabolism and enzyme production to locally available monosaccharides was observed. Finally, our results demonstrate that A. niger employs different enzymatic tools to adapt its metabolism as it colonizes complex environments.
Collapse
|
6
|
Multiple nuclear localization signals mediate nuclear localization of the GATA transcription factor AreA. EUKARYOTIC CELL 2014; 13:527-38. [PMID: 24562911 DOI: 10.1128/ec.00040-14] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The Aspergillus nidulans GATA transcription factor AreA activates transcription of nitrogen metabolic genes in response to nitrogen limitation and is known to accumulate in the nucleus during nitrogen starvation. Sequence analysis of AreA revealed multiple nuclear localization signals (NLSs), five putative classical NLSs conserved in fungal AreA orthologs but not in the Saccharomyces cerevisiae functional orthologs Gln3p and Gat1p, and one putative noncanonical RRX33RXR bipartite NLS within the DNA-binding domain. In order to identify the functional NLSs in AreA, we constructed areA mutants with mutations in individual putative NLSs or combinations of putative NLSs and strains expressing green fluorescent protein (GFP)-AreA NLS fusion genes. Deletion of all five classical NLSs individually or collectively did not affect utilization of nitrogen sources or AreA-dependent gene expression and did not prevent AreA nuclear localization. Mutation of the bipartite NLS conferred the inability to utilize alternative nitrogen sources and abolished AreA-dependent gene expression likely due to effects on DNA binding but did not prevent AreA nuclear localization. Mutation of all six NLSs simultaneously prevented AreA nuclear accumulation. The bipartite NLS alone strongly directed GFP to the nucleus, whereas the classical NLSs collaborated to direct GFP to the nucleus. Therefore, AreA contains multiple conserved NLSs, which show redundancy and together function to mediate nuclear import. The noncanonical bipartite NLS is conserved in GATA factors from Aspergillus, yeast, and mammals, indicating an ancient origin.
Collapse
|
7
|
Recent advances in nitrogen regulation: a comparison between Saccharomyces cerevisiae and filamentous fungi. EUKARYOTIC CELL 2008; 7:917-25. [PMID: 18441120 DOI: 10.1128/ec.00076-08] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
8
|
Yamada T, Makimura K, Abe S. Isolation, characterization, and disruption of dnr1, the areA/nit-2-like nitrogen regulatory gene of the zoophilic dermatophyte, Microsporum canis. Med Mycol 2006; 44:243-52. [PMID: 16702104 DOI: 10.1080/13693780500410909] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
A homolog of the major nitrogen regulatory genes areA from Aspergillus nidulans and nit-2 from Neurospora crassa was isolated from the zoophilic dermatophyte, Microsporum canis. This gene, dnr1, encodes a polypeptide of 761 amino acid residues containing a single zinc-finger DNA-binding domain, which is almost identical in amino acid sequence to the zinc-finger domains of AREA and NIT-2. The functional equivalence of dnr1 to areA was demonstrated by complementation of an areA loss-of-function mutant of A. nidulans with dnr1 cDNA. To further characterize this gene, dnr1 was disrupted by gene replacement based on homologous recombination. Of 100 transformants analyzed, two showed the results expected for replacement of dnr1. The growth properties of the two dnr1(-) mutant strains on various nitrogen sources were examined. Unlike the A. nidulansareA(-) mutant, these dnr1(-) mutants showed significantly reduced growth on ammonia, a preferred nitrogen source for fungi. These mutant strains were also able to utilize various amino acids for growth. In comparison with wild-type M. canis, the two dnr1(-) mutants showed reduced growth on medium containing keratin as the sole nitrogen source. This is the first report describing successful production of targeted gene-disrupted mutants by homologous recombination and their phenotypic analysis in dermatophytes.
Collapse
Affiliation(s)
- Tsuyoshi Yamada
- Teikyo University Institute of Medical Mycology, Hachioji, Tokyo, Japan
| | | | | |
Collapse
|
9
|
Ward OP, Qin WM, Dhanjoon J, Ye J, Singh A. Physiology and Biotechnology of Aspergillus. ADVANCES IN APPLIED MICROBIOLOGY 2005; 58C:1-75. [PMID: 16543029 DOI: 10.1016/s0065-2164(05)58001-8] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- O P Ward
- Department of Biology, University of Waterloo Waterloo, Ontario, Canada N2L 3G1
| | | | | | | | | |
Collapse
|
10
|
Snoeijers SS, Pérez-García A, Goosen T, De Wit PJGM. Promoter analysis of the avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum in the model filamentous fungus Aspergillus nidulans. Curr Genet 2003; 43:96-102. [PMID: 12695849 DOI: 10.1007/s00294-003-0374-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2002] [Revised: 12/19/2002] [Accepted: 01/06/2003] [Indexed: 10/25/2022]
Abstract
The promoter of avirulence gene Avr9 of the fungal tomato pathogen Cladosporium fulvum contains 12 sequences within a region of 0.6 kb that are reminiscent of the binding sequences of the GATA-type regulator involved in nitrogen utilisation of the filamentous fungi Aspergillus nidulans and Neurospora crassa. Mutational analysis of this 0.6-kb promoter region, fused to the beta-glucuronidase reporter gene, revealed that two regions, each containing two TAGATA boxes in inverted orientation and overlapping by two base pairs, are important for induction of Avr9 promoter activity in A. nidulans. Each overlapping TAGATA box differentially affected Avr9 promoter activity when shifted apart by nucleotide insertions. The other regions, which do not contain two overlapping TAGATA boxes have no, or only a limited, contribution to the inducibility of promoter activity.
Collapse
Affiliation(s)
- Sandor S Snoeijers
- Laboratory of Phytopathology, Department of Plant Sciences, Wageningen University, Binnenhaven 5, 6709 PD Wageningen, The Netherlands
| | | | | | | |
Collapse
|
11
|
MacCabe AP, Orejas M, Tamayo EN, Villanueva A, Ramón D. Improving extracellular production of food-use enzymes from Aspergillus nidulans. J Biotechnol 2002; 96:43-54. [PMID: 12142142 DOI: 10.1016/s0168-1656(02)00036-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Filamentous fungi, and particularly those of the genus Aspergillus, are major producers of enzymatic activities that have important applications in the food and beverage industries. Prior to the availability of transformation systems improvement of industrial production strains was largely restricted to the strategy of mutagenesis, screening and selection. Aspergillus nidulans is a genetically amenable filamentous fungus the ease of handling and analysis of which has led to its use as a model system for the investigation of eukaryotic gene regulation. Although not used industrially it is able to produce a wide variety of extracellular enzymatic activities. As a consequence of half a century of study a considerable resource of characterised mutants has been generated in conjunction with extensive genetic and molecular information on various gene regulatory systems in this micro-organism. Investigation of xylanase gene regulation in A. nidulans as a model for the production of food-use extracellular enzymes suggests strategies by which production of these enzymes in industrially useful species may be improved.
Collapse
Affiliation(s)
- A P MacCabe
- Instituto de Agroquímica y Tecnología de Alimentos (CSIC), Apartado de Correos 73, 46100, Valencia, Burjassot, Spain.
| | | | | | | | | |
Collapse
|
12
|
de Vries RP, vanKuyk PA, Kester HCM, Visser J. The Aspergillus niger faeB gene encodes a second feruloyl esterase involved in pectin and xylan degradation and is specifically induced in the presence of aromatic compounds. Biochem J 2002; 363:377-86. [PMID: 11931668 PMCID: PMC1222489 DOI: 10.1042/0264-6021:3630377] [Citation(s) in RCA: 69] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The faeB gene encoding a second feruloyl esterase from Aspergillus niger has been cloned and characterized. It consists of an open reading frame of 1644 bp containing one intron. The gene encodes a protein of 521 amino acids that has sequence similarity to that of an Aspergillus oryzae tannase. However, the encoded enzyme, feruloyl esterase B (FAEB), does not have tannase activity. Comparison of the physical characteristics and substrate specificity of FAEB with those of a cinnamoyl esterase from A. niger [Kroon, Faulds and Williamson (1996) Biotechnol. Appl. Biochem. 23, 255-262] suggests that they are in fact the same enzyme. The expression of faeB is specifically induced in the presence of certain aromatic compounds, but not in the presence of other constituents present in plant-cell-wall polysaccharides such as arabinoxylan or pectin. The expression profile of faeB in the presence of aromatic compounds was compared with the expression of A. niger faeA, encoding feruloyl esterase A (FAEA), and A. niger bphA, the gene encoding a benzoate-p-hydroxylase. All three genes have different subsets of aromatic compounds that induce their expression, indicating the presence of different transcription activating systems in A. niger that respond to aromatic compounds. Comparison of the activity of FAEA and FAEB on sugar-beet pectin and wheat arabinoxylan demonstrated that they are both involved in the degradation of both polysaccharides, but have opposite preferences for these substrates. FAEA is more active than FAEB towards wheat arabinoxylan, whereas FAEB is more active than FAEA towards sugar-beet pectin.
Collapse
Affiliation(s)
- Ronald P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen University, Dreijenlaan 2, 6703 HA Wageningen, The Netherlands.
| | | | | | | |
Collapse
|
13
|
Ademark P, de Vries RP, Hägglund P, Stålbrand H, Visser J. Cloning and characterization of Aspergillus niger
genes encoding an α-galactosidase and a β-mannosidase involved in galactomannan degradation. ACTA ACUST UNITED AC 2001; 268:2982-90. [PMID: 11358516 DOI: 10.1046/j.1432-1327.2001.02188.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Alpha-galactosidase (EC 3.2.1.22) and beta-mannosidase (EC 3.2.1.25) participate in the hydrolysis of complex plant saccharides such as galacto(gluco)mannans. Here we report on the cloning and characterization of genes encoding an alpha-galactosidase (AglC) and a beta-mannosidase (MndA) from Aspergillus niger. The aglC and mndA genes code for 747 and 931 amino acids, respectively, including the eukaryotic signal sequences. The predicted isoelectric points of AglC and MndA are 4.56 and 5.17, and the calculated molecular masses are 79.674 and 102.335 kDa, respectively. Both AglC and MndA contain several putative N-glycosylation sites. AglC was assigned to family 36 of the glycosyl hydrolases and MndA was assigned to family 2. The expression patterns of aglC and mndA and two other genes encoding A. niger alpha-galactosidases (aglA and aglB) during cultivation on galactomannan were studied by Northern analysis. A comparison of gene expression on monosaccharides in the A. niger wild-type and a CreA mutant strain showed that the carbon catabolite repressor protein CreA has a strong influence on aglA, but not on aglB, aglC or mndA. AglC and MndA were purified from constructed overexpression strains of A. niger, and the combined action of these enzymes degraded a galactomanno-oligosaccharide into galactose and mannose. The possible roles of AglC and MndA in galactomannan hydrolysis is discussed.
Collapse
Affiliation(s)
- P Ademark
- Department of Biochemistry, Center for Chemistry and Chemical Engineering, Lund University, Sweden
| | | | | | | | | |
Collapse
|
14
|
de Vries RP, Visser J. Regulation of the feruloyl esterase (faeA) gene from Aspergillus niger. Appl Environ Microbiol 1999; 65:5500-3. [PMID: 10584009 PMCID: PMC91749 DOI: 10.1128/aem.65.12.5500-5503.1999] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Feruloyl esterases can remove aromatic residues (e.g., ferulic acid) from plant cell wall polysaccharides (xylan, pectin) and are essential for complete degradation of these polysaccharides. Expression of the feruloyl esterase-encoding gene (faeA) from Aspergillus niger depends on D-xylose (expression is mediated by XlnR, the xylanolytic transcriptional activator) and on a second system that responds to aromatic compounds with a defined ring structure, such as ferulic acid and vanillic acid. Several compounds were tested, and all of the inducing compounds contained a benzene ring which had a methoxy group at C-3 and a hydroxy group at C-4 but was not substituted at C-5. Various aliphatic groups occurred at C-1. faeA expression in the presence of xylose or ferulic acid was repressed by glucose. faeA expression in the presence of ferulic acid and xylose was greater than faeA expression in the presence of either compound alone. The various inducing systems allow A. niger to produce feruloyl esterase not only during growth on xylan but also during growth on other ferulic acid-containing cell wall polysaccharides, such as pectin.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Micro-organisms, Wageningen Agricultural University, NL-6703 HA Wageningen, The Netherlands
| | | |
Collapse
|
15
|
de Vries RP, van den Broeck HC, Dekkers E, Manzanares P, de Graaff LH, Visser J. Differential expression of three alpha-galactosidase genes and a single beta-galactosidase gene from Aspergillus niger. Appl Environ Microbiol 1999; 65:2453-60. [PMID: 10347026 PMCID: PMC91361 DOI: 10.1128/aem.65.6.2453-2460.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/1999] [Accepted: 04/01/1999] [Indexed: 11/20/2022] Open
Abstract
A gene encoding a third alpha-galactosidase (AglB) from Aspergillus niger has been cloned and sequenced. The gene consists of an open reading frame of 1,750 bp containing six introns. The gene encodes a protein of 443 amino acids which contains a eukaryotic signal sequence of 16 amino acids and seven putative N-glycosylation sites. The mature protein has a calculated molecular mass of 48,835 Da and a predicted pI of 4.6. An alignment of the AglB amino acid sequence with those of other alpha-galactosidases revealed that it belongs to a subfamily of alpha-galactosidases that also includes A. niger AglA. A. niger AglC belongs to a different subfamily that consists mainly of prokaryotic alpha-galactosidases. The expression of aglA, aglB, aglC, and lacA, the latter of which encodes an A. niger beta-galactosidase, has been studied by using a number of monomeric, oligomeric, and polymeric compounds as growth substrates. Expression of aglA is only detected on galactose and galactose-containing oligomers and polymers. The aglB gene is expressed on all of the carbon sources tested, including glucose. Elevated expression was observed on xylan, which could be assigned to regulation via XlnR, the xylanolytic transcriptional activator. Expression of aglC was only observed on glucose, fructose, and combinations of glucose with xylose and galactose. High expression of lacA was detected on arabinose, xylose, xylan, and pectin. Similar to aglB, the expression on xylose and xylan can be assigned to regulation via XlnR. All four genes have distinct expression patterns which seem to mirror the natural substrates of the encoded proteins.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, NL-6703 HA Wageningen, The Netherlands
| | | | | | | | | | | |
Collapse
|
16
|
de Vries RP, Visser J, de Graaff LH. CreA modulates the XlnR-induced expression on xylose of Aspergillus niger genes involved in xylan degradation. Res Microbiol 1999; 150:281-5. [PMID: 10376490 DOI: 10.1016/s0923-2508(99)80053-9] [Citation(s) in RCA: 134] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The expression of the feruloyl esterase gene faeA, the alpha-glucuronidase gene aguA, the endoxylanase gene xlnB, and the beta-xylosidase gene xlnD from Aspergillus niger on xylose was studied in a wild-type strain and in a CreA mutant. A decrease in expression of all four genes was observed with increasing xylose concentrations in the wild-type strain, whereas expression levels in the CreA mutant were not influenced. The results in the wild type indicated that xylose concentrations higher than 1 mM resulted in repression of the expression of the xylanolytic genes tested mediated by the carbon catabolite repressor protein CreA. On xylose, the expression levels of the xylanolytic genes were therefore not only determined by induction via XlnR, but also by repression via CreA. The genes tested were not influenced to the same extent by XlnR or CreA, resulting in specific expression levels and patterns for each individual gene.
Collapse
Affiliation(s)
- R P de Vries
- Molecular Genetics of Industrial Microorganisms, Wageningen Agricultural University, The Netherlands
| | | | | |
Collapse
|